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The plan

1. What is the permutahedron?
Face enumeration
Volume

2. What is the bipermutahedron?
Face enumeration
Volume?

3. What is the harmonic polytope?
Face enumeration
Volume

4. Where do they come from? A short origin story.
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Bipermutahedron: with Graham Denham + June Huh (15-20).
Harmonic polytope: with Laura Escobar (20).

Lagrangian geometry of matroids. [ADH20]
https://arxiv.org/abs/2004.13116

The harmonic polytope. [AE20]
https://arxiv.org/abs/2006.03078

The bipermutahedron. [A20]
https://arxiv.org/abs/2008.02295
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Permutations
A permutation of [n] = {1, . . . ,n} is a reordering of 12 . . .n.

n = 3: 123 132 213 231 312 321.

The set [n] has n! permutations. What structure do they have?

Algebra: the symmetric group! Geometry: the permutahedron!
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The permutahedron

Πn = conv{(σ(1), . . . ,σ(n)) : σ permutation of [n]}
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The permutahedron

Πn = conv{(σ(1), . . . ,σ(n)) : σ permutation of [n]}

•
•

•
•

•

•

Prop. The inequalities defining the permutahedron are

∑
e∈[n]

xe = n(n + 1)/2,

∑
s∈S

xs ≥ |S|(|S|+ 1)/2 /0 ( S ( [n].
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The f -vector of the permutahedron

• faces: ordered set partitions 12|47|368|5

• vertices: permutations 1|5|4|3|8|2|7|6 n!

• facets: proper subsets 12458 2n−2

•
•

•
•

•

•

Theorem If fd (Σn) = # of d-dimensional faces of Σn,

∑
d ,n

fd (Σn)
xd

d !

yn

n!
=

ey −1
1 + xey −x
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The h-vector of the permutahedron
Encode the f -polynomial (counting faces) in the h-polynomial:

hn(x) = h0 + h1x + · · ·+ hn−1xn−1

= f0 + f1(x−1) + · · ·+ fn−1(x−1)n−1

Dehn-Somerville relations: hi = hd−i for P simple.
Chavez-Yamzon 2017: The Dehn-Somerville matroid

Prop. The h-vector of the permutahedron Πn,n is

hi(Πn,n) = # of permutations of [n] with i descents.

h3(x) = 1 + 4x + x2 : 123 13.2 2.13 23.1 3.12 3.2.1

hn(x) is the n-th Eulerian polynomial.
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The h-vector of the permutahedron

Prop.
The Eulerian polynomial is

x hn(x)

(1−x)n+1 = ∑
k≥0

knxk

Prop.
• All roots of hn(x) are real and negative. (Frobenius)
• h-vector of permutahedron is log-concave: h2

i ≥ hi−1hi+1

Why do combinatorialists care?
Combinatorics is full of log-concave sequences. The proof often
requires a connection to a different area of mathematics.
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The h-vector of the permutahedron via Ehrhart theory
Prop. There’s a unimodular triangulation of the cube �n that is
combinatorially isomorphic to the cone over) Σn.
(Every simplex has volume 1/n!)

Then Ehrhart theory gives

x hn(x)

(1−x)n+1 = ∑
k≥0

knxk

(LHS: faces of triangulation. RHS: lattice points of k�n )
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Volume
Computing volumes is very hard! Can we do it for Πn?

Good news: The permutahedron is a zonotope:

Πn = ∑
i<j

[ei ,ej ]

where P + Q = {p + q : p ∈ P,q ∈Q} is Minkowski sum.

This gives a tiling of Πn into parallelepipeds!
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Volume

In the tiling of Πn into parallelepipeds:

• each parallelepiped has volume 1, and
• # of parallelepipeds = # of trees on [n] = (n + 1)n−1

Theorem. Vol(Πn) = (n + 1)n−1

Equivariant setting:
FA-(Schindler/Supina)– Vindas-Meléndez 2020
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The bipermutahedron

•
•

•
•

•

•
•

Prop. [FA-Denham-Huh 20, FA 20] The bipermutahedron is

∑
e∈[n]

xe = ∑
e∈[n]

ye = 0,

∑
s∈S

xs + ∑
t∈T

yt ≥−(|S|+ |S−T |)(|T |+ |T −S|) for S|T v [n].

S|T v [n]: subsets S,T 6= /0, not both [n], with StT = [n]
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Combinatorial structure of the bipermutahedron

•
•

•
•

•

•
•

• faces: bisequences 12|45|4|235
(one number appears once, others once or twice)

• vertices: bipermutations 1|5|4|1|3|4|2|5|3. (2n)!/2n

(one number appears once, others twice)

• facets: bisubsets 1245|235 3n−3
(S,T 6= /0, not both [n], with S∪T = [n])
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The f -vector of the bipermutahedron

Prop. [FA 20] If fd (Σn,n) = # of d-dim. faces of Σn,n,

∑
d ,n

fd−2(Σn,n)
xd

d !

yn

n!
=

F (x ,ey )

ex

where

F (α,β ) = ∑
n≥0

αnβ (n
2)

n!

is the two variable Rogers-Ramanujan function.

(F (α,β ) also arises in the generating functions for the (arithmetic)
Tutte polynomials of root systems! (FA 02, De Concini-Procesi 08,
FA-Castillo-Henley 15) Related: (Mphako, 2002). Connection?)
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The h-vector of the bipermutahedron

Encode the f -polynomial (counting faces) in the h-polynomial:

hn(x) = h0 + h1x + · · ·+ h2n−2x2n−2

= f0 + f1(x −1) + · · ·+ f2n−2(x−1)2n−2

Prop. [FA 20] The h-vector of the bipermutahedron Πn,n is

hi(Πn,n) = # of bipermutations of [n] with i descents.

We call this the biEulerian polynomial.

Observation: this is log-concave: h2
i ≥ hi−1hi+1. How to prove it?
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The h-vector of the bipermutahedron
Prop. [FA 20] The biEulerian polynomial is

hn(x)

(1−x)2n+1 = ∑
k≥0

(
k + 2

2

)n

xk

(LHS: faces of triangulation. RHS: lattice points of polytope???)

Let ∆ = standard triangle in R3.

Prop. [FA 20] There’s a unimodular triangulation of ∆×·· ·×∆
that is combinatorially isomorphic to (the triple cone over) Σn,n.
Ehrhart theory then gives the formula.

Prop. [FA 20] (thanks to Katharina Jochemko!)
• All roots of the biEulerian polynomial are real and negative.
• The h-vector of the bipermutahedron is log-concave.
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The harmonic polytope

•

•

•

•

•

•

Def./Prop. [FA - Escobar 20] The harmonic polytope is

∑
e∈[n]

xe = ∑
e∈[n]

ye =
n(n + 1)

2
+ 1,

∑
s∈S

xs + ∑
t∈T

yt ≥
|S|(|S|+ 1) + |T |(|T |+ 1)

2
+ 1 for S|T v [n].
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Combinatorial structure of the harmonic polytope

•

•

•

•

•

•

Prop. [FA-Escobar 20] Faces of polytope←→ harmonic triples

• f-vector: we have a formula
• # of facets = 3n−3

• # of vertices = (n!)2
(

1 +
1
2

+
1
3

+ · · ·+ 1
n

)
!
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Volume
Computing volumes is very hard! Can we do it for Hn,n?

Good news: The harmonic polytope is a Minkowski sum!

P + Q = {p + q : p ∈ P,q ∈Q}

Bernstein-Khovanskii-Kushnirenko:
Finding (mixed) volumes↔ Counting sols. to polynomial eqs.

In dimension 2:

Vol(P + Q) = Vol(P) + Vol(Q) + 2MVol(P,Q)
MVol(P,Q) = # of sols to 2×2 system of polynomial equations

with support P and Q

conv{(0,0),(0,1),(1,0)} −→ ax0y0 +bx1y0 +cx0y1 = 0
conv{(1,0),(0,2),(0,3)} −→ dx1y0 +ex0y2 + fx0y3 = 0
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Volume

Let Rn×Rn have basis e1, . . . ,en, f1, . . . , fn.

Hn,n = ∑
i<j

[ei ,ej ] +∑
i<j

[fi , fj ] + conv(ei + fi : 1≤ i ≤ n)

Theorem. (FA - Escobar 20)

Vol(Hn,n) = ∑
Γ

deg(XΓ)

(v(Γ)−2)! ∏
v∈V (Γ)

deg(v)deg(v)−2

Γ = connected bipartite multigraphs on edges [n]
XΓ = (embedded) toric variety given by toric ideal of Γ
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Volume
Theorem. [AE 20] Summing over conn. bip. graphs on edges [n]

Vol(Hn,n) = ∑
Γ

deg(XΓ)

(v(Γ)−2)! ∏
v∈V (Γ)

deg(v)deg(v)−2

deg(XΓ) = deg. of toric variety given by toric ideal of Γ

= i(P−Γ ) = # of lattice points of trimmed gen. perm. P−Γ (Postnikov 05)

Γ =
•

•

•

• •
1
2 4 3 5

6

Toric ideal 〈z1z3−z2z4,z5−z6〉 has degree 2.
Polytope P−Γ = (∆abc + ∆ab)−∆abc = ∆ab has 2 lattice points

(This is MVol(e12,e34,e56, f14, f23, f45, f56,D123456,D123456,D123456) = 2.)
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Minkowski quotients

Relationship: λHn,n is a summand of Πn,n.

Minkowski quotient P/Q := max{λ : P = λQ + R for some R}

Prop. [FA 20] Πn,n/Hn,n = 2

Proof:

≥

 >��
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A very brief origin story

[A21] The geometry of geometries: matroid theory, old and new.
Proceedings, International Congress of Mathematicians 2022.

Given a matroid M of rank r ,
f -vector = |coeffs| of χM(q) h-vector = |coeffs| of χM(q + 1)

Theorem.

1. [Adiprasito-Huh-Katz ’15] f0, f1, . . . , fr is log-concave.
Conjectured by Rota 71, Welsh 71, 76, Heron 72, Mason 72.

2. [Ardila-Denham-Huh ’20] h0,h1, . . . ,hr is log-concave.
Conjectured by Brylawski 82, Dawson 83, Hibi 89.

Tropical geometry, combinatorics, Hodge theory in Chow ring of

[AHK 15]: Bergman fan ΣM in permutahedral fan Σn [AK 06]
[ADH 20]: conormal fan ΣM,M⊥ in bipermutahedral fan Σn.n
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permutahedron bipermutahedron harmonic polytope origin

muchas gracias

[ADH20]: https://arxiv.org/abs/2004.13116

[AE20]: https://arxiv.org/abs/2006.03078

[A20]: https://arxiv.org/abs/2008.02295
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