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Potential outcomes

e A feature vector X € RX e A treatment assignment Z € {0,1}

e Potential outcomes: Y(1), Y(0) e« Observe Y := Y(Z), never Y(1 — Z)

Average Treatment Effect (ATE)
ATE = E|Y(1) — Y(O)]

Conditional Average
Treatment Effect

= Ex.p, [E[Y(1)| X] - E[Y(0)| X]]

— Lx.op X [lu ik(X ) o //t(?( (X)] = _XNPX ‘-

e [y Is the data generating distribution for X



What if P,, changes?

e Demographic compositions shift over time
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What if P,, changes?

Even for carefully designed randomized trials, “statistics” starts only
at treatment assignment, with big biases in selection into study

Distribution of log-district size Iin studies versus total population
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[Tipton et al. 2019] The convenience of large urban school districts: a study of recruitment practices in 37 randomized trials



What if P,, changes?

e “Clinical trials for new drugs skew heavily white” &5 5= ™

- QOut of 10,000+ cancer trials, less than 2% focused on racial minorities, and less
than 5% of participants were non-white

e Especially problematic when treatment effect is heterogeneous

[Leigh et al. 16, Imai et al. ‘13, Gijsberts et al. ’15, Basu et al. ’17,
Baum et al. ’17, Duan et al. ‘19]

e Recently, two large trials with n = 5K-10K had opposite findings on
a treatment to lower blood pressure on cardiovascular disease rccom o st s



Potential solution?

Directly estimate conditional average

Effect of Medicaid enroliment

treatment affect (CATE) using ML methods? on doctor’s office utilization
[Leigh et al. 16, Imai et al. ‘13, Gijsberts et al. ’15, Basu et al. ’17, 072
Baum et al. ’17, Duan et al. ’19, Nie and Wager ’20]
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Subpopulations

Automatically find worst-off subpopulations
and measure treatment effect on them

Jproportion a € (0, 1], prob. (),
st. Px (1) =aQx + (1 —a)Qs

() x is a subpopulation ¢==p

Qx
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Recap

Worst-case subpopulation - coriatesx

» Treatment assignment: Z

» Potential outcome: Y(0), Y(1)
} » Response Y := Y(Z)

Notation
Qx — o G {QX 3

probability (), and a > «
s.t. Px = al)x + (1 — CL)Q/X

subpopulation with proportion larger than « € (0, 1]

worst-case treatment over subpopulation larger than « € (0, 1]

WTE, := sup Eo. [p*(X)]

Qx =«

where 1*(X) :=E[Y (1) — Y (0) | X]| is the conditional average
treatment effect (CATE).




Sensitivity analysis

Posit a set of “plausible” changes to Py, and take worst-case over them

If effects are still valid under plausible violations, we can certify robustness
Sensitivity of a finding: magnitude of violation when endpoint crosses a threshold

Today: Worst-case bounds on the Doubly Robust / AIPW estimator

—_———— Population-level worst-case bound . A *( X
W TEa = Sup Lo, [:u ( )]
QX >‘C¥

Causal effect

mbed

————— — Sample-based estimate of worst-case bound



Sensitivity analysis

Posit a set of “plausible” changes to Py, and take worst-case over them

If effects are still valid under plausible violations, we can certify robustness
Sensitivity of a finding: magnitude of violation when endpoint crosses a threshold

Today: Worst-case bounds on the Doubly Robust / AIPW estimator

Is this a “sensible” amount of
—(— —— ——— - distribution shift / violation?




Sensitivity analysis

Does not assume a fixed target; often appropriate for operational
decisions

Heuristically, set o small if the collected data is not diverse

Conservative but can still be useful; future work needed on this

Need to be accompanied by a design-based perspective to
maximizing diversity in Py



Effect of Medicaid on doctor visits over time

e Evaluate effect of Medicaid enrolilment on doctors’ office utilization
e Medicaid costs $553 billion/yr; need to ensure valid effects through time
e Qutcome: visit to doctors in the two-weeks prior to a random survey date

e Control for demographics, medical history, employment, earnings,
insurance, government assistance etc (d = 396)

e Take the viewpoint of an analyst in 2009 (n = 82,993)



Effect of Medicaid on doctor visits over time

e Evaluate effect of Medicaid enrollment on doctors’ office utilization in 2009
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Effect of Medicaid on doctor visits over time

e Evaluate effect of effect of Medicaid enrollment on doctors’ office utilization
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Effect of Medicaid on doctor visits over time

e Evaluate effect of effect of Medicaid enrollment on doctors’ office utilization
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Welfare attitudes experiment

e Evaluate effect of wording on survey results (“welfare” vs “assistance to

the poor”)

o \WTE guarantees positive findings even for small subpopulations

e \WTE Is stable across model classes used, similar to ATE, unlike CATE

Model 0.4
0.3 Elastic Net '
é Random Forest 5
qu: | .
" 0.2 Gradient Boost
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WTE Years of Education

(a) ATE and WTE,, (b) CATE by years of education
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(c) CATE by age



Recap

WTE — Tail-average > Covariates: X

» Treatment assignment: Z

» Potential outcome: Y(0), Y(1)
»  CATE u*(X) = E[Y(1) — Y(0) | X]

/\ I — ) e A (]

Lemma (Shapiro et al."09)

sup o [u*(X)] = B 00" (0] N
X~ — Q)= '
of 11 *(X)

|
where h*(x) := —1 {,u*(X) > P (1)
o



Estimation Approach ™

> Covariates: X
» Treatment assignment: Z

e Use ML methods to fit nuisance parameters > Potential outcome: Y(0), ¥(1)

pr(X) =EY(2) | X = x|, 2€1{0,1}

P(Z=1X) (X)) = 1{(X) > Pl (")

N
X
A~~~
><
~—
|

1l —«
e Today: Construct a WTE estimator insensitive to error in nuisance estimates

e Design an mean zero augmentation term that includes nuisance parameters

* *
e*(X)w X l—e*(X)(Y /40()))

——
AT

WTE  + E h*(X)(

—
=

Neyman orthogonal: Directional derivative w.r.t. nuisance parameters,

taken at the true nuisance value (u7, u5, €™, h™)is zero. Devme =

"  Chernozhukov et al. ’18]




Recap

ASS unm pt i ons » Covariate X, Treatment Z

» Potential outcome: Y(0), Y(1)
» Propensity score e*(X) = P(Z = 1|X)

Standard; required for identification and estimation of ATE

e No unobserved confounding: Y(0), Y(1) L Z|X

e Overlap: 3¢ >0 s.t. P(e*X) € [c,]1 =¢c]) =1

e SUTVA: single version of treatment, no interference between units



Main Results

Theorem (Jeong & N.’20) o

|, Under slower-than-parametric rates of convergence on the

nuisance parameters, \/E(v?/a - WTE)) = N(O,aé)

2. 03 s the optimal asymptotic variance

e Central limit rates even when nuisance estimates converge more slowly

e Augmented estimator is semiparametrically efficient for both randomized
and observational studies



Summary T

Worst-case bounds on the Doubly Robust / AIPW estimator under
distribution shift

Allow flexible use of ML methods to estimate nuisance parameters
Central limit results even when nuisance parameters converge slower

Our procedures are optimal; semiparametrically efficient

https://arxiv.org/abs/2007.02411



https://arxiv.org/abs/2007.02411

