Modular forms on exceptional groups

Aaron Pollack

November 2021

Aaron Pollack [Modular forms on exceptional groups](#page-31-0)

つくへ

∍

1 [Classical modular forms](#page-1-0)

- 2 [Automorhpic forms](#page-10-0)
- 3 [Exceptional groups](#page-19-0)
- [Modular forms on exceptional groups](#page-24-0)

 \leftarrow

 $\leftarrow \equiv$ \rightarrow

B

 QQ

Modular forms

Let

$$
SL_2(\textbf{R})=\left\{\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) \in M_2(\textbf{R}) : ad-bc=1 \right\}
$$

and

$$
\mathsf{SL}_2(\mathbf{Z}) = \left\{ \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in M_2(\mathbf{Z}) : ad - bc = 1 \right\}.
$$

Recall:

$$
\mathsf{SL}_2(\mathbf{R}) \text{ acts on } \mathfrak{h} = \{ z \in \mathbf{C} : \mathit{Im}(z) > 0 \} \text{ as } \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \cdot z = \frac{az+b}{cz+d}
$$

Suppose $\ell > 0$ is a positive integer.

Modular forms

A modular form of weight ℓ for $SL_2(\mathbb{Z})$ is a holomorphic function f : $\mathfrak{h} \to \mathsf{C}$ satisfying **D** Invariance: $f(\gamma z) = (cz+d)^{\ell} f(z)$ for all $\gamma = \left(\begin{smallmatrix} a & b \ c & d \end{smallmatrix}\right) \in \mathsf{SL}_2(\mathbf{Z});$ \bullet Moderate growth: The SL $_2$ (Z)-invariant function $|y^{\ell/2}f(z)|$ on ${\mathfrak h}$ is bounded by $C(y+y^{-1})^N$ for some $C,N>0.$

Fourier expansion

Note that

$$
\mathsf{SL}_2(\mathbf{Z})\supseteq \Gamma_{\infty}=\{(\begin{smallmatrix}1 & n\\ 0 & 1\end{smallmatrix}): n\in \mathbf{Z}\}.
$$

As

$$
\left(\begin{smallmatrix} 1 & n \\ 0 & 1 \end{smallmatrix}\right) \cdot z = \frac{1 \cdot z + n}{0 \cdot z + 1} = z + n,
$$

 $f(z + n) = f(z)$ for all $n \in \mathbb{Z}$.

Fourier expansion

The holomorphy and the invariance imply

$$
f(z) = \sum_{n \in \mathbf{Z}} a_f(n) e^{2\pi i nz}
$$

for some $a_f(n) \in \mathbb{C}$. The moderate growth implies $a_f(n) = 0$ if $n < 0$, i.e.,

$$
f(z)=\sum_{n\geq 0}a_f(n)e^{2\pi inz}=\sum_{n\geq 0}a_f(n)q^n
$$

Examples

1 (Eisenstein series) For an even integer $\ell \geq 4$, define

$$
E_{\ell}(z)=\sum_{m,n\in\mathbf{Z}^2\setminus\{(0,0)\}}\frac{1}{(mz+n)^{\ell}}.
$$

■ (Poincare series) Fix $D > 0$, and an integer $k \ge 2$. Define

$$
f_{D,k}(z) = \sum_{(a,b,c) \in \mathbb{Z}^3 : b^2 - 4ac = D} \frac{1}{(az^2 + bz + c)^k}.
$$

³ (Ramanujan ∆ function) Define

$$
\Delta(q) = q \prod_{n \geq 1} (1 - q^n)^{24}.
$$

 Ω

Eisenstein series

- The condition $\ell \geq 4$ implies the sum converges absolutely to a holomorphic function
- For the invariance condition:

$$
E_{\ell}\left(\frac{az+b}{cz+d}\right) = \sum_{m,n} \frac{1}{\left(m\left(\frac{az+b}{cz+d}\right)+n\right)^{\ell}}
$$

$$
= (cz+d)^{\ell} \sum_{m,n} \frac{1}{(m(az+b)+n(cz+d))^{\ell}}
$$

$$
= (cz+d)^{\ell} \sum_{m,n} \frac{1}{((ma+nc)z+(mb+nd))^{\ell}}
$$

$$
= (cz+d)^{\ell} E_{\ell}(z)
$$

by rearranging the sum.

 Ω

Broadening the definition

If $N > 1$ is a positive integer, set

$$
\Gamma(N) = \left\{ \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in SL_2(Z) : \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \equiv \left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right) \pmod{N} \right\}.
$$

Congruence subgroup

A subgroup $\Gamma \subseteq SL_2(\mathbb{Z})$ is called a **congruence subgroup** if $\Gamma \supseteq \Gamma(N)$ for some N.

Modular forms for congruence subgroups

A modular form of weight ℓ for Γ is a holomorphic function f : $\mathfrak{h} \to \mathsf{C}$ satisfying

D Invariance: $f(\gamma z) = (cz+d)^{\ell} f(z)$ for all $\gamma = \left(\begin{smallmatrix} a & b \ c & d \end{smallmatrix}\right) \in \Gamma;$

 \bullet Moderate growth: The Γ-invariant function $|y^{\ell/2}f(z)|$ on $\frak h$ is bounded by $C(y+y^{-1})^N$ for some $C,N>0$.

E

 QQ

Sums of squares

For an integer $k > 0$ set

$$
r_k(n) = \#\{(x_1, x_2, \ldots, x_k) \in \mathbf{Z}^k : x_1^2 + \cdots + x_k^2 = n\}
$$

the number of ways of expressing n as a sum of k squares. Then if $k>0$ is even, $\theta_k(z)=\sum_{n\geq 0}r_k(n)q^n$ is a modular form of weight $k/2$.

More generally, modular forms are known to be generating functions of interesting arithmetic quantities: E.g.,

- **1** class numbers of imaginary quadratic fields (Cohen, Zagier)
- ² intersection numbers of curves on certain surfaces (Hirzebruch-Zagier, Kudla-Millson)

Some standard facts

Let $M_\ell(\Gamma; \mathbf{C})$ be the C-vector space of modular forms of weight ℓ for Γ.

Finite dimensionality

The C-vector space $M_k(\Gamma;\mathbf{C})$ is finite dimensional.

Denote by $M_\ell(SL_2(\mathbf{Z}); \mathbf{Q})$ the Q-vector space of modular forms with rational Fourier coefficients, i.e.,

$$
M_{\ell}(\mathsf{SL}_2(\mathbf{Z});\mathbf{Q}) = \{f \in M_{\ell}(\mathsf{SL}_2(\mathbf{Z});\mathbf{C}) : f = \sum_{n \geq 0} a_f(n)q^n
$$

with all $a_f(n) \in \mathbf{Q}\}.$

Rational structure

One has $M_\ell(\mathsf{SL}_2(\mathbf{Z}); \mathbf{Q}) \otimes \mathbf{C} = M_\ell(\mathsf{SL}_2(\mathbf{Z}); \mathbf{C})$, i.e., $M_\ell(\mathsf{SL}_2(\mathbf{Z}); \mathbf{C})$ has a basis consisting of modular forms with rational Fourier coefficients.

Modular forms, their generalizations, and their degenerate versions:

- **1 Generating functions:** are generating functions of interesting arithmetic quantities
- **2 Iwasawa theory**: Can be used to understand the class groups of cyclotomic fields (Ribet, Mazur-Wiles)
- ³ Elliptic curves I: Parametrize elliptic curves over Q (Shimura, Eichler-Shimura, Wiles, Taylor-Wiles)
- **4 Elliptic curves II:** Can be used to understand the rank of an elliptic curve over Q (Gross-Zagier)
- **The Tate conjecture:** conjecturally predict the existence of nontrivial algebraic cycles on algebraic varieties
- **The Langlands program:** conjecturally control the category of motives

何 ト ィヨ ト ィヨ ト

Aaron Pollack [Modular forms on exceptional groups](#page-0-0)

 \leftarrow

 $\leftarrow \equiv$ \rightarrow

B

 QQ

The factor of automorhpy

Define
$$
j : SL_2(\mathbf{R}) \times \mathfrak{h} \to \mathbf{C}
$$
 as $j(\gamma, z) = cz + d$ if $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

The invariance condition can be rewritten as $f(\gamma z) = j(\gamma, z)^{\ell} f(z)$ for all $γ ∈ Γ$.

Transition to the group

If $f \in M_\ell(\Gamma; \mathbb{C})$ a modular form for Γ of weight ℓ , define $\varphi_f : \mathsf{SL}_2(\mathbf{R}) \to \mathbf{C}$ as $\varphi_f(g) = j(g,i)^{-\ell} f(g \cdot i).$

The function φ_f is left-Γ-invariant:

$$
\varphi_f(\gamma g)=\varphi_f(g) \text{ for all } \gamma\in \Gamma.
$$

If
$$
k_{\theta} = \begin{pmatrix} \cos(\theta) - \sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}
$$
, then because $k_{\theta} \cdot i = i$,

$$
\varphi_f(gk_\theta)=e^{-\ell i\theta}\varphi_f(g).
$$

Proof of invariance

•
$$
j(\gamma, z)
$$
 satisfies $j(\gamma_1 \gamma_2, z) = j(\gamma_1, \gamma_2 z)j(\gamma_2, z)$ for all $\gamma_1, \gamma_2 \in SL_2(\mathbf{R})$ and $z \in \mathfrak{h}$.

Thus

Γ-Invariance

$$
\varphi_f(\gamma g) = j(\gamma g, i)^{-\ell} f(\gamma g \cdot i)
$$

= $(j(\gamma, g \cdot i)j(g, i))^{-\ell} j(\gamma, g \cdot i)^{\ell} f(g \cdot i)$
= $j(g, i)^{-\ell} f(g \cdot i)$
= $\varphi_f(g)$.

Also:

$$
\varphi_f(gk_\theta) = j(gk_\theta, i)^{-\ell} f(gk_\theta \cdot i)
$$

= $(j(g, k_\theta \cdot i) j(k_\theta, i))^{-\ell} f(g \cdot i)$
= $e^{-i\ell\theta} \varphi_f(g)$.

Modular form: alternate definition

Suppose $\ell > 0$ is a positive integer and $\Gamma \subset SL_2(\mathbb{Z})$ is a congruence subgroup. Then a function $\varphi : \Gamma \backslash SL_2(\mathbf{R}) \to \mathbf{C}$ is a modular form of weight ℓ if

- $\varphi(gk_{\theta})=e^{-i\ell\theta}\varphi(g)$ for all $k_{\theta}\in{\rm SO}(2)$
- \bullet $D_{\ell,CR}\varphi \equiv 0$, for a certain linear differential operator $D_{\ell,CR}$ that can be defined entirely from the pair $SO(2) \subseteq SL_2(\mathbf{R})$
- $|\varphi(g)| \leq C ||g||^N$ for some $C, N > 0$, where $||g||^2 = tr(gg^t)$.

Here $D_{\ell,CR}\varphi = 0$ is a condition equivalent to $f_{\varphi}(g \cdot i) = j(g,i)^{\ell} \varphi(g)$ satisfies the Cauchy-Riemann equations.

Upshot: One can make a definition of modular forms entirely from the group theory of the pair $SO(2) \subseteq SL_2(\mathbf{R})!$

同 ▶ イヨ ▶ イヨ ▶ │

The differential equation

Let

x

$$
\bullet \ \mathfrak{g} = \textit{Lie}(\mathsf{SL}_2(\mathbf{R})) \otimes \mathbf{C} \text{ and }
$$

$$
\bullet \ \mathfrak{k}=Lie(SO(2))\otimes \mathbf{C}
$$

Lie algebra decomposition

Then as a representation of SO(2),

$$
\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p}_-\oplus\mathfrak{p}_+
$$

where \mathfrak{p}_+ are one-dimensional.

• Let $X_-\,$ be a basis of \mathfrak{p}_- Then $D_{CR,\ell}\varphi(g) = X_{-\varphi}(g)$.

The relationship of $SO(2)$ to $SL_2(\mathbb{R})$ is that $SO(2)$ is a maximal compact subgroup of $SL_2(R)$

Maximal compact subgroup

- \bullet If G is a simple Lie group (i.e., its Lie algebra has no nontrivial ideals)
- Then G has a (unique conjugacy class of) maximal compact subgroups K :
	- \bullet K is compact
	- ² maximal with respect to inclusion among compact subgroups
	- 3 any other such subgroup L is conjugate to K in G

Automorphic forms

- \bullet Suppose G is a simple Lie group, and
- $\bullet \Gamma \subset G$ is an appropriate discrete subgroup.
- Let $K \subset G$ be a fixed maximal compact subgroup, corresponding to the Cartan involution θ .

Automorphic forms

- A smooth function $\varphi : \Gamma \backslash G \rightarrow C$ is an **automorphic form** if
	- $\bullet \varphi$ is K-finite, i.e., the right K-translates of φ generate a finite-dimensional subspace of $C^{\infty}(\Gamma \backslash G; \mathbb{C})$
	- $\bullet \varphi$ is $Z(g)$ -finite, i.e., φ is annihilated by a finite codimension ideal J of the center $Z(g)$ of the universal enveloping algebra $U(\mathfrak{a})$ of \mathfrak{a} .
	- φ is of moderate growth, i.e., $|\varphi(g)| \leq C ||g||^N$ for some $C, N > 0$, where $||g||^2 = \text{tr}(Ad(g)Ad(\theta(g)^{-1})).$

∢ 何 ▶ (ヨ ▶ (ヨ ▶

Holomorphic modular forms

Suppose G is a simple Lie group and $K\subseteq G$ is a maximal compact subgroup. **Sometimes**, G/K has complex structure.

Some examples

\n- \n
$$
\mathsf{Sp}_{2n}(\mathsf{R}) = \{g \in \mathsf{GL}_{2n}(\mathsf{R}) : gJ_n g^t = J_n\}, \, J_n = \left(\begin{smallmatrix} 1 & 1 \\ -1 & 1 \end{smallmatrix}\right).
$$
\n
\n- \n $\mathsf{SO}(2, n) = \{g \in \mathsf{SL}_{2+n}(\mathsf{R}) : g\left(\begin{smallmatrix} 1_2 & 1 \\ & -1_n \end{smallmatrix}\right) g^t = \left(\begin{smallmatrix} 1_2 & 1 \\ & -1_n \end{smallmatrix}\right)\}$ \n
\n- \n $\mathsf{U}(p, q) = \{g \in \mathsf{GL}_{p+q}(\mathsf{C}) : g\left(\begin{smallmatrix} 1_p & 1 \\ & -1_q \end{smallmatrix}\right) g^* = \left(\begin{smallmatrix} 1_p & 1 \\ & -1_q \end{smallmatrix}\right)\}$ \n
\n

Let $\Gamma \subset G$ be an appropriate discrete subgroup of G.

Holomorhpic modular forms

If G has G/K with C-structure, can consider

- those holomorphic functions $f : G/K \to \mathbb{C}$ that satisfy $f(\gamma z) = j(\gamma, z)^{\ell} f(z)$ for all $\gamma \in \Gamma$ and $z \in \mathcal{G}/\mathcal{K}$.
- Equivalently, smooth, moderate growth functions $\varphi: \Gamma \backslash G \rightarrow C$ that satisfy a K-equivariance condition and a certain very special differential equation[.](#page-16-0)
- These special functions are called holomorphic modular forms
- They again have 1 a semiclassical Fourier expansion
- Are connected with algebraic geometry, and have special rationality properties

Motivating question

If G is a simple Lie group with G/K not Hermitian, is there a special class of automorphic forms for G which deserve to be called "modular forms"?

¹When G/K is a tube domain

[Classical modular forms](#page-1-0)

Aaron Pollack [Modular forms on exceptional groups](#page-0-0)

 \leftarrow

 $\leftarrow \equiv$ \rightarrow

э

 QQ

Suppose L is a real Lie algebra.

Lie algebra

A real Lie algebra L is a finite-dimensional \bf{R} vector space, that comes equipped with a Lie bracket $[,]: L \times L \rightarrow L$ satisfying • $[,]$ is bilinear, i.e., $[x + y, z] = [x, z] + [y, z]$ **2** [,] is antisymmetric, i.e., $[y, x] = -[x, y]$ **3** [,] satisfies the Jacobi identity, i.e., $[x, [y, z]] = [[x, y], z] + [y, [x, z]].$

Associated to L one can define a group $G(L)$ as

$$
G(L) = \{g \in Aut_{\mathbf{R}}(L) : g[x, y] = [gx, gy] \ \forall x, y \in L\}.
$$

Then $G(L)$ is a real Lie group with Lie algebra L.

 \triangleright a \equiv \triangleright a \equiv

The Lie algebra \mathfrak{sl}_n

- Let $V_n = \mathbf{R}^n$ and V_n^{\vee} the dual vector space
- The Lie algebra of \mathfrak{gl}_n :

$$
\mathfrak{gl}_n = M_n(\mathbf{R}) = End(V_n) = V_n \otimes V_n^{\vee}
$$

The Lie bracket is $[X, Y] = XY - YX$.

- The Lie algebra \mathfrak{sl}_n is the trace 0 matrices: $\mathfrak{sl}_n = M_n(\mathbf{R})^{\mathsf{tr}=0}.$
- There is a projection $V_n \otimes V_n^{\vee} \to \mathfrak{sl}_n$ given as $v \otimes \phi \mapsto v \otimes \phi - \frac{\phi(v)}{n}$ $\frac{(V)}{n}$ 1_n.
- If $\delta \in \mathfrak{sl}_n$, $v \in V_n$ and $\phi \in V_n^{\vee}$, then $\delta(v) \in V_n$ and $\delta(\phi) \in V_n^\vee$ are defined
- There is an identification $\wedge^{n-1}V_n \simeq V_n^\vee$ and $\wedge^{n-1}V_n^\vee \simeq V_n$

Notation as above. Set

$$
\mathfrak{g}_2=\mathfrak{sl}_3\oplus V_3\oplus V_3^\vee.
$$

This is a 14-dimensional real vector space. One defines \lceil , \rceil on \mathfrak{g}_2 as follows:

- **1** If $\delta_1, \delta_2 \in \mathfrak{sl}_3$, then $[\delta_1, \delta_2]$ is the usual commutator in \mathfrak{sl}_3
- **2** If $\delta \in \mathfrak{sl}_3$, $v \in V_3$, $\phi \in V_3^{\vee}$, then $[\delta, v] = \delta(v) \in V_3$, $[\delta, \phi] = \delta(\phi) \in V_3^{\vee}$
- **3** If $v_1, v_2 \in V_3$, then $[v_1, v_2] = 2v_1 \wedge v_2 \in \wedge^2 V_3 \simeq V_3^\vee$ and similarly if $\phi_1, \phi_2 \in V_3^{\vee}$ then $[\phi_1, \phi_2] = 2\phi_1 \wedge \phi_2$ considered in $\wedge^2 V_3^{\vee} \simeq V_3$
- **•** If $v \in V_3$ and $\phi \in V_3^{\vee}$ then $[\phi, v] = 3v \otimes \phi \phi(v)1_3 \in \mathfrak{sl}_3$.

The Lie group G_2 and other exceptional Lie groups

$G₂$

The group $G_2 = G(g_2)$ is the group associated to the Lie algebra $q₂$. It is a noncompact Lie group of dimension 14.

One can define a discrete subgroup $\Gamma = G_2(\mathbf{Z}) \subset G_2$ as follows:

• Let
$$
\mathfrak{g}_2(\mathbf{Z}) = M_3(\mathbf{Z})^{\mathrm{tr}=0} \oplus \mathbf{Z}^3 \oplus (\mathbf{Z}^3)^{\vee}
$$
.

2 Then $g_2(\mathbf{Z}) \subset g_2$ is a lattice, closed under the Lie bracket.

• Let
$$
G_2(\mathbf{Z}) = \{ g \in G_2 : g(\mathfrak{g}_2(\mathbf{Z})) \subseteq \mathfrak{g}_2(\mathbf{Z}) \}.
$$

Other Lie groups

There are Lie groups, which can be defined similarly, with the names F_4 , E_6 , E_7 , E_8 . They have dimensions \bullet dim $F_4 = 52$

- dim $E_6 = 78$
- dim $E_7 = 133$
- dim $E_8 = 248$.

 \circ

[Classical modular forms](#page-1-0)

- 2 [Automorhpic forms](#page-10-0)
- 3 [Exceptional groups](#page-19-0)

4 [Modular forms on exceptional groups](#page-24-0)

 QQ

4. 重

Motivating question

If G is a simple Lie group with G/K not Hermitian, is there a special class of automorphic forms for G which deserve to be called "modular forms"?

If G is such that G/K is Hermitian, then K admits a surjection to $U(1)$, and conversely.

For example, if $G = \mathsf{Sp}_{2n}(\mathbf{R})$, then $K \simeq U(n)$

Gross-Wallach

Consider G which have K that admits a surjection to $SU(2)/\mu_2 = SO(3)$

Examples:

$$
\bullet \ \ G_2, \ K = (\mathsf{SU}(2) \times \mathsf{SU}(2))/\mu_2
$$

$$
\bullet \ \mathsf{F}_4, \ \mathsf{K} = (\mathsf{SU}(2) \times \mathsf{Sp}_6)/\mu_2
$$

•
$$
E_{8,4}
$$
, $K = (SU(2) \times E_7)/\mu_2$.

つくへ

Exceptional groups have 'modular forms'

The groups

$G: G_2 \subset D_4 \subset F_4 \subset E_{6.4} \subseteq E_{7.4} \subseteq E_{8.4}$

- $K \subseteq G$ the maximal compact. $K \rightarrow SU(2)/\mu_2$.
- \bullet G/K : no Hermitian structure

Definition of modular forms on G

Let $\ell > 1$ be an integer. A modular form on G of weight ℓ is

- an automorphic form $\varphi:\mathsf{\Gamma}\backslash\mathsf{G}\to \mathsf{Sym}^{2\ell}(\mathsf{C}^2)$
- satisfying $\varphi(gk)=k^{-1}\cdot\varphi(g)$ for all $g\in\mathcal{G},\ k\in\mathcal{K}$
- and $\mathcal{D}_\ell \varphi = 0$ for a certain special linear differential operator \mathcal{D}_{ℓ}
- Definition is a paraphrase of one due to Gross-Wallach, Gan-Gross-Savin

イ押 トイヨ トイヨト

Theorem 1

The modular forms of weight $\ell > 1$ on G have a robust Fourier expansion, normalized over the integers, that is compatible with pullbacks between groups G above.

The theorem means:

- **1** For λ varying in a certain lattice Λ , there are explicit functions $W_{\lambda}: G \rightarrow Sym^{2\ell}(\mathbf{C}^2)$
- **2** such that if φ is a modular form of weight ℓ then
- $\bullet\ \varphi(g)\,\Htext{``}= \text{''}\sum_{\lambda\in\Lambda}c_\varphi(\lambda)W_\lambda(g)$ for certain complex numbers $c_{\alpha}(\lambda)$.

The numbers $c_{\varphi}(\lambda)$ are (by definition) the **Fourier coefficients** of φ .

伊 ▶ (ヨ)

つくへ

Fourier coefficients

- \bullet Given a modular φ form of weight ℓ , one can ask the question "Are all of φ 's Fourier coefficients in some ring $R \subset \mathbb{C}$?"
- If ι : $G_1 \subseteq G_2$ in the above sequence of groups, and if φ is modular form on G_2 of weight ℓ , then the pullback $\iota^*(\varphi)$ on G_1 is a modular form of weight ℓ .
- Moreover, the Fourier coefficients of $\iota^*\varphi$ are finite sums of the Fourier coefficients of φ

Fourier coefficients

If $R \subseteq \mathbb{C}$ is a subring, one says that φ has Fourier coefficients in R if all the values $c_{\varphi}(\lambda)$ are in fact valued in R.

- **•** If λ is non-degenerate in a certain sense, these Fourier coefficients were defined by Gan-Gross-Savin, using a multiplicity one result of Wallach.
- There is no a priori reason to expect any modular form to have Fourier coefficients in a small ring [\(e](#page-27-0).[g.](#page-29-0)[,](#page-24-0) Z, Q, \overline{Q} Z, Q, \overline{Q} Z, Q, \overline{Q} Z, Q, \overline{Q} [\)](#page-23-0)

つくへ

Modular forms with algebraic Fourier coefficients

Theorem 2

There are examples of modular forms with Fourier coefficients in small rings:

- \bullet On $E_{8,4}$, the minimal and next-to-minimal modular forms (weight 4 and weight 8) have Fourier coefficients in Q . These modular forms have many Fourier coefficients equal to 0. Uses key input from work of W.T. Gan and G. Savin.
- ² On E_{6.4}, there is a weight 4 modular form with all Fourier coefficients in Z. This example is "distinguished" but not "singular", and is closely connected to "arithmetic invariant theory".
- \odot On G_2 , there are nonzero cusp forms of arbitrarily large weight with all Fourier coefficients in Q. Examples constructed using the theta correspondence $\mathsf{SO}(4,4) \leftrightarrow \mathsf{Sp}_4$.
	- The Theorem says that some modular forms on exceptional groups possess "surprising" arithmeticit[y.](#page-28-0)

A weight 1/2 modular form

- Suppose R is a cubic ring, with $R \otimes \mathbf{Q}$ a totally real field.
- Let Q_R be the number of square roots of the inverse different in the narrow class group of R
- Call a cubic ring R even monogenic if $R = \mathbf{Z}[x]/(x^3 + bx^2 + cx + d)$ with b, c, d even integers.

Theorem 3 (Leslie-P.)

There is a weight $1/2$ modular form on G_2 whose Fourier coefficients are the numbers Q_R for R even monogenic.

More precisely

Let ${\mathfrak d}^{-1}$ be the inverse different of $R.$ One says a pair (l,μ) of a fractional R -ideals and a totally positive unit $\mu \in (R \otimes \mathbf{Q})^\times$ is a square root of \mathfrak{d}^{-1} if

$$
\bullet \ \mu l^2 \subseteq \mathfrak{d}^{-1} \text{ and }
$$

$$
\bullet \ \mathsf{N}(\mu)\mathsf{N}(\mathsf{I})^2d_{\mathsf{R}}=1
$$

Thank you for your attention!

 \sim \sim

II

有 \sim э

4

E

Ε $\,$