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The Remarkable Journey of 
The Isoperimetric Problem: 

A Completion of Euler’s Approach



Material taken from my Rice optimization theory 
graduate class based on my book (in preparation)

“A Unified Approach to Infinite Dimensional 
Optimization Theory for Scientists and Engineers”

4



Outline

Part I Preliminaries

Part II The state of the art:

What others have done to solve the 
isoperimetric problem

Part III Our contribution:

A completion of Euler approach to the 
isoperimetric problem

5



Part I Preliminaries

6



The Isoperimetric Problem
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Determine, from all simple closed planar curves of the 
same perimeter, the one that encloses the greatest area.



Visibility of the Isoperimetric Problem 
Promoted by Queen Dido

• The Aeneid: written by Virgil in period 29-19 BC

• Dido – Life in danger flees her homeland with wealth and entourage

• Finds new land and bargains with local king for a piece of land that she 
can mark out with the hide of a bull

• The Dido trick: cut hide into as many thin strips as possible to form a 
long cord, using the seashore as one edge, lay out the cord in the form 
of a semicircle in order to maximize area.
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Engraving in German Museum circa 1630. Dido’s people 
cut the hide of an ox into thin strips and try to enclose a 
maximal domain. 
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The Dido Maximum Principle in Action?

Medieval map of Cologne
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Again the Dido Maximum Principle
in Action?

Medieval map of Paris
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Claim

The isoperimetric problem has been the most 
impactful mathematical problem of all time.
• Euler constructed multiplier theory in an attempt to solve 

this problem.

•Weierstrass first introduced parametric representation of a 
curve to solve this problem. 
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Part II: The State of the Art: 
What Others Have Done
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Solution Attempt Classifications

Our study has shown us that all isoperimetric problem solution 
attempts can be put into one of the following three categories:
(1) The Euler Approach (1744): Characterized by Cartesian 

coordinate functional 
representation 𝑦 = 𝑦(𝑥)

(2) The Steiner Approach (1838):  Characterized by complete use of 
geometry

(3) The Weierstrass Approach (1879): Characterized by parametric 
function representation,  
𝑦 = 𝑦 𝑡 , 𝑥 = 𝑥(𝑡)
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The Completion Process
Necessity: If the problem has a solution then it is the circle.

Sufficiency: The circle solves the problem.

By a completion of each category we mean the activity of adding to the initial 
approach that gave necessity an appropriately short proof of sufficiency.

Completion of Weierstrass −  Hurwitz (1902)

Hardy-Littlewood-Polya (1934)

Lax (1995)

Completion of Steiner         −   Lawlor (1999) 

Siegel (2003)

Completion of Euler          −  Today’s task 15



Concerning the Isoperimetric Problem
What Did Euler Do (Or Not Do)
In His Opus Magnum of 1744?
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Euler Considered What We Will Call 
The Incomplete Isoperimetric Problem
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For a given arc length ℓ > 0 and for a fixed 𝑎 > 0 consider

maximize
!

2
"#

#
𝑦 𝑥 𝑑𝑥 (Area)

subject to 2
"#

#
1 + 𝑦$(𝑥)% 𝑑𝑥 = ℓ, (Arc Length)

𝑦 −𝑎 = 𝑦 𝑎 = 0. (Boundary Conditions)

Observation:We call this problem incomplete because both
𝑦: −𝑎, 𝑎 → 𝑅 and the base parameter 𝑎 should be variables.



Euler’s Contribution to the Isoperimetric Problem

He constructed the Euler Multiplier Rule auxiliary problem

maximize
!

𝐽 y = 2
"#

#
𝑦 𝑥 − 𝝀 1 + 𝑦$(𝑥)%

subject to 𝑦 −𝑎 = 𝑦 𝑎 = 0.

He showed that a solution of the incomplete isoperimetric problem 
must satisfy the Euler (Lagrange) equation for the auxiliary problem 
and therefore must be arcs of the 𝜆-parametric family of circles

𝑦 𝑥 = 𝜆% − 𝑥% − 𝜆% − 𝑎% − 𝑎 ≤ 𝑥 ≤ 𝑎.

The radius parameter 𝜆 ≥ 𝑎 is determined from the arc length 
condition. 18



Corollary (Euler’s Principle of Reciprocity)

He observed that the following two problems have the same 
solution:

• Determine from all simple closed planar curves of the same 
perimeter, the one that encloses the greatest area.

• Determine from all simple closed planar curves that enclose 
the same area, the one that has the smallest perimeter.
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Observe that the semicircle

𝑦 𝑥 = 𝑎! − 𝑥! −𝑎 ≤ 𝑥 ≤ 𝑎

satisfies the Euler’s necessary conditions; it has the necessary form

𝑦 𝑥 = 𝜆! − 𝑥!- 𝜆! − 𝑎! with   𝜆 = 𝑎.

Remark: Euler and many contemporary authors leave us to conclude 
that the semicircle satisfies the necessary conditions for the 
isoperimetric problem. But this is a giant mathematical sham.
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An Obstacle in Euler’s Road
While the semicircle does satisfy Euler’s necessary conditions, it is not in the domain of definitions 
of the optimization problem. It does not satisfy the arc length constraint.

Claim: Consider the semicircle curve

𝑦! 𝑥 = 𝑎" − 𝑥" − 𝑎 ≤ 𝑥 ≤ 𝑎.

For this semicircle curve 𝑦! the arc length integral

-
#$

$
1 + 𝑦%(𝑥)"𝑑𝑥

does not exist as a Riemann integral.

Proof. Notice

𝑦!% =
#&
$!#&!

is not bounded, for 𝑥 ∈ −𝑎, 𝑎 ;

Hence the integrand is not bounded and therefore is not Riemann integrable. 21



Euler’s 1744 Approach to the 
Isoperimetric Problem

• He showed that solutions to the isoperimetric problem in incomplete form are 
necessarily circular arcs.

• He said absolutely nothing about the semicircle. 

• He said absolutely nothing about the complete isoperimetric problem, i.e. variable a, 
also gave no restrictions on a.

• Majority of texts on the calculus of variations follow Euler’s presentation of the 
isoperimetric problem. Hence students cannot find a demonstration that the semicircle 
satisfies even necessary conditions for either the incomplete or the complete 
isoperimetric problem. It is interesting how textbooks subtly avoid this shortcoming.
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Euler’s Naiveté Concerning the Euler-Lagrange Equation.

H.H. Goldstine states

“It is interesting that Euler did not completely understand the fact that satisfaction of the Euler 
(Lagrange) equation is a necessary condition but not a sufficient one.”

Euler’s Genius.
Carathéodory who edited Euler’s great works of 1744 said “Euler’s multiplier rule is an 
achievement of the first class and a major accomplishment that even an Euler did not achieve 
very often.”

Euler’s Generousity.
Euler was so impressed with 19 year old Lagrange’s derivation of his multiplier rule using 
variations that he dropped his own methods, promoted those of Lagrange, named the subject 
the calculus of variations, and called multiplier theory Lagrange multiplier theory. Indeed today 
the Euler auxiliary functional given above is called the Lagrangian: how fair can that be?

We ask, does Euler have the right to give up credit for his original contributions simply because 
Lagrange came up with a cleaner way of deriving the theory? 23



In 1838  Steiner, very aware of the short comings of the Euler 
approach, gave the first of his five equivalent proofs that the 
circle solved the isoperimetric problem.  His proofs used 
synthetic geometry and were mathematically quite elegant.

However, he fell into the use of necessity as sufficiency trap and 
made the trap rather infamous. The analysts of the time, led by 
his colleague Peter Dirichlet, pointed out to Steiner that his 
proof is not valid unless he assumes that the isoperimetric 
problem has a solution, i.e. existence. Steiner did not accept the 
criticism. He said that it is obvious that the problem has a 
solution. He was very critical of analysis. 24

Steiner (1838)



A Completion of Steiner

Lawlor (1999)  and  Siegel (2003)
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Weierstrass (1879)

Weierstrass believed that the short comings of the Euler 
approach (primarily infinite slope) could be eliminated by 
turning to parametric function representation.

So he for the first time introduced such representation. He 
then constructed an elegant and sophisticated sufficiency 
theory for problems from the calculus of variations. His 
theory could be used to show that the circle solved the 
isoperimetric problem. 
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Weierstrass (1879)

So, some 135 years after Euler’s approach we 
have the first sufficiency proof. While this notable 
work gave the world its first sufficiency proof for 
the isoperimetric problem, Weierstrass really 
used a sledge hammer to pound a nail. His 
sophisticated sufficiency theory is not needed to 
merely demonstrate that the circle solves the 
isoperimetric problem.
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A Completion of Weierstrass

Hurwitz (student of Weierstrass) 1902  (Properly Rated)

Hardy-Littlewood-Polya 1934  (Over Rated) 

Peter Lax 1995  (Under Rated)
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A Qualification for Authors from 
Euler to the Present

Carathéodory (1957), editor of Euler’s works, wrote: 

“Weierstrass succeeded in removing many of the difficulties 
that were contained in the investigations of Euler, Lagrange, 
Legendre, and Jacobi by insisting that first the class of curves 
in which the minimizing curve is sought be rigorously 
defined. Euler’s treatment of the isoperimetric problem is the 
prime example of the lack of rigor.”
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Part III: Our Contribution: 
A Completion of Euler’s Approach
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Our Definition of the 
Proper Class of Functions

Definition. By 𝐸 −𝑎, 𝑎 , the Euler Class of curves for the incomplete isoperimetric 
problem, we mean the collection 𝑦: −𝑎, 𝑎 → 𝑅 satisfying the following conditions

A. 𝑦 −𝑎 = 𝑦 𝑎 = 0,

B. 𝑦 is continuous on −𝑎, 𝑎 ,

C. y is differentiable except possible on a countable subset of −𝑎, 𝑎 ,

D. The curve y is rectifiable and the arc length can be obtained from the formula

ℓ(𝑦) = lim
!→#

∫$%&!
%$! 1 + 𝑦'(𝑥)(𝑑𝑥
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Pr0position: The Semicircle is in the Euler Class

A picture proof that the improper arc length integral exists and gives arc length

)ℓ 𝜀 = ,
"#$%

#"%
1 + 𝑦&'(𝑥)!𝑑𝑥 = 𝑎𝜋 − 2𝛿 𝜀 .

with

𝛿 𝜀 = aγ 𝜀 = 𝑎 cos"( #"%
# → 𝑎 cos"( 1 = 0 as 𝜀 → 0.

So improper integral exists and gives arc length. 32
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The Complete Isoperimetric Problem
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For a given arc length ℓ > 0

maximize
(#,!)

𝐽 𝑎, 𝑦 = 2
"#

#
𝑦 𝑥 𝑑𝑥

subject to 2
"#

#
1 + 𝑦$(𝑥)% 𝑑𝑥 = ℓ,

𝑦 −𝑎 = 𝑦 𝑎 = 0,
0 < 𝑎.

Observation: Both 𝑎 and the function 𝑦: −𝑎, 𝑎, → 𝑅 are variables.



Bilevel Mathematical Model of 
The Complete Isoperimetric Problem

34

For a given arc length ℓ > 0
maximize
!"#

∫$!
! 𝑦! 𝑥 𝑑𝑥

subject to 𝑦! solves
Level 1 Problem: Complete Isoperimetric Problem

maximize
' ∫#$

$ 𝑦 𝑥 𝑑𝑥

subject to ∫#$
$ 1 + 𝑦%(𝑥)"𝑑𝑥 = ℓ,

𝑦 −𝑎 = 𝑦 𝑎 = 0,
for a Hixed 𝑎 satisfying 𝑎 > 0.

Level 2 Problem: Incomplete Isoperimetric Problem

Note: We use the qualifier “extended” to mean that the arc length integral may be 
improper and the domain is the Euler class.



Solution of the Level 2 Problem: 
A Subtle but Critical Observation

35

A graphical interpretation of the Euler family of circular arcs

𝑦 𝑥 = 𝜆! − 𝑥! − 𝜆! − 𝑎!, −𝑎 ≤ 𝑥 ≤ 𝑎,
with arc length ℓ, varying radius parameter 𝜆, and varying base parameter 𝑎 is
shown below

For fixed arc length ℓ, the choice of 𝜆 determines the base parameter 𝑎. The choice of 𝜆 = 𝑎
leads to  𝑎 = ⁄ℓ & , while the choice of λ = ∞ leads to 𝑎 = ⁄ℓ ' . So membership in the Euler 

family of circular arcs requires  ℓ
&
≤ 𝑎 < ℓ

'
.


                

λ

                



Solution of the Level 2 Problem

Theorem. Consider the extended incomplete isoperimetric problem  (the level 2 
problem) with arc length ℓ and base interval parameter a satisfying ⁄ℓ * ≤ 𝑎 < ⁄ℓ !. 
Then there exists a radius parameter 𝜆∗ ≥ 𝑎 so that the Euler family circular arc

𝑦 𝑥 = 𝜆∗! − 𝑥! − 𝜆∗! − 𝑎!, −𝑎 ≤ 𝑥 ≤ 𝑎 (1)

has length ℓ and is the unique solution of the extended incomplete isoperimetric 
problem for this choice of a.

Proof. For each 𝑎 ∈ Aℓ
*
, Bℓ
!

there exists a corresponding 𝜆∗ > 0 leading to a circular 

arc of the form (1) with arc length ℓ.

We call this member of the family of circular arcs (1) 𝑦∗.
36

               



Consider Euler’s ε −perturbed auxiliary function with choice of 
multiplier equal to −𝜆∗ where 𝜆∗ > 0 is the radius of the circle that 
determines the circular arc 𝑦∗

𝐽O 𝑦 = 2
"#PO

#"O

𝑦 𝑥 − 𝜆∗ 1 + 𝑦$(𝑥)% 𝑑𝑥. (2)

Our idea: Maximize the perturbed auxiliary function (2) (dare we say 
Lagrangian) and let 𝜀 → 0.However, it is a little bit more tricky. Our 
main tool will be Taylor’s theorem.

Remark. Recall from optimization theory, that which maximizes the 
Lagrangian solves the maximization constrained optimization problem.  
The so-called fundamental theorem of nonlinear programming.
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So consider any 𝑦 contained in the Euler class 𝐸 −𝑎, 𝑎 and let 𝜂 denote 
𝑦 − 𝑦∗. Define

𝜙O 𝑡 = 2
"#PO

#"O

𝑦∗ + 𝑡𝜂 − 𝜆∗ 1 + 𝑦∗$ + 𝑡𝜂$ % 𝑑𝑥

for 𝑡 ∈ [0,1] and ε ∈ 0, 𝑎 .
Notice that 𝜙Q 0 = 𝐽Q(𝑦∗)    and 𝜙Q 1 = 𝐽Q(𝑦).

So we want to show 

𝜙Q 1 < 𝜙Q 0
Using Taylor’s theorem. 38
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Straightforward differentiation gives

𝜙() (t)=∫$!*(
!$( 𝜂 − 𝜆∗

,∗"*-." ."

/* ,∗"*-."
#
𝑑𝑥, 3 𝜙0))(t)= − 𝜆∗ ∫$!*(

!$( (.")#

/* ,∗"*-."
# $% #

𝑑𝑥

Taylor’s theorem tells us that

𝜙( 1 = 𝜙( 0 + 𝜙() 0 + /
'
𝜙()) 𝜃( for some 𝜃(∈ 0,1 (4)

Step 1. We can show from (3) that   𝝓𝜺
) (𝟎) → 𝟎 as 𝜺 → 𝟎.

Step 2. Since 𝜃! is bounded, turning to a subsequence if necessary, we have that
𝜃! → 𝜃∗ ∈ 0,1 therefore 𝜙())(𝜃()→ 𝜙#))(𝜃∗)< 0 as ε → 0.



Step 3. Letting 𝜖 → 0 in (4) and using our Euler class  D condition gives   

Area(y) − 𝜆∗ length(y) < Area 𝑦∗ − 𝜆∗length 𝑦∗ .

Hence if length(y) = length(𝑦∗), then Area(y) < Area (𝑦∗).

Conclusion: 𝑦∗ uniquely solves the extended incomplete isoperimetric 
problem for any 𝑎 ∈ [ ⁄ℓ & , )⁄ℓ ' . 

Remark: The pieces fit together so remarkably well. We have turned Euler’s 
necessity condition for the incomplete isoperimetric problem into a 
sufficiency condition.
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Question:

Could Euler have made our observation at the time of his 1744 
writing? The foundation of our observation is Taylor’s theorem with 
remainder. The literature tells us that Taylor published his theorem 
in 1715. So Euler most likely was aware of Taylor’s theorem in 1744. 
However, the rub is that Taylor’s theorem with remainder was not 
known at that time. It is somewhat ironic that the form of the 
remainder that we used in our proof is credited to Lagrange in 1797, 
and is actually referred to today as the Lagrange form of the 
remainder. So Euler would not have been in good position to make 
our observation.
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Remark

Lagrange could have made this proof because he 
was familiar with the form of Taylor’s theorem that 
we used, indeed it is due to him. While this 
hypothesized proof would have been made 50 years 
after Euler, it would still have been some 80 years 
before Weierstrass. But Lagrange did not consider 
the isoperimetric problem.
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We now move on to Level 1 of the bilevel problem and the solution 
of the isoperimetric problem.

Theorem. For a given arc length ℓ the semicircle  

𝑦 𝑥 =
ℓ
𝜋

S
− 𝑥S, −

ℓ
𝜋 ≤ 𝑥 ≤

ℓ
𝜋 ,

uniquely solves the extended bilevel complete isoperimetric 
problem, for base parameter a contained in the interval [ ⁄ℓ T , )⁄ℓ S .
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Proof. A graphical interpretation of the circular arcs with arc length 
ℓ and varying radius parameter 𝜆 and varying base parameter a
contained in the Euler family of circles in (1) is shown in Figure 1 
below.

To show: From our Euler family of circular arcs with arc length ℓ the 
semicircle gives the largest  cross-hatched area. 44

Figure 1. Euler Family of Circles with arc length ℓ
above the 𝑥-axis.

(a,0)(-a,0)
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Note: The dots depict the various values of 
(-a,0) and (a,0).

Note: Since the radius parameter satisfies  
𝑎 ≤ 𝜆 < ∞ in this class of circular arcs we
must have  ℓ

#
≤ 𝑎 ≤ ℓ

$
.



For fixed ℓ and a varying in the interval ⁄ℓ R ≤ 𝑎 < ⁄ℓ % the area of 
the cross-hatched secant-region in Figure 1 as a function of the 
radius parameter λ is 

𝐴 𝜆 = ℓS
%
− S4

%
sin ℓ

S
.

Direct differentiations show that for 𝜆∗ = ⁄ℓ R we have 
𝐴$ 𝜆∗ = 0 and 𝐴$$ 𝜆∗ < 0

so 𝜆∗ is a maximizer of the function 𝐴 𝜆 . Observe that 𝜆∗ = ⁄ℓ R
can only happen for the semicircle.  Hence the area of the cross-
hatched secant-regions is uniquely maximized when its upper 
boundary is the semicircle that results from the choice 𝑎 = ⁄ℓ R. But 
this area is the objective function of the optimization problems 
under consideration.
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But wait, we are not through yet. Our concern is 𝑎 > 0. Now for 0 < 𝑎 < ⁄ℓ *
the level 2 problem cannot have a solution because the Euler necessary 
condition will not be satisfied, i.e., it will not be an arc from the Euler family of 
circular arcs. But we need to show that for for 0 < 𝑎 < ⁄ℓ * there does not exist 
a curve with given arc length ℓ and area larger than that of the semicircle of 
radius  ⁄ℓ * .

46
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Theorem

In the extended complete isoperimetric problem where we have 𝑎 > 0 it is sufficient to 
restrict the variable a to the interval V ⁄ℓ &, )⁄ℓ ' . Hence for a given arc length ℓ the 
semicircle 

𝑦 𝑥 =
ℓ
𝜋

'

− 𝑥',
ℓ
𝜋
≤ 𝑥 ≤

ℓ
2

uniquely solves the extended bilevel complete isoperimetric problem with 𝑎 > 0.

Proof. 𝑎 > ⁄ℓ ' implies no feasible curves, while 𝑎 = ⁄ℓ ' implies the only feasible curve is 
𝑦 ≡ 0. Now if 𝑎 < ⁄ℓ & then the following picture shows that any curve 𝑦 = [−𝑎, 𝑎] → 𝑅
with arc length ℓ cannot be have greater area than the semicircle.
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“The Jimmy Flip”
The Reflected Equal-Area Curve

48

• The proof of this theorem is due to Rice 
Undergraduate Zhe (Jimmy) Zhang and was 
produced while he  was a student in my graduate 
optimization theory class some years back.

• Curve above vertical-hatched region and curve 
above horizontal-hatched region have same area 
and same arclength.

Observe:
If distance 𝑑, 𝑑' ≤ ℓ

*
we are through

If distance 𝑑, 𝑑' > ℓ
*

previous theorem 
applies
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Corollary

The circle solves the isoperimetric problem.
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Thank You

50


