
Near-Optimal Compression In Near-Linear Time
Raaz Dwivedi, Lester Mackey, Abhishek Shetty

raaz@mit.edu

MSRI Workshop, Berkeley
Mar 8, 2022

1

mailto:raaz.rsk@mit.edu

MCMC sample for single cell
model parameters

 heart simulator

xi =

f =

Computational cardiology
Modeling digital twin heart to predict
therapy response in a non-invasive way
requires single-cell modeling.
A common methodology:

• Estimate single cell model using
Bayesian set-up: Use millions of Markov
chain Monte Carlo (MCMC) points to
approximate posterior

• Propagate uncertainty at heart-level by
passing these points to the whole-heart
simulator

ℙ⋆

ℙ⋆f ≜ ∫ f(x)dℙ⋆(x) ≈
1
n

n

∑
i=1

f(xi) ≜ ℙn f

Niederer et al., 2011; Augustin et al., 2016; Strocchi et al., 2020

MCMC sample for single cell
model parameters

 heart simulator

xi =

f =

1 Million MCMC samples ~ 2 weeks
Single evaluation of ~ 5 weeksf

Can NOT use all million samples….!

Computational cardiology

ℙ⋆f ≜ ∫ f(x)dℙ⋆(x) ≈
1
n

n

∑
i=1

f(xi) ≜ ℙn f

Niederer et al., 2011; Augustin et al., 2016; Strocchi et al., 2020

Modeling digital twin heart to predict
therapy response in a non-invasive way
requires single-cell modeling.
A common methodology:

• Estimate single cell model using
Bayesian set-up: Use millions of Markov
chain Monte Carlo (MCMC) points to
approximate posterior

• Propagate uncertainty at heart-level by
passing these points to the whole-heart
simulator

ℙ⋆

Goal: Represent using a few high quality points ℙ⋆ (xi)n
i=1

Common solutions: I.I.D. sampling, and MCMC sampling exhibit a slow root-n
Monte Carlo rate , e.g., ~ points for % error

• Prohibitive for computationally expensive

Data compression: Approximate by compressing given points

• Uniform thinning, or standard thinning—-choose every th point

• Accuracy degrades with such thinning— worst-case error—same
as the Monte Carlo rate with points; e.g., rate with points

ℙ⋆f − ℙn f = Θ(n−1/2) 106 0.1

f

ℙ⋆ n

t−

Θ(t/n)
n/t n−1/4 n

4

Goal: Represent using a few high quality points ℙ⋆ (xi)n
i=1

Common solutions: I.I.D. sampling, and MCMC sampling exhibit a slow root-n
Monte Carlo rate , e.g., ~ points for % error

• Prohibitive for computationally expensive

Data compression: Approximate by compressing given points

• Uniform thinning, or standard thinning—-choose every th point

• Accuracy degrades with such thinning— worst-case error—same
as the Monte Carlo rate with points; e.g., rate with points

ℙ⋆f − ℙn f = Θ(n−1/2) 106 0.1

f

ℙ⋆ n

t−

Θ(t/n)
n/t n−1/4 n

5

Goal: Represent using a few high quality points ℙ⋆ (xi)n
i=1

Common solutions: I.I.D. sampling, and MCMC sampling exhibit a slow root-n
Monte Carlo rate , e.g., ~ points for % error

• Prohibitive for computationally expensive

Data compression: Approximate by compressing given points

• Uniform thinning, or standard thinning—-choose every th point

• Accuracy degrades with such thinning— worst-case error—same
as the Monte Carlo rate with points; e.g., rate with points

ℙ⋆f − ℙn f = Θ(n−1/2) 106 0.1

f

ℙ⋆ n

t−

Θ(t/n)
n/t n−1/4 n

6

Goal: Represent using a few high quality points ℙ⋆ (xi)n
i=1

Common solutions: I.I.D. sampling, and MCMC sampling exhibit a slow root-n
Monte Carlo rate , e.g., ~ points for % error

• Prohibitive for computationally expensive

Data compression: Approximate by compressing given points

• Uniform thinning, or standard thinning—-choose every th point

• Accuracy degrades with such thinning— worst-case error—same
as the Monte Carlo rate with points; e.g., rate with points

ℙ⋆f − ℙn f = Θ(n−1/2) 106 0.1

f

ℙ⋆ n

t−

Θ(t/n)
n/t n−1/4 n

Can we do better?
7

Minimax lower bounds

There exists some such that the worst-case integration error

• Is for any compression scheme returning points
[Philips and Tai, 2020]

• Is for any approximation based on i.i.d. points
[Tolstikhin, Sriperumbudur, and Muandet, 2017]

ℙ⋆

Ω(n−1/2) n

Ω(n−1/2) n

8

Minimax lower bounds

There exists some such that the worst-case integration error

• Is for any compression scheme returning points
[Philips and Tai, 2020]

• Is for any approximation based on i.i.d. points
[Tolstikhin, Sriperumbudur, and Muandet, 2017]

ℙ⋆

Ω(n−1/2) n

Ω(n−1/2) n

9

This talk: Kernel thinning-Compress++

• KT-Compress++: A practical strategy based on two new algorithms to
provide near-optimal compression in near-linear time

• Kernel thinning (KT): Provides near-optimal compression

• Compress++: Provides significantly reduced runtime for generic
thinning algorithms with minimal worsening of error

• Overall, KT-Compress++ a solution for finding - better than Monte Carlo points
- high quality coresets
- good prototypes

10

This talk: Kernel thinning-Compress++

• KT-Compress++: A practical strategy based on two new algorithms to
provide near-optimal compression in near-linear time

• Kernel thinning (KT): Provides near-optimal compression

• Compress++: Provides significantly reduced runtime for generic
thinning algorithms with minimal worsening of error

• Overall, KT-Compress++ a solution for finding - better than Monte Carlo points
- high quality coresets
- good prototypes

11

Problem set-up

• Input:

Points with empirical distribution

Target output size (for heavy compression)

• Goal:
Return a subset of input points with size , empirical distribution
with error rate , i.e., better than Monte Carlo rate

(xi)n
i=1 ℙin ≜

1
n

n

∑
i=1

δxi

s s = n

s ℙout
o(s−1/2)

12

• RKHS of is given by

• is dense in the space of continuous functions for universal like

Gaussian ; IMQ

k ℍk ≜ span{k(x, ⋅), x ∈ 𝒳}

ℍk k

k(x, y) = exp (−
1
2

∥x − y∥2) k(x, y) =
1

(1 + ∥x − y∥2)1/2

Reproducing kernel Hilbert space (RKHS)

 is a reproducing kernel if the matrix
is a symmetric positive definite matrix for any and any

k : ℝd × ℝd → ℝ K = (k(xi, xj))n
i,j=1

n (x1, …, xn)
13

Kernel
Thinning

(KT)

kernel

x1, x2, …, xn
k

ℙin ≜
1
n

n

∑
i=1

δxi

14

Non-uniform sub-sample of size

s
y1, …, ys

ℙKT ≜
1
s

s

∑
i=1

δyi

Kernel Thinning: A two-staged procedure

Kernel
Thinning

(KT)

Non-uniform sub-sample of size

s
y1, …, ys

ℙKT ≜
1
s

s

∑
i=1

δyi

Kernel Thinning: A two-staged procedure

!in

!1,1 !1,2

!2,1 !2,2 !2,3 !2,4

!3,1 !3,2 !3,3 !3,4 !3,5 !3,6 !3,7 !3,8

!m,1 !m,2 !m,5!m,3 !m,4 !m,6 !m,7 !m,2m!m,8

• Stage 1: recursive

rounds of non-uniform splitting the
parent coreset in two equal-sized
children coresets

• Stage 2: Point-by-point refinement
of the best child coreset

m =
1
2

log2(n/s)

15

kernel

x1, x2, …, xn
k

ℙin ≜
1
n

n

∑
i=1

δxi

Kernel
Thinning

(KT)

16

kernel

x1, x2, …, xn
k

ℙin ≜
1
n

n

∑
i=1

δxi

Non-uniform sub-sample of size

s
y1, …, ys

ℙKT ≜
1
s

s

∑
i=1

δyi

!in

!1,1 !1,2

!2,1 !2,2 !2,3 !2,4

!3,1 !3,2 !3,3 !3,4 !3,5 !3,6 !3,7 !3,8

!m,1 !m,2 !m,5!m,3 !m,4 !m,6 !m,7 !m,2m!m,8

• Stage 1: recursive

rounds of non-uniform splitting the
parent coreset in two equal-sized
children coresets

• Stage 2: Point-by-point refinement
of the best child coreset

m =
1
2

log2(n/s)

Kernel Thinning: A two-staged procedure

With input points, output points, with high probability over the
randomness in KT, for any fixed we have

 then

n s
g ∈ ℍk

|ℙing − ℙKTg | ≾
1
s

⋅ ∥g∥k k∥∞ (log s+log log(n/s))≪ 𝒪(1

s)
|ℙ⋆g − ℙing | = 𝒪(log n

n) |ℙ⋆g − ℙKTg | = 𝒪(log n
n)

17

for any kernel on any space!

Kernel Thinning: Better than Monte Carlo rate for ℙin

Monte Carlo rate
(standard thinning rate)

With input points, output points, with high probability over the
randomness in KT, for any fixed we have

 then

n n
g ∈ ℍk

|ℙing − ℙKTg | ≾
1

n
⋅ ∥g∥k ∥k∥∞ log n ≪ 𝒪(1

n1/4)
|ℙ⋆g − ℙing | = 𝒪(log n

n) |ℙ⋆g − ℙKTg | = 𝒪(log n
n)

Kernel Thinning: Better than Monte Carlo rate for ℙin

18

Monte Carlo rate
(standard thinning rate)

for any kernel on any space!

With input points, output points, with high probability over the
randomness in KT, for any fixed we have

 If then

n n
g ∈ ℍk

|ℙing − ℙKTg | ≾
1

n
⋅ ∥g∥k ∥k∥∞ log n ≪ 𝒪(1

n1/4)
|ℙ⋆g − ℙing | = 𝒪(log n

n) |ℙ⋆g − ℙKTg | = 𝒪(log n
n)

19

Kernel Thinning: Better than Monte Carlo rate for ℙin

Monte Carlo rate
(standard thinning rate)

With input points, output points, with high probability over the
randomness in KT, for any fixed we have

 If then

n n
g ∈ ℍk

|ℙing − ℙKTg | ≾
1

n
⋅ ∥g∥k ∥k∥∞ log n ≪ 𝒪(1

n1/4)
|ℙ⋆g − ℙing | = 𝒪(log n

n) |ℙ⋆g − ℙKTg | = 𝒪(log n
n)

Monte Carlo input + KT Better than Monte Carlo output for ⇒ ℙ⋆

20

- This is the Monte Carlo rate for input!
- Easily satisfied for input from iid sampling, MCMC, quadrature methods …

Monte Carlo rate
(standard thinning rate)

Intuition: KT finds ``diverse and representative’’ points

21

• For points in , the worst-case error—-Maximum Mean Discrepancy
(MMD) error—in the reproducing kernel Hilbert space (RKHS) satisfies

• For output size , the MMD error is

ℝd

s Õ (1/s)

 sup
∥g∥k≤1

|ℙing − ℙKTg | ≾d

n−1/2 log n

n−1/2 logd/2+1 n log log n

n−1/2 logd+1 n log log n

22

Worst-case error: with points for decaying Õ (n−1/2) n k

• For points in , the worst-case error—-Maximum Mean Discrepancy
(MMD) error—in the reproducing kernel Hilbert space (RKHS) satisfies

• For output size , the MMD error is

ℝd

s Õ (1/s)

Worst-case error: with points for decaying Õ (n−1/2) n k

 sup
∥g∥k≤1

|ℙing − ℙKTg | ≾d

n−1/2 log n

n−1/2 logd/2+1 n log log n

n−1/2 logd+1 n log log n

(Compactly supported; e.g., B-spline)k

(Sub-Gaussian tails; e.g., Gaussian)k

(Sub-exponential tails; e.g., Matern)k

23

Assuming similar tails for Pin

• For points in , the worst-case error—-Maximum Mean Discrepancy
(MMD) error—in the reproducing kernel Hilbert space (RKHS) satisfies

whenever —-holds for iid / fast mixing MCMC input

ℝd

sup
∥g∥k≤1

|ℙ⋆g − ℙing | ≾ n−1/2

(Compactly supported; e.g., B-spline)k

(Sub-Gaussian tails; e.g., Gaussian)k

(Sub-exponential tails; e.g., Matern)k

 sup
∥g∥k≤1

|ℙ⋆g − ℙKTg | ≾d

n−1/2 log n

n−1/2 logd/2+1 n log log n

n−1/2 logd+1 n log log n

24

Monte Carlo input + KT Better than Monte Carlo output for ⇒ ℙ⋆

Assuming similar tails for Pin

Comparison with related work
- finding good approximations to by thinning,

reweighting or directly
ℙ⋆

25

Related work: points with MMDn 𝒪(n−1/4)

• Known guarantees no better than Monte Carlo rate:
Standard thinning iid points [Tolstikhin-Sriperumbudur-Muandet, 2017]

Standard thinning geometrically ergodic MCMC [Dwivedi-Mackey 2021]
Kernel herding for infinite-dimensional kernels [Chen-Welling-Smola 2010, Lacoste-
Julien-Lindsten-Bach 2015]

Stein Points MCMC [Chen-Barp-Briol-Gorham-Girolami-Mackey-Oates, 2019]

Greedy sign selection [Karnin-Liberty 2019]

• Unknown guarantees:
Support points [Mak-Joseph 2018]
Supersampling from a reservoir [Paige-Sejdinovic-Wood, 2016]:

26

Related work: points with MMDn o(n−1/4)
• Finite-dimensional linear kernels: Discrepancy construction [Harvey and Samadi, 2014]

• Uniform on :
Quasi Monte Carlo [Hickernell 1998, Novak-Wozniakowski 2010] ,

Haar thinning [Dwivedi-Feldheim-Gurel-Gurevich-Ramdas 2019]

• with bounded support with known :
Bayesian quadrature [O’Hagan 1991]
Bayes’ Sard cubtature [Karvonen et al. 2018]
Determinantal point processes [Belhadji et al. 2020]

• (,) with known/bounded eigenfunctions:
Determinantal point process kernel quadrature [Belhadji et al. 2019]

Black-box importance sampling [Liu et al. 2018]

ℙ⋆ [0,1]d

ℙ⋆ ℙ⋆k

k ℙ⋆

27

1. points with integration-error for any fixed function in the RKHS for any
kernel on any space (iid sampling gives error)

2. points with -worst-case/MMD error for decaying kernels

3. Valid for non-uniform target distributions with unbounded support

4. Valid for infinite-dimensional smooth/decaying kernels

5. Valid for generic input points including iid/MCMC/quadrature etc with mild conditions

6. Requires only kernel evaluations to implement

7. Matches MMD lower bounds up to log factors

8. Matches -error lower bounds up to log factors

n O(log n/n)
Ω(n−1/4)

n Õ (n−1/2)

L∞

Kernel thinning advantages

28

In practice, significant gains even in dimension d = 100

M
M

D
k(

ℙ
⋆
,ℙ

ou
t)

KT vs iid: Gaussian in ℙ⋆ ℝd

(Gaussian kernel with)σ2 = 2d

(Worst-case error in the unit
ball of Gaussian RKHS)

29

KT on MCMC samples from computational cardiology

In this setting with , standard thinning is already good (the chain is mixing slowly),
but KT provides further improvement! Each point saves 1000s of CPU hours!!

d = 38

M
M

D
k(

ℙ
in

,ℙ
ou

t)

*MCMC samples taken from Riabiz-Chen-Cockayne-Swietach-Niederer-Mackey-Oates, 2021
30

KT drawback: runtime with input pointsn2 n

Y-axis = Runtime in linear scale (seconds)

Y-axis = Runtime in log-scale

31

(Runtime dominated by kernel evaluations)

Compress++: Reducing runtime with minimal loss in
accuracy!!

32

Compress++: Reducing runtime with minimal loss in
accuracy!!

33

Compress++: A recursive strategy to reduce runtime for
generic thinning algorithms

Compress++
Thinning algorithm with

 runtime and
sub-Gaussian error

n2

e(n)

-thinning algorithm with
 runtime and

sub-Gaussian error

n
n log3 n

4e(n)

34

Compress(, , ALG):

• If size() == 1, Return
• Else:

(i) Call Compress separately on 4 equal splits of
(ii) Concatenate the 4 outputs from step (i)
(iii) Return Halved output of step (ii) using ALG

𝒮 𝔤
𝒮 𝒮

𝒮

Standard
Thinning

Kernel
Thinning (KT)

 pointsn points with error (Monte Carlo rate)n
1

n1/4

 points with error in timen Õ (1

n) n2

Summary:
KT-Compress++ provides near-optimal compression in near-linear time

pip install goodpoints

https://arxiv.org/abs/2105.05842 [Kernel Thinning, COLT 2021]
https://arxiv.org/abs/2110.01593 [Generalized Kernel Thinning, ICLR 2022]
https://arxiv.org/pdf/2111.07941.pdf [Distribution Compression In Near-linear Time, ICLR 2022]

KT-Compress++ points with error in timen Õ (1

n) n log3 n

 pointsn

 pointsn

https://arxiv.org/abs/2105.05842
https://arxiv.org/abs/2110.01593
https://arxiv.org/pdf/2111.07941.pdf

Additional slides

36

Details of kernel thinning

37

KT: A two-staged algorithm
• Input: Kernel , input points of size , thinning factor

• KT-Split:

• Split into balanced candidate coresets each of size

• When , we have coresets each of size

• KT-Swap:

• Pick the best candidate coreset that minimized to input

• Iteratively refine each point in the selected coreset by swapping with the best
alternative if it improves the MMD error

k 𝒮in n m

𝒮in 2m n
2m

m =
1
2

log2 n n n

MMDk

𝒮in Computation: kernel evaluations
Storage:

𝒪(n2)
n min(n, d)38

!in

!1,1 !1,2

!2,1 !2,2 !2,3 !2,4

!3,1 !3,2 !3,3 !3,4 !3,5 !3,6 !3,7 !3,8

!m,1 !m,2 !m,5!m,3 !m,4 !m,6 !m,7 !m,2m!m,8

KT-Split

• Repeated rounds of
splitting the parent
coreset in two equal-
sized children coresets

• Runs online, after
seeing input points,
the bottom nodes have

 points

t

t/2m

39

KT-Split
• One path on the tree is

obtained by repeated
kernel halving

• At each halving round,
remaining points are
paired, and one point is
selected non-uniformly
from each pair using a
new Hilbert space
generalization of the
self-balancing walk of
[Alweiss-Liu-Sawhney
2020]

Input
 (points)n

 (points)
n
2

Output
 (points)

n
2m

 Kernel Halving roundsm

Kernel Halving

 (points)
n
4

Kernel Halving

<latexit sha1_base64="dM2tpuvUYF3a17jCjaY7CCNIIg4=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1iEClISFXVZdOOyon1AG8tkOmmHTh7MTIQagr/ixoUibv0Pd/6NkzYLrR4YOJxzL/fMcSPOpLKsL6MwN7+wuFRcLq2srq1vmJtbTRnGgtAGCXko2i6WlLOANhRTnLYjQbHvctpyR5eZ37qnQrIwuFXjiDo+HgTMYwQrLfXMna6P1ZBgntykd0nFPkT2Qdozy1bVmgD9JXZOypCj3jM/u/2QxD4NFOFYyo5tRcpJsFCMcJqWurGkESYjPKAdTQPsU+kkk/Qp2tdKH3mh0C9QaKL+3EiwL+XYd/VkllXOepn4n9eJlXfuJCyIYkUDMj3kxRypEGVVoD4TlCg+1gQTwXRWRIZYYKJ0YSVdgj375b+keVS1T6vH1yfl2kVeRxF2YQ8qYMMZ1OAK6tAAAg/wBC/wajwaz8ab8T4dLRj5zjb8gvHxDQ8YlFE=</latexit>

S(1,1)

<latexit sha1_base64="IzjRe/pKMhG0lDpZnAr+uYI87CU=">AAAB/XicbVDLSgMxFL1TX7W+xsfOTbAIFaTMVFGXRTcuK9oHtGPJpGkbmnmQZIQ6DP6KGxeKuPU/3Pk3ZtpZaOuBwOGce7knxw05k8qyvo3cwuLS8kp+tbC2vrG5ZW7vNGQQCULrJOCBaLlYUs58WldMcdoKBcWey2nTHV2lfvOBCskC/06NQ+p4eOCzPiNYaalr7nU8rIYE8/g2uY9LlWNkHyVds2iVrQnQPLEzUoQMta751ekFJPKorwjHUrZtK1ROjIVihNOk0IkkDTEZ4QFta+pjj0onnqRP0KFWeqgfCP18hSbq740Ye1KOPVdPplnlrJeK/3ntSPUvnJj5YaSoT6aH+hFHKkBpFajHBCWKjzXBRDCdFZEhFpgoXVhBl2DPfnmeNCpl+6x8cnNarF5mdeRhHw6gBDacQxWuoQZ1IPAIz/AKb8aT8WK8Gx/T0ZyR7ezCHxifPxChlFI=</latexit>

S(2,1)

<latexit sha1_base64="3Lu/QOS+4D9PDX/fWpjFkMdWhok=">AAAB/XicbVDLSgMxFM3UV62v8bFzEyxCBSkzKuqy6MZlRfuAdiyZNNOGJpkhyQh1GPwVNy4Ucet/uPNvzLSz0OqBwOGce7knx48YVdpxvqzC3PzC4lJxubSyura+YW9uNVUYS0waOGShbPtIEUYFaWiqGWlHkiDuM9LyR5eZ37onUtFQ3OpxRDyOBoIGFCNtpJ690+VIDzFiyU16l1T4IXQP0p5ddqrOBPAvcXNSBjnqPfuz2w9xzInQmCGlOq4TaS9BUlPMSFrqxopECI/QgHQMFYgT5SWT9CncN0ofBqE0T2g4UX9uJIgrNea+mcyyqlkvE//zOrEOzr2EiijWRODpoSBmUIcwqwL2qSRYs7EhCEtqskI8RBJhbQormRLc2S//Jc2jqntaPb4+Kdcu8jqKYBfsgQpwwRmogStQBw2AwQN4Ai/g1Xq0nq036306WrDynW3wC9bHN2s0lI0=</latexit>

S(m,1)

<latexit sha1_base64="f2RiQ3d0Z6heUOlpz815K7Ji2Lk=">AAACAnicbVC7TsMwFHV4lvIKMCEWiwqJqUoAAWMFC2MR9CG1UeS4TmvVdiLbQaqiiIVfYWEAIVa+go2/wUkzQMuRLB2fc6/uvSeIGVXacb6thcWl5ZXVylp1fWNza9ve2W2rKJGYtHDEItkNkCKMCtLSVDPSjSVBPGCkE4yvc7/zQKSikbjXk5h4HA0FDSlG2ki+vd/nSI8wYuld5qfFR/KUiizz7ZpTdwrAeeKWpAZKNH37qz+IcMKJ0JghpXquE2svRVJTzEhW7SeKxAiP0ZD0DBWIE+WlxQkZPDLKAIaRNE9oWKi/O1LElZrwwFTmO6pZLxf/83qJDi89c1CcaCLwdFCYMKgjmOcBB1QSrNnEEIQlNbtCPEISYW1Sq5oQ3NmT50n7pO6e109vz2qNqzKOCjgAh+AYuOACNMANaIIWwOARPINX8GY9WS/Wu/UxLV2wyp498AfW5w+b3pg5</latexit>

Sin

40

41

We choose such that this step does not
occur with high probability

𝔞i

42

• Exact Kernel halving: When , exactly half of
input points () given sign after steps

fi = k(x2i, ⋅) − k(x2i−1, ⋅)
𝒮out −1 n/2

We choose such that this step does not
occur with high probability

𝔞i

43

1
n

ψ =
1
n ∑

x∈Sin

k(x, ⋅) −
2
n ∑

x∈Sout

k(x, ⋅) = ℙink − ℙoutk

• Balance: If is a reproducing kernel, for all ,

 is -sub-Gaussian

k g ∈ ℍk

⟨ψn, g⟩k = ℙing − ℙoutg 𝒪(n−1 ⋅ log n ⋅ ∥g∥k)
If were chosen i.i.d., the sub-Gaussian parameter is ηi Ω(n−1/2)

44

Details of Compress++

45

Compress++: A simple two-stage algorithm

Compress points, parameter ,
halving algorithm HALVE

n 𝔤
 points2g n

 thinning
algorithm THIN

2𝔤

 pointsn

46

For example:
HALVE = Kernel thinning by a factor of
THIN = Kernel thinning by a factor of

(other algorithms can be used too!)

2
2𝔤

Compress++: A simple two-stage algorithm

 points, parameter ,
halving algorithm HALVE

n 𝔤
 points2g n

 pointsn

47

Compress(, , ALG):

• If size() == , Return
• Else:

(i) Call Compress separately on 4 equal splits of
(ii) Concatenate the 4 outputs from step (i)
(iii) Return Halved output of step (ii) using ALG

𝒮 𝔤
𝒮 4𝔤 𝒮

𝒮

Compress

 thinning
algorithm THIN

2𝔤

Compress++: Informal guarantee

Under some mild conditions, with , we have

• Sub-Gaussian error inflation by at most 4:
If and then

• Quadratic reduction in runtime:
If runtime of HALVE and THIN with points is then the runtime of
Compress++ with points is if and if

𝔤 = log log n + 1

MMDk(ℙn, ℙHALVE) ∼ e1(n) MMDk(ℙn, ℙTHIN) ∼ e2(n)
MMDk(ℙn, ℙCompress++) ∼ 4 max(e1(n), e2(n))

n 𝒪(nτ)
n 𝒪(nτ/2) τ > 2 𝒪(n log3 n) τ = 2.

48

MMDk(ℙin, ℙout) = sup
∥g∥k≤1

|ℙing − ℙoutg |

Compress++: Informal guarantee

Under some mild conditions, with , we have

• Sub-Gaussian error inflation by at most 4:
If and then

• Quadratic reduction in runtime:
If runtime of HALVE and THIN with points is then the runtime of
Compress++ with points is if and if

𝔤 = log log n + 1

MMDk(ℙn, ℙHALVE) ∼ e1(n) MMDk(ℙn, ℙTHIN) ∼ e2(n)
MMDk(ℙn, ℙCompress++) ∼ 4 max(e1(n), e2(n))

n 𝒪(nτ)
n 𝒪(nτ/2) τ > 2 𝒪(n log3 n) τ = 2.

49

KT vs Compress vs Compress++ (𝔤 = 0) (𝔤 = 4)
The input algorithms Halve and Thin to Compress++ are derived from KT

50

Results for Compress++ with kernel herding (Herd)
Results for Compress++ with kernel herding (Herd)

51

Lower bounds

52

Lower bounds

• For smooth kernels, there exists a target , such that a coreset of size

suffers an MMD error of . [Philips and Tai 2020]

• For characteristic kernels, there exists a target , such that any estimator
based on i.i.d. input points must suffer at least MMD error. [Tolstikhin
et al. 2017]

ℙ n

min(
d
n

, n−1/4)

ℙ
n n−1/2

Both bounds apply to Gaussian and Matérn kernels

53

Single function +
Additional MCMC Experiments

54

Better error for functions inside and outside of RKHS
(Gaussian with and standard Gaussian)k σ2 = 2d ℙ⋆

55

Better error for functions inside and outside of RKHS
(Gaussian with and standard Gaussian)k σ2 = 2d ℙ⋆

56

Better error for functions inside and outside of RKHS
(Gaussian with and standard Gaussian)k σ2 = 2d ℙ⋆

57

MCMC experiments: Differential equation models
1. Random walk (RW)

[Metropolis et al. 1953, Hastings 1970]
2. Adaptive random walk (adaRW)

[Haario et al. 1999]
3. Metropolis adjusted Langevin

algorithm (MALA) [Roberts et al. 1996]
4. Preconditioned-MALA (pMALA)

[Girolami et al. 2011]

x

x
1. Random walk (RW) - run 1
2. Random walk (RW) - run 2

1. Posterior
2. Tempered

posterior x

Dimension d = 4

Dimension d = 38

1. Posterior x

3. Hinch calcium signal model
[Hinch-Greenstein-Tanskanen-Xu-
Winslow, 2004]

1. Lotka-Volterra model
oscillatory enzymatic control, [1925, 1926]

2. Goodwin model
oscillatory predator-prey evolution, [1965]

MCMC samples taken from Riabiz-Chen-Cockayne-Swietach-Niederer-Mackey-Oates, 2021
58

For KT, we use Gaussian kernel, and chose its bandwidth via median heuristic [Garreau et al. 2017]

Results for MCMC experiments

59

Details for KT result

60

• More generally

 error rate for analytic kernels

 for -times differentiable kernels

• We state explicit constants with dependence on kernel hyper-parameters
in the paper

Õ (1

n)
Õ (nd/2m

n) m

Target KT MMD rates: points with errorn Õ (n−1/2)

61

Generalized kernel thinning
Root KT Target KT KT+

[Best of both worlds]

KT-Split kernel

Single-function
error

Same as MMD
error

MMD error See slide
Min(Target KT Error,

-Root KT)

kkrt k + kα−rt

α

log n
n

logad+b n
n

nd/m

n

Analytic k

-times
differentiable

m
k

For arbitrary
on arbitrary domain

klog n
n

 & where denotes Fourier transformk(x, y) = ∫ krt(x, z)krt(z, y)dz kα−rt = ̂(̂k)α ̂
62

Kernel
Thinning

(KT)

Non-uniform sub-sample of size

s
y1, …, ys

ℙKT :=
1
s

s

∑
i=1

δyi

smooth decaying
x1, x2, …, xn ∈ ℝd

k
ℙin :=

1
n

n

∑
i=1

δxi

Target KT or KT+: Better than Monte Carlo rate

Much faster than the Monte Carlo rate for standard/uniform thinning 𝒪 (1

s)

For any fixed , with probability over the randomness in KT, we haveg ∈ ℍk 1 − δ

|ℙing − ℙKTg | ≤
1
s

⋅ ∥g∥k
8
3

∥k∥∞ log (4
δ) log (6s log(n/s)

δ)
63

Kernel
Thinning

(KT)

Non-uniform sub-sample of size

n
y1, …, y n

ℙKT :=
1

n

n

∑
i=1

δyi

smooth decaying
x1, x2, …, xn ∈ ℝd

k
ℙin :=

1
n

n

∑
i=1

δxi

For any fixed , with probability over the randomness in KT, we haveg ∈ ℍk 1 − δ

|ℙing − ℙKTg | ≤
1

n
⋅ ∥g∥k

8
3

∥k∥∞ log (4
δ) log (

6 n log n
δ)

Much faster than the Monte Carlo rate for standard/uniform thinning 𝒪 (1
n1/4)

Target KT or KT+: Better than Monte Carlo rate

64

Properties of MMD
• Maximum mean discrepancy (MMD) = worst-case integration

discrepancy between two distributions over a class of real-valued
test functions

• MMD metrizes convergence in distribution for popular infinite-
dimensional kernels like Gaussian, Matern, IMQ, B-spline

MMDk(ℙin, ℙout) = sup
∥g∥k≤1

|ℙing − ℙoutg |
[Gretton-Borgwardt-
Rasch-Schölkopf-Smola,
2012]

[Simon-Gabriel-Barp-
Schölkopf-Mackey, 2020]

65

