Concordance and Instantons

Juanita Pinzón Caicedo (joint with Matt Hedden)

Plan

- 1. Concordance
- 2. Satellites
- 3. 3- and 4-manifolds
- 4. Instantons

Knots in 3D

Definition: A knot K is a smooth embedding $K: S^1 \rightarrow S^3$

(start with a rope, tie it into a knot, fuse the ends together)

Def: Two knots are isotopic if one can be deformed into the other via embeddings in S³.

Different diagrams of the unknot:

Why knots?

Knots allow us to study arbitrary closed 3-manifolds

Let M be a closed, orientable, connected 3-manifold.

Theorem (Lickorish, Wallace) M can be described as Dehn surgery on a framed link.

Theorem (Alexander) M can be described as a cover of S³ branched over a link.

$$f: M \longrightarrow S^{3}$$

 $f^{'}(L) \cong L$
 $M \colon F^{'}(L) \longrightarrow S^{3} \sqcup L$
covering space

Knots in 4D

Two knots K and K' are concordant if there exists an annulus A

- A: $S^1 \times [0,1] \to S^3 \times [0,1]$
- with boundary $\partial A = K \sqcup -K'$.

A special class of knots:

- K is concordant to the unknot
- K bounds a disk D in B⁴
- K is a slice knot

A:
$$5 \times [0,1] \longrightarrow 5^3 \times [0,1]$$

Smoothly ~ lsm
top. locally flat
 $4 (2, 1) \xrightarrow{3} coordinates$
A: $(7, 1) \xrightarrow{--} (7, 1, 0, 0)$

$$-k'$$
: changing every crossing
 $\chi \sim q \chi$
 $k \ddagger k'$
 B^4
smooth slice

K not isotopic to U but K=U in \mathscr{C}_{sm}

Ribbon knots

Slice knots

concordant

Picture taken from Livingston-Naik "Introduction to Knot Concordance"

Why concordance?

Knot concordance allows us to study

- Smooth 4-manifolds
- 2. Bordism of 3-manifolds

Thm: Every 3-mfd bounds a 4-mfd 23 = 207 Let X be a smooth 4-manifold with boundary:

 $: S^2 \times S^4$

Theorem (Alexander) X can be described as a cover of B⁴ branched over a surface F.

Theorem X can be described via a Kirby diagram.

Theorem Smooth structure of X is related to embedded surfaces $F \subset B^4$

In dimension q: smooth + topologice q-meds + q-meds

Group Structure on ${\mathscr C}$

Theorem (Fox-Milnor 1966) Knot concordance is an equivalence relation and the set \mathscr{C} of concordance classes of knots is an abelian group with connected sum as the binary operation.

Two knots K, $K' \subset S^3$ are smoothly concordant if

For any knot K, K# - K is a slice knot

Picture taken from Livingston-Naik "Introduction to Knot Concordance"

 $\mathbb{Z}^{\infty} \subset \mathscr{C}$

Theorem (Litherland) The group generated by the family $\{T_{2,2k+1}\}_k$ is isomorphic to \mathbb{Z}^{∞}

-1.5

 α = Root of 1 - t + t² β = Root of 1 - t³ + t⁶

Smooth vs Topological

Theorem (Levine) The following maps are surjective homomorphisms

 $\mathscr{C}_{sm} \longrightarrow \mathscr{C}_{top} \longrightarrow \mathbb{Z}^{\infty} \oplus (\mathbb{Z}/2)^{\infty} \oplus (\mathbb{Z}/4)^{\infty}$

Q: How big is ker($\mathscr{C}_{sm} \to \mathscr{C}_{top}$)?

Theorem (Hedden-PC) $\mathbb{Z}^{\infty} \subset \ker(\mathscr{C}_{sm} \to \mathscr{C}_{top})$ (N <u>TRNING</u>: We are not the first ones the prove theo Instention : satellike troots Instentions Strategy:

- 1. Give a recipe to produce knots $\{K_n\}_n$ trivial in \mathscr{C}_{top} spoiler: $\Delta_k(t) = 1$
- 2. Use an Instanton obstruction to show that no combination of the $\rm K_n{'s}$ is trivial in $\mathscr{C}_{\rm sm}$

Satellite Operations

More examples of patterns:

Satellites: operations on concordance

 $\mathsf{Ker}(\mathscr{C}_{\mathsf{sm}} \to \mathscr{C}_{\mathsf{top}})$


```
Observation: \Delta_{\kappa}(1)=1 for any knot K
```

As a consequence, if $\Delta_{P(U)}(t)=1$ and w=0, then P(K)=0 in \mathcal{C}_{top} for any knot K!

Back to the strategy: Show that no sum $\#c_iP(T_{2,2ki+1})$ is trivial in \mathscr{C}_{sm} Examples of P(U) with $\Delta_{P(U)}(t)=1$ and w=0 for which sums of P(T_{2,2ki+1}) are non-trivial:

Bordism of 3-manifolds

Theorem (Casson-Gordon) If K is slice, the 2-fold cover of S³ branched over K bounds the $\mathbb{Z}/2$ -homology ball formed as the 2-fold cover of B⁴ branched over the slice disk.

Back to the strategy:

No sum $\#c_i\Sigma(P(T_{2,2ki+1})))$ bounds a $\mathbb{Z}/2HB^4$

In other words, obstruct the branched covers from bounding smooth 4-manifolds with the same $\mathbb{Z}/2$ -homology as B⁴

Our theorem

TQFT'S 3-4 mpds

4 - mpel
with boundary
Intiself dual connections
$$\longrightarrow$$
 $\Im X = Y$
 D_X Bonshitson element $I_*(Y)$ vector space
 $D_X \in I_*(Y)$
We can capture obstructions to bounding from $J_{a}(Y)$

Instanton Obstruction

Theorem (Furuta p = 1, Hedden–Kirk p > 1) Consider a family $\{\Sigma_i\}_{i=1}^N$ of oriented $\mathbb{Z}/2$ -homology 3-spheres. Let (p,q) be a pair of relatively prime and positive integers. $\Sigma_N = S^3_{p/q}(T_{2,2k+1})$. If

$$\frac{p}{2(2k+1)(2(2k+1)p-q)} < \min\left\{\min(cs(\pm\Sigma_1)), \dots, cs(\pm\Sigma_{N-1}))\right\}$$

Then there does not exist a smooth 4-manifold X s.t.

- H¹(X;ℤ/2)=0
- X has negative definite intersection form
- $\partial X = \Box c_i \Sigma_i$ with c_i in \mathbb{Z} , $c_N > 0$

 $S_{P/q}^{3}(T_{2}, Z_{PH}) =$ $S_{1}^{3}(N(T_{2}, Z_{PH}) \cup D_{X}^{2}S_{1})$ (Pig)-curre (-in JN(Tzizten)

Our Theorem

For example:

Theorem (Hedden-PC) Let $P \subset S^1 \times D^2$ be a pattern with winding number zero, and consider the branched double cover $\Sigma(P(U))$.

If ∂D^2 , equipped with the Seifert framing from D^2 , has framed lifts in $\Sigma(P(U))$ with non-zero rational linking number, then there exists an infinite family of knots $\{K_i\}_i$ for which $\{P(K_i)\}$ is a \mathbb{Z} -independent family in \mathscr{C}_{sm}