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MCMC sample for single cell 
model parameters 

 heart simulator

xi =

f =

Computational cardiology
Modeling digital twin heart to predict 
therapy response in a non-invasive way 
requires single-cell modeling.  
A common methodology: 

• Estimate single cell model using 
Bayesian set-up: Use millions of Markov 
chain Monte Carlo (MCMC) points to 
approximate posterior  

• Propagate uncertainty at heart-level by 
passing these points to the whole-heart 
simulator

ℙ⋆

ℙ⋆f ≜ ∫ f(x)dℙ⋆(x) ≈
1
n

n

∑
i=1

f(xi) ≜ ℙn f

Niederer et al., 2011; Augustin et al., 2016; Strocchi et al., 2020



MCMC sample for single cell 
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1 Million MCMC samples ~ 2 weeks 
Single evaluation of  ~ 5 weeksf

Can NOT use all million samples….!

Computational cardiology

ℙ⋆f ≜ ∫ f(x)dℙ⋆(x) ≈
1
n

n

∑
i=1

f(xi) ≜ ℙn f

Niederer et al., 2011; Augustin et al., 2016; Strocchi et al., 2020

Modeling digital twin heart to predict 
therapy response in a non-invasive way 
requires single-cell modeling.  
A common methodology: 

• Estimate single cell model using 
Bayesian set-up: Use millions of Markov 
chain Monte Carlo (MCMC) points to 
approximate posterior  

• Propagate uncertainty at heart-level by 
passing these points to the whole-heart 
simulator

ℙ⋆



Goal: Represent  using a few high quality points ℙ⋆ (xi)n
i=1

Common solutions: I.I.D. sampling, and MCMC sampling exhibit a slow root-n 
Monte Carlo rate , e.g., ~  points for % error 

• Prohibitive for computationally expensive  

Data compression: Approximate  by compressing given  points 

• Uniform thinning, or standard thinning—-choose every th point 

• Accuracy degrades with such thinning—  worst-case error—same 
as the Monte Carlo rate with  points; e.g.,  rate with  points

ℙ⋆f − ℙn f = Θ(n−1/2) 106 0.1

f

ℙ⋆ n

t−

Θ( t/n)
n/t n−1/4 n
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Goal: Represent  using a few high quality points ℙ⋆ (xi)n
i=1

Common solutions: I.I.D. sampling, and MCMC sampling exhibit a slow root-n 
Monte Carlo rate , e.g., ~  points for % error 

• Prohibitive for computationally expensive  

Data compression: Approximate  by compressing given  points 

• Uniform thinning, or standard thinning—-choose every th point 

• Accuracy degrades with such thinning—  worst-case error—same 
as the Monte Carlo rate with  points; e.g.,  rate with  points

ℙ⋆f − ℙn f = Θ(n−1/2) 106 0.1

f

ℙ⋆ n

t−

Θ( t/n)
n/t n−1/4 n

Can we do better?
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Minimax lower bounds

There exists some  such that the worst-case integration error 

• Is  for any compression scheme returning  points 
[Philips and Tai, 2020] 

• Is  for any approximation based on  i.i.d. points 
[Tolstikhin, Sriperumbudur, and Muandet, 2017]

ℙ⋆

Ω(n−1/2) n

Ω(n−1/2) n
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This talk: Kernel thinning-Compress++

• KT-Compress++: A practical strategy based on two new algorithms to 
provide near-optimal compression in near-linear time 

• Kernel thinning (KT): Provides near-optimal compression 

• Compress++: Provides significantly reduced runtime for generic 
thinning algorithms with minimal worsening of error 

• Overall, KT-Compress++ a solution for finding - better than Monte Carlo points 
- high quality coresets 
- good prototypes
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Problem set-up

• Input:  

Points  with empirical distribution  

Target output size  (  for heavy compression) 

• Goal: 
Return a subset of input points with size , empirical distribution  
with error rate , i.e., better than Monte Carlo rate

(xi)n
i=1 ℙin ≜

1
n

n

∑
i=1

δxi

s s = n

s ℙout
o(s−1/2)
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• RKHS of  is given by  

•  is dense in the space of continuous functions for universal  like 
 

Gaussian ; IMQ 

k ℍk ≜ span{k(x, ⋅ ), x ∈ 𝒳}

ℍk k

k(x, y) = exp (−
1
2

∥x − y∥2) k(x, y) =
1

(1 + ∥x − y∥2)1/2

Reproducing kernel Hilbert space (RKHS)

 is a reproducing kernel if the matrix  
is a symmetric positive definite matrix for any  and any 

k : ℝd × ℝd → ℝ K = (k(xi, xj))n
i,j=1

n (x1, …, xn)
13



Kernel 
Thinning 

(KT)

 
kernel  

x1, x2, …, xn
k

ℙin ≜
1
n

n

∑
i=1

δxi
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Non-uniform sub-sample of size   
 

s
y1, …, ys

ℙKT ≜
1
s

s

∑
i=1

δyi

Kernel Thinning: A two-staged procedure



Kernel 
Thinning 

(KT)

Non-uniform sub-sample of size   
 

s
y1, …, ys

ℙKT ≜
1
s

s

∑
i=1

δyi

Kernel Thinning: A two-staged procedure

!in

!1,1 !1,2

!2,1 !2,2 !2,3 !2,4

!3,1 !3,2 !3,3 !3,4 !3,5 !3,6 !3,7 !3,8

!m,1 !m,2 !m,5!m,3 !m,4 !m,6 !m,7 !m,2m!m,8

• Stage 1:  recursive 

rounds of non-uniform splitting the 
parent coreset in two equal-sized 
children coresets 

• Stage 2: Point-by-point refinement 
of the best child coreset

m =
1
2

log2(n/s)

15

 
kernel  

x1, x2, …, xn
k

ℙin ≜
1
n

n

∑
i=1

δxi



Kernel 
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With  input points,  output points, with high probability over the 
randomness in KT, for any fixed  we have 
 

  

 

           then  

n s
g ∈ ℍk

|ℙing − ℙKTg | ≾
1
s

⋅ ∥g∥k k∥∞ (log s+log log(n/s))≪ 𝒪( 1

s )
|ℙ⋆g − ℙing | = 𝒪( log n

n ) |ℙ⋆g − ℙKTg | = 𝒪( log n
n )

17

for any kernel on any space!

Kernel Thinning: Better than Monte Carlo rate for ℙin

Monte Carlo rate  
(standard thinning rate)



With  input points,  output points, with high probability over the 
randomness in KT, for any fixed  we have 
 

                    

 

           then  

n n
g ∈ ℍk

|ℙing − ℙKTg | ≾
1

n
⋅ ∥g∥k ∥k∥∞ log n ≪ 𝒪( 1

n1/4 )
|ℙ⋆g − ℙing | = 𝒪( log n

n ) |ℙ⋆g − ℙKTg | = 𝒪( log n
n )

Kernel Thinning: Better than Monte Carlo rate for ℙin
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Monte Carlo rate  
(standard thinning rate)

for any kernel on any space!
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n n
g ∈ ℍk

|ℙing − ℙKTg | ≾
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|ℙ⋆g − ℙing | = 𝒪( log n
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Monte Carlo input + KT  Better than Monte Carlo output for ⇒ ℙ⋆
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- This is the Monte Carlo rate for input!  
- Easily satisfied for input from iid sampling, MCMC, quadrature methods … 

Monte Carlo rate  
(standard thinning rate)



Intuition: KT finds ``diverse and representative’’ points

21



• For points in , the worst-case error—-Maximum Mean Discrepancy 
(MMD) error—in the reproducing kernel Hilbert space (RKHS) satisfies 
 
 
 
 
 

• For output size , the MMD error is  

ℝd

s Õ (1/s)

 sup
∥g∥k≤1

|ℙing − ℙKTg | ≾d

n−1/2 log n

n−1/2 logd/2+1 n log log n

n−1/2 logd+1 n log log n

22

Worst-case error:  with  points for decaying  Õ (n−1/2) n k
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• For output size , the MMD error is  

ℝd

s Õ (1/s)

Worst-case error:  with  points for decaying  Õ (n−1/2) n k

 sup
∥g∥k≤1

|ℙing − ℙKTg | ≾d

n−1/2 log n

n−1/2 logd/2+1 n log log n

n−1/2 logd+1 n log log n

(Compactly supported; e.g., B-spline )k

(Sub-Gaussian tails; e.g., Gaussian )k

(Sub-exponential tails; e.g., Matern )k
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Assuming similar tails for Pin



• For points in , the worst-case error—-Maximum Mean Discrepancy 
(MMD) error—in the reproducing kernel Hilbert space (RKHS) satisfies 
 
 
 
 
 
 
 
whenever  —-holds for iid / fast mixing MCMC input

ℝd

sup
∥g∥k≤1

|ℙ⋆g − ℙing | ≾ n−1/2

(Compactly supported; e.g., B-spline )k

(Sub-Gaussian tails; e.g., Gaussian )k

(Sub-exponential tails; e.g., Matern )k

 sup
∥g∥k≤1

|ℙ⋆g − ℙKTg | ≾d

n−1/2 log n

n−1/2 logd/2+1 n log log n

n−1/2 logd+1 n log log n
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Monte Carlo input + KT  Better than Monte Carlo output for ⇒ ℙ⋆

Assuming similar tails for Pin



Comparison with related work 
- finding good approximations to  by thinning, 

reweighting or directly
ℙ⋆

25



Related work:  points with  MMDn 𝒪(n−1/4)

• Known guarantees no better than Monte Carlo rate: 
Standard thinning iid points [Tolstikhin-Sriperumbudur-Muandet, 2017] 

Standard thinning geometrically ergodic MCMC [Dwivedi-Mackey 2021] 
Kernel herding for infinite-dimensional kernels [Chen-Welling-Smola 2010, Lacoste-
Julien-Lindsten-Bach 2015] 

Stein Points MCMC [Chen-Barp-Briol-Gorham-Girolami-Mackey-Oates, 2019] 

Greedy sign selection [Karnin-Liberty 2019] 

• Unknown guarantees:  
Support points [Mak-Joseph 2018] 
Supersampling from a reservoir [Paige-Sejdinovic-Wood, 2016]:

26



Related work:  points with  MMDn o(n−1/4)
• Finite-dimensional linear kernels: Discrepancy construction [Harvey and Samadi, 2014] 

• Uniform  on :  
Quasi Monte Carlo [Hickernell 1998, Novak-Wozniakowski 2010] ,  

Haar thinning [Dwivedi-Feldheim-Gurel-Gurevich-Ramdas 2019]  

•  with bounded support with known :  
Bayesian quadrature [O’Hagan 1991]  
Bayes’ Sard cubtature [Karvonen et al. 2018]  
Determinantal point processes [Belhadji et al. 2020]  

• ( , ) with known/bounded eigenfunctions: 
Determinantal point process kernel quadrature [Belhadji et al. 2019] 

Black-box importance sampling [Liu et al. 2018]

ℙ⋆ [0,1]d

ℙ⋆ ℙ⋆k

k ℙ⋆
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1.  points with  integration-error for any fixed function in the RKHS for any 
kernel on any space (iid sampling gives  error) 

2.  points with -worst-case/MMD error for decaying kernels 

3. Valid for non-uniform target distributions with unbounded support 

4. Valid for infinite-dimensional smooth/decaying kernels 

5. Valid for generic input points including iid/MCMC/quadrature etc with mild conditions 

6. Requires only kernel evaluations to implement 

7. Matches MMD lower bounds up to log factors  

8. Matches -error lower bounds up to log factors

n O( log n/n)
Ω(n−1/4)

n Õ (n−1/2)

L∞

Kernel thinning advantages

28



In practice, significant gains even in dimension d = 100

M
M

D
k(

ℙ
⋆
,ℙ

ou
t)

KT vs iid: Gaussian  in ℙ⋆ ℝd

(Gaussian kernel with )σ2 = 2d

(Worst-case error in the unit 
ball of Gaussian RKHS) 

29



KT on MCMC samples from computational cardiology 

In this setting with , standard thinning is already good (the chain is mixing slowly),  
but KT provides further improvement! Each point saves 1000s of CPU hours!!

d = 38

M
M

D
k(

ℙ
in

,ℙ
ou

t)

*MCMC samples taken from Riabiz-Chen-Cockayne-Swietach-Niederer-Mackey-Oates, 2021
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KT drawback:  runtime with  input pointsn2 n

Y-axis = Runtime in linear scale (seconds)

Y-axis = Runtime in log-scale

31

(Runtime dominated by kernel evaluations)



Compress++: Reducing runtime with minimal loss in 
accuracy!!
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Compress++: Reducing runtime with minimal loss in 
accuracy!!
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Compress++: A recursive strategy to reduce runtime for 
generic thinning algorithms

Compress++
Thinning algorithm with 

 runtime and 
sub-Gaussian error 

n2

e(n)

-thinning algorithm with 
 runtime and 

sub-Gaussian error 

n
n log3 n

4e(n)

34

Compress( , , ALG): 

• If size( ) == 1, Return  
• Else: 

(i) Call Compress separately on 4 equal splits of   
(ii) Concatenate the 4 outputs from step (i)  
(iii) Return Halved output of step (ii) using ALG

𝒮 𝔤
𝒮 𝒮

𝒮



Standard 
Thinning

Kernel 
Thinning (KT)

 pointsn  points with  error  (Monte Carlo rate)n
1

n1/4

 points with  error in  timen Õ ( 1

n ) n2

Summary:  
KT-Compress++ provides near-optimal compression in near-linear time

pip install goodpoints

https://arxiv.org/abs/2105.05842    [Kernel Thinning, COLT 2021] 
https://arxiv.org/abs/2110.01593    [Generalized Kernel Thinning, ICLR 2022] 
https://arxiv.org/pdf/2111.07941.pdf [Distribution Compression In Near-linear Time, ICLR 2022]

KT-Compress++  points with  error in  timen Õ ( 1

n ) n log3 n

 pointsn

 pointsn

https://arxiv.org/abs/2105.05842
https://arxiv.org/abs/2110.01593
https://arxiv.org/pdf/2111.07941.pdf


Additional slides
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Details of kernel thinning
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KT: A two-staged algorithm
• Input: Kernel , input points  of size , thinning factor  

• KT-Split: 

• Split  into  balanced candidate coresets each of size  

• When , we have  coresets each of size  

• KT-Swap: 

• Pick the best candidate coreset that minimized  to input 

• Iteratively refine each point in the selected coreset by swapping with the best 
alternative  if it improves the MMD error

k 𝒮in n m

𝒮in 2m n
2m

m =
1
2

log2 n n n

MMDk

𝒮in Computation:  kernel evaluations  
Storage: 

𝒪(n2)
n min(n, d)38



!in

!1,1 !1,2

!2,1 !2,2 !2,3 !2,4

!3,1 !3,2 !3,3 !3,4 !3,5 !3,6 !3,7 !3,8

!m,1 !m,2 !m,5!m,3 !m,4 !m,6 !m,7 !m,2m!m,8

KT-Split

• Repeated rounds of 
splitting the parent 
coreset in two equal-
sized children coresets 

• Runs online, after 
seeing  input points, 
the bottom nodes have 

 points

t

t/2m
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KT-Split
• One path on the tree is 

obtained by repeated 
kernel halving 

• At each halving round, 
remaining points are 
paired, and one point is 
selected non-uniformly 
from each pair using a 
new Hilbert space 
generalization of the 
self-balancing walk of 
[Alweiss-Liu-Sawhney 
2020]

Input 
    (  points)n

         (  points)
n
2

Output 
         (  points)

n
2m

 Kernel Halving roundsm

Kernel Halving

         (  points)
n
4

Kernel Halving

<latexit sha1_base64="dM2tpuvUYF3a17jCjaY7CCNIIg4=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1iEClISFXVZdOOyon1AG8tkOmmHTh7MTIQagr/ixoUibv0Pd/6NkzYLrR4YOJxzL/fMcSPOpLKsL6MwN7+wuFRcLq2srq1vmJtbTRnGgtAGCXko2i6WlLOANhRTnLYjQbHvctpyR5eZ37qnQrIwuFXjiDo+HgTMYwQrLfXMna6P1ZBgntykd0nFPkT2Qdozy1bVmgD9JXZOypCj3jM/u/2QxD4NFOFYyo5tRcpJsFCMcJqWurGkESYjPKAdTQPsU+kkk/Qp2tdKH3mh0C9QaKL+3EiwL+XYd/VkllXOepn4n9eJlXfuJCyIYkUDMj3kxRypEGVVoD4TlCg+1gQTwXRWRIZYYKJ0YSVdgj375b+keVS1T6vH1yfl2kVeRxF2YQ8qYMMZ1OAK6tAAAg/wBC/wajwaz8ab8T4dLRj5zjb8gvHxDQ8YlFE=</latexit>
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Sin
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We choose  such that this step does not 
occur with high probability

𝔞i
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• Exact Kernel halving: When , exactly half of 
input points ( ) given  sign after  steps 
                           

fi = k(x2i, ⋅ ) − k(x2i−1, ⋅ )
𝒮out −1 n/2

We choose  such that this step does not 
occur with high probability

𝔞i

43

1
n

ψ =
1
n ∑

x∈Sin

k(x, ⋅ ) −
2
n ∑

x∈Sout

k(x, ⋅ ) = ℙink − ℙoutk



• Balance: If  is a reproducing kernel, for all , 
 
               is -sub-Gaussian                           

k g ∈ ℍk

⟨ψn, g⟩k = ℙing − ℙoutg 𝒪(n−1 ⋅ log n ⋅ ∥g∥k)
If  were chosen i.i.d., the sub-Gaussian parameter is   ηi Ω(n−1/2)
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Details of Compress++
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Compress++: A simple two-stage algorithm

Compress points, parameter , 
halving algorithm HALVE

n 𝔤
 points2g n

 thinning 
algorithm THIN

2𝔤

 pointsn
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For example: 
HALVE = Kernel thinning by a factor of  
THIN = Kernel thinning by a factor of  

(other algorithms can be used too!)

2
2𝔤



Compress++: A simple two-stage algorithm

 points, parameter , 
halving algorithm HALVE

n 𝔤
 points2g n

 pointsn
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Compress( , , ALG): 

• If size( ) == , Return  
• Else: 

(i) Call Compress separately on 4 equal splits of   
(ii) Concatenate the 4 outputs from step (i)  
(iii) Return Halved output of step (ii) using ALG

𝒮 𝔤
𝒮 4𝔤 𝒮

𝒮

Compress

 thinning 
algorithm THIN

2𝔤



Compress++: Informal guarantee

Under some mild conditions, with , we have 

• Sub-Gaussian error inflation by at most 4:  
If  and  then 

 

• Quadratic reduction in runtime:  
If runtime of HALVE and THIN with  points is  then the runtime of 
Compress++ with  points is  if  and  if 

𝔤 = log log n + 1

MMDk(ℙn, ℙHALVE) ∼ e1(n) MMDk(ℙn, ℙTHIN) ∼ e2(n)
MMDk(ℙn, ℙCompress++) ∼ 4 max(e1(n), e2(n))

n 𝒪(nτ)
n 𝒪(nτ/2) τ > 2 𝒪(n log3 n) τ = 2.
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MMDk(ℙin, ℙout) = sup
∥g∥k≤1

|ℙing − ℙoutg |



Compress++: Informal guarantee

Under some mild conditions, with , we have 

• Sub-Gaussian error inflation by at most 4:  
If  and  then 

 

• Quadratic reduction in runtime:  
If runtime of HALVE and THIN with  points is  then the runtime of 
Compress++ with  points is  if  and  if 

𝔤 = log log n + 1

MMDk(ℙn, ℙHALVE) ∼ e1(n) MMDk(ℙn, ℙTHIN) ∼ e2(n)
MMDk(ℙn, ℙCompress++) ∼ 4 max(e1(n), e2(n))

n 𝒪(nτ)
n 𝒪(nτ/2) τ > 2 𝒪(n log3 n) τ = 2.
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KT vs Compress  vs Compress++ (𝔤 = 0) (𝔤 = 4)
The input algorithms Halve and Thin to Compress++ are derived from KT
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Results for Compress++ with kernel herding (Herd)
Results for Compress++ with kernel herding (Herd)

51



Lower bounds
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Lower bounds

• For smooth kernels, there exists a target , such that a coreset of size  

suffers an MMD error of . [Philips and Tai 2020] 

• For characteristic kernels, there exists a target , such that any estimator 
based on  i.i.d. input points must suffer at least  MMD error. [Tolstikhin 
et al. 2017]

ℙ n

min(
d
n

, n−1/4)

ℙ
n n−1/2

Both bounds apply to Gaussian and Matérn kernels
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Single function + 
Additional MCMC Experiments
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Better error for functions inside and outside of RKHS
(Gaussian  with  and standard Gaussian )k σ2 = 2d ℙ⋆
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Better error for functions inside and outside of RKHS
(Gaussian  with  and standard Gaussian )k σ2 = 2d ℙ⋆
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Better error for functions inside and outside of RKHS
(Gaussian  with  and standard Gaussian )k σ2 = 2d ℙ⋆
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MCMC experiments: Differential equation models
1. Random walk (RW)  

[Metropolis et al. 1953, Hastings 1970] 
2. Adaptive random walk (adaRW)  

[Haario et al. 1999] 
3. Metropolis adjusted Langevin 

algorithm (MALA) [Roberts et al. 1996] 
4. Preconditioned-MALA (pMALA)  

[Girolami et al. 2011]

x

x
1. Random walk (RW) - run 1 
2. Random walk (RW) - run 2

1. Posterior 
2. Tempered  

posterior x

Dimension d = 4

Dimension d = 38

1. Posterior x

3. Hinch calcium signal model 
[Hinch-Greenstein-Tanskanen-Xu-
Winslow, 2004]

1. Lotka-Volterra model 
oscillatory enzymatic control, [1925, 1926] 

2. Goodwin model  
oscillatory predator-prey evolution, [1965]

MCMC samples taken from Riabiz-Chen-Cockayne-Swietach-Niederer-Mackey-Oates, 2021
58

For KT, we use Gaussian kernel, and chose its bandwidth via median heuristic [Garreau et al. 2017]



Results for MCMC experiments
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Details for KT result
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• More generally 

                                error rate for analytic kernels 

 

                                for -times differentiable kernels 

• We state explicit constants with dependence on kernel hyper-parameters 
in the paper

Õ ( 1

n )
Õ ( nd/2m

n ) m

Target KT MMD rates:  points with  errorn Õ (n−1/2)
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Generalized kernel thinning
Root KT Target KT KT+ 

[Best of both worlds]

KT-Split kernel

Single-function 
error

Same as MMD 
error

MMD error See slide
Min(Target KT Error,    

-Root KT)

kkrt k + kα−rt

α

log n
n

logad+b n
n

nd/m

n

Analytic k

-times  
differentiable 

m
k

For arbitrary  
on arbitrary domain

klog n
n

  &  where  denotes Fourier transformk(x, y) = ∫ krt(x, z)krt(z, y)dz kα−rt = ̂( ̂k)α ̂
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Kernel 
Thinning 

(KT)

Non-uniform sub-sample of size   
 

s
y1, …, ys

ℙKT :=
1
s

s

∑
i=1

δyi

 
smooth decaying  
x1, x2, …, xn ∈ ℝd

k
ℙin :=

1
n

n

∑
i=1

δxi

Target KT or KT+: Better than Monte Carlo rate

Much faster than the Monte Carlo rate for standard/uniform thinning 𝒪 ( 1

s )

For any fixed , with probability  over the randomness in KT, we haveg ∈ ℍk 1 − δ

|ℙing − ℙKTg | ≤
1
s

⋅ ∥g∥k
8
3

∥k∥∞ log ( 4
δ ) log ( 6s log(n/s)

δ )
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Kernel 
Thinning 

(KT)

Non-uniform sub-sample of size   
 

n
y1, …, y n

ℙKT :=
1

n

n

∑
i=1

δyi

 
smooth decaying  
x1, x2, …, xn ∈ ℝd

k
ℙin :=

1
n

n

∑
i=1

δxi

For any fixed , with probability  over the randomness in KT, we haveg ∈ ℍk 1 − δ

|ℙing − ℙKTg | ≤
1

n
⋅ ∥g∥k

8
3

∥k∥∞ log ( 4
δ ) log (

6 n log n
δ )

Much faster than the Monte Carlo rate for standard/uniform thinning 𝒪 ( 1
n1/4 )

Target KT or KT+: Better than Monte Carlo rate
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Properties of MMD
• Maximum mean discrepancy (MMD) = worst-case integration 

discrepancy between two distributions over a class of real-valued 
test functions    
                               
                        

• MMD metrizes convergence in distribution for popular infinite-
dimensional kernels like Gaussian, Matern, IMQ, B-spline 

MMDk(ℙin, ℙout) = sup
∥g∥k≤1

|ℙing − ℙoutg |
[Gretton-Borgwardt-
Rasch-Schölkopf-Smola, 
2012]

[Simon-Gabriel-Barp-
Schölkopf-Mackey, 2020]
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