Modular forms on exceptional groups

Aaron Pollack

November 2021

Aaron Pollack Modular forms on exceptional groups

- 3 Exceptional groups
- 4 Modular forms on exceptional groups

Modular forms

Let

$$\mathsf{SL}_2(\mathsf{R}) = \left\{ \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}
ight) \in M_2(\mathsf{R}) : \mathit{ad} - \mathit{bc} = 1
ight\}$$

and

$$\mathsf{SL}_2(\mathsf{Z}) = \left\{ \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}
ight) \in M_2(\mathsf{Z}) : \mathit{ad} - \mathit{bc} = 1
ight\}.$$

Recall:

$$\mathsf{SL}_2(\mathbf{R})$$
 acts on $\mathfrak{h} = \{z \in \mathbf{C} : \mathit{Im}(z) > 0\}$ as $\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right) \cdot z = rac{az+b}{cz+d}$

Suppose $\ell > 0$ is a positive integer.

Modular forms

A modular form of weight ℓ for SL₂(Z) is a holomorphic function f : h → C satisfying
Invariance: f(γz) = (cz + d)^ℓf(z) for all γ = (^{a b}_{c d}) ∈ SL₂(Z);
Moderate growth: The SL₂(Z)-invariant function |y^{ℓ/2}f(z)| on h is bounded by C(y + y⁻¹)^N for some C, N > 0.

Fourier expansion

Note that

$$\mathsf{SL}_2(\mathsf{Z}) \supseteq \mathsf{\Gamma}_\infty = \{ \left(\begin{smallmatrix} 1 & n \\ 0 & 1 \end{smallmatrix} \right) : n \in \mathsf{Z} \}.$$

As

$$\begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \cdot z = \frac{1 \cdot z + n}{0 \cdot z + 1} = z + n,$$

f(z+n) = f(z) for all $n \in \mathbf{Z}$.

Fourier expansion

The holomorphy and the invariance imply

$$f(z) = \sum_{n \in \mathbf{Z}} a_f(n) e^{2\pi i n z}$$

for some $a_f(n) \in \mathbf{C}$. The moderate growth implies $a_f(n) = 0$ if n < 0, i.e.,

$$f(z) = \sum_{n \ge 0} a_f(n) e^{2\pi i n z} = \sum_{n \ge 0} a_f(n) q^n$$

Examples

(Eisenstein series) For an even integer $\ell \ge 4$, define

$$E_{\ell}(z) = \sum_{m,n\in\mathbf{Z}^2\setminus\{(0,0)\}} \frac{1}{(mz+n)^{\ell}}.$$

2 (Poincare series) Fix D > 0, and an integer $k \ge 2$. Define

$$f_{D,k}(z) = \sum_{(a,b,c)\in \mathbf{Z}^3: b^2-4ac=D} \frac{1}{(az^2+bz+c)^k}.$$

(Ramanujan Δ function) Define

$$\Delta(q)=q\prod_{n\geq 1}{(1-q^n)^{24}}.$$

Eisenstein series

- The condition $\ell \ge 4$ implies the sum converges absolutely to a holomorphic function
- For the invariance condition:

$$\begin{split} E_{\ell}\left(\frac{az+b}{cz+d}\right) &= \sum_{m,n} \frac{1}{\left(m\left(\frac{az+b}{cz+d}\right)+n\right)^{\ell}} \\ &= (cz+d)^{\ell} \sum_{m,n} \frac{1}{(m(az+b)+n(cz+d))^{\ell}} \\ &= (cz+d)^{\ell} \sum_{m,n} \frac{1}{((ma+nc)z+(mb+nd))^{\ell}} \\ &= (cz+d)^{\ell} E_{\ell}(z) \end{split}$$

by rearranging the sum.

Broadening the definition

If $N \ge 1$ is a positive integer, set

$$\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathsf{SL}_2(Z) : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{N} \right\}.$$

Congruence subgroup

A subgroup $\Gamma \subseteq SL_2(\mathbb{Z})$ is called a **congruence subgroup** if $\Gamma \supseteq \Gamma(N)$ for some N.

Modular forms for congruence subgroups

A modular form of weight ℓ for Γ is a holomorphic function $f : \mathfrak{h} \to \mathbf{C}$ satisfying

1 Invariance:
$$f(\gamma z) = (cz + d)^{\ell} f(z)$$
 for all $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$;

Observe the Growth: The Γ-invariant function |y^{ℓ/2}f(z)| on h is bounded by C(y + y⁻¹)^N for some C, N > 0.

э

Sums of squares

For an integer $k \ge 0$ set

$$r_k(n) = \#\{(x_1, x_2, \dots, x_k) \in \mathbf{Z}^k : x_1^2 + \dots + x_k^2 = n\}$$

the number of ways of expressing *n* as a sum of *k* squares. Then if k > 0 is even, $\theta_k(z) = \sum_{n \ge 0} r_k(n)q^n$ is a modular form of weight k/2.

More generally, modular forms are known to be generating functions of interesting arithmetic quantities: E.g.,

- Class numbers of imaginary quadratic fields (Cohen, Zagier)
- intersection numbers of curves on certain surfaces (Hirzebruch-Zagier, Kudla-Millson)

Some standard facts

Let $M_{\ell}(\Gamma; \mathbf{C})$ be the **C**-vector space of modular forms of weight ℓ for Γ .

Finite dimensionality

The **C**-vector space $M_k(\Gamma; \mathbf{C})$ is finite dimensional.

Denote by $M_{\ell}(SL_2(\mathbf{Z}); \mathbf{Q})$ the **Q**-vector space of modular forms with rational Fourier coefficients, i.e.,

$$M_\ell(\mathsf{SL}_2(\mathbf{Z}); \mathbf{Q}) = \{ f \in M_\ell(\mathsf{SL}_2(\mathbf{Z}); \mathbf{C}) : f = \sum_{n \ge 0} a_f(n)q^n$$

with all $a_f(n) \in \mathbf{Q} \}.$

Rational structure

One has $M_{\ell}(SL_2(\mathbf{Z}); \mathbf{Q}) \otimes \mathbf{C} = M_{\ell}(SL_2(\mathbf{Z}); \mathbf{C})$, i.e., $M_{\ell}(SL_2(\mathbf{Z}); \mathbf{C})$ has a basis consisting of modular forms with rational Fourier coefficients.

Modular forms, their generalizations, and their degenerate versions:

- Generating functions: are generating functions of interesting arithmetic quantities
- Iwasawa theory: Can be used to understand the class groups of cyclotomic fields (Ribet, Mazur-Wiles)
- Elliptic curves I: Parametrize elliptic curves over Q (Shimura, Eichler-Shimura, Wiles, Taylor-Wiles)
- Elliptic curves II: Can be used to understand the rank of an elliptic curve over Q (Gross-Zagier)
- The Tate conjecture: conjecturally predict the existence of nontrivial algebraic cycles on algebraic varieties
- The Langlands program: conjecturally control the category of motives

- 3 Exceptional groups
- 4 Modular forms on exceptional groups

The factor of automorhpy

Define $j : SL_2(\mathbf{R}) \times \mathfrak{h} \to \mathbf{C}$ as $j(\gamma, z) = cz + d$ if $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

The invariance condition can be rewritten as $f(\gamma z) = j(\gamma, z)^{\ell} f(z)$ for all $\gamma \in \Gamma$.

Transition to the group

If $f \in M_{\ell}(\Gamma; \mathbf{C})$ a modular form for Γ of weight ℓ , define $\varphi_f : SL_2(\mathbf{R}) \to \mathbf{C}$ as $\varphi_f(g) = j(g, i)^{-\ell} f(g \cdot i)$.

The function φ_f is left- Γ -invariant:

$$\varphi_f(\gamma g) = \varphi_f(g)$$
 for all $\gamma \in \Gamma$.

If
$$k_{ heta} = \begin{pmatrix} \cos(heta) - \sin(heta) \\ \sin(heta) & \cos(heta) \end{pmatrix}$$
, then because $k_{ heta} \cdot i = i$,

$$\varphi_f(gk_\theta) = e^{-\ell i\theta}\varphi_f(g).$$

Proof of invariance

•
$$j(\gamma, z)$$
 satisfies $j(\gamma_1\gamma_2, z) = j(\gamma_1, \gamma_2 z)j(\gamma_2, z)$ for all $\gamma_1, \gamma_2 \in SL_2(\mathbf{R})$ and $z \in \mathfrak{h}$.

Thus

Γ-Invariance

$$\begin{split} \varphi_f(\gamma g) &= j(\gamma g, i)^{-\ell} f(\gamma g \cdot i) \\ &= (j(\gamma, g \cdot i) j(g, i))^{-\ell} j(\gamma, g \cdot i)^{\ell} f(g \cdot i) \\ &= j(g, i)^{-\ell} f(g \cdot i) \\ &= \varphi_f(g). \end{split}$$

Also:

$$egin{aligned} &arphi_f(gk_{ heta}) = j(gk_{ heta},i)^{-\ell}f(gk_{ heta}\cdot i) \ &= (j(g,k_{ heta}\cdot i)j(k_{ heta},i))^{-\ell}f(g\cdot i) \ &= e^{-i\ell\theta}arphi_f(g). \end{aligned}$$

æ

∍⊳

Modular form: alternate definition

Suppose $\ell > 0$ is a positive integer and $\Gamma \subseteq SL_2(\mathbb{Z})$ is a congruence subgroup. Then a function $\varphi : \Gamma \setminus SL_2(\mathbb{R}) \to \mathbb{C}$ is a modular form of weight ℓ if

- $\varphi(gk_{\theta}) = e^{-i\ell\theta}\varphi(g)$ for all $k_{\theta} \in SO(2)$
- D_{ℓ,CR}φ ≡ 0, for a certain linear differential operator D_{ℓ,CR} that can be defined entirely from the pair SO(2) ⊆ SL₂(**R**)
- $|\varphi(g)| \leq C||g||^N$ for some C, N > 0, where $||g||^2 = tr(gg^t)$.

Here $D_{\ell,CR}\varphi = 0$ is a condition equivalent to $f_{\varphi}(g \cdot i) = j(g, i)^{\ell}\varphi(g)$ satisfies the Cauchy-Riemann equations.

 Upshot: One can make a definition of modular forms entirely from the group theory of the pair SO(2) ⊆ SL₂(R)!

伺 ト イヨ ト イヨト

The differential equation

Let

•
$$\mathfrak{g} = Lie(\mathsf{SL}_2(\mathsf{R})) \otimes \mathsf{C}$$
 and

• $\mathfrak{k} = Lie(SO(2)) \otimes C$

Lie algebra decomposition

Then as a representation of SO(2),

$$\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}_- \oplus \mathfrak{p}_+$$

where \mathfrak{p}_{\pm} are one-dimensional.

• Let X_{-} be a basis of \mathfrak{p}_{-} Then $D_{CR,\ell}\varphi(g) = X_{-}\varphi(g)$. The relationship of SO(2) to SL_2(R) is that SO(2) is a maximal compact subgroup of SL_2(R)

Maximal compact subgroup

- If G is a simple Lie group (i.e., its Lie algebra has no nontrivial ideals)
- Then G has a (unique conjugacy class of) maximal compact subgroups K:
 - K is compact
 - 2 maximal with respect to inclusion among compact subgroups
 - **(3)** any other such subgroup L is conjugate to K in G

Automorphic forms

- Suppose G is a simple Lie group, and
- $\Gamma \subseteq G$ is an appropriate discrete subgroup.
- Let K ⊆ G be a fixed maximal compact subgroup, corresponding to the Cartan involution θ.

Automorphic forms

A smooth function $\varphi : \Gamma \backslash G \to \mathbf{C}$ is an **automorphic form** if

- φ is K-finite, i.e., the right K-translates of φ generate a finite-dimensional subspace of C[∞](Γ\G; C)
- φ is Z(g)-finite, i.e., φ is annihilated by a finite codimension ideal J of the center Z(g) of the universal enveloping algebra U(g) of g.
- φ is of moderate growth, i.e., $|\varphi(g)| \leq C||g||^N$ for some C, N > 0, where $||g||^2 = tr(Ad(g)Ad(\theta(g)^{-1}))$.

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Holomorphic modular forms

Suppose G is a simple Lie group and $K \subseteq G$ is a maximal compact subgroup. Sometimes, G/K has complex structure.

Some examples

• Sp_{2n}(**R**) = {
$$g \in GL_{2n}(\mathbf{R}) : gJ_ng^t = J_n$$
}, $J_n = \begin{pmatrix} 1 & 1 \\ -1 & n \end{pmatrix}$.
• SO(2, n) = { $g \in SL_{2+n}(\mathbf{R}) : g \begin{pmatrix} 1 & 1 \\ -1 & n \end{pmatrix} g^t = \begin{pmatrix} 1 & 2 \\ -1 & n \end{pmatrix}$ }
• $U(p,q) = \{g \in GL_{p+q}(\mathbf{C}) : g \begin{pmatrix} 1 & p \\ -1 & q \end{pmatrix} g^* = \begin{pmatrix} 1 & p \\ -1 & q \end{pmatrix}$ }

Let $\Gamma \subseteq G$ be an appropriate discrete subgroup of G.

Holomorhpic modular forms

If G has G/K with **C**-structure, can consider

- those holomorphic functions $f : G/K \to \mathbb{C}$ that satisfy $f(\gamma z) = j(\gamma, z)^{\ell} f(z)$ for all $\gamma \in \Gamma$ and $z \in G/K$.
- Equivalently, smooth, moderate growth functions
 φ : Γ\G → C that satisfy a K-equivariance condition and a certain very special differential equation.

Holomorphic modular forms

- These special functions are called holomorphic modular forms
- They again have¹ a semiclassical Fourier expansion
- Are connected with algebraic geometry, and have special rationality properties

Motivating question

If G is a simple Lie group with G/K not Hermitian, is there a **special class** of automorphic forms for G which deserve to be called "modular forms"?

Aaron Pollack

¹When G/K is a tube domain

Classical modular forms

Suppose L is a real Lie algebra.

Lie algebra

A real Lie algebra *L* is a finite-dimensional **R** vector space, that comes equipped with a Lie bracket $[,] : L \times L \rightarrow L$ satisfying [,] is bilinear, i.e., [x + y, z] = [x, z] + [y, z] [,] is antisymmetric, i.e., [y, x] = -[x, y] [,] satisfies the Jacobi identity, i.e., [x, [y, z]] = [[x, y], z] + [y, [x, z]].

Associated to L one can define a group G(L) as

$$G(L) = \{g \in Aut_{\mathsf{R}}(L) : g[x, y] = [gx, gy] \ \forall x, y \in L\}.$$

Then G(L) is a real Lie group with Lie algebra L.

The Lie algebra \mathfrak{sl}_n

- Let $V_n = \mathbf{R}^n$ and V_n^{\vee} the dual vector space
- The Lie algebra of \mathfrak{gl}_n :

$$\mathfrak{gl}_n = M_n(\mathbf{R}) = End(V_n) = V_n \otimes V_n^{\vee}$$

The Lie bracket is [X, Y] = XY - YX.

- The Lie algebra \mathfrak{sl}_n is the trace 0 matrices: $\mathfrak{sl}_n = M_n(\mathbf{R})^{tr=0}$.
- There is a projection $V_n \otimes V_n^{\vee} \to \mathfrak{sl}_n$ given as $v \otimes \phi \mapsto v \otimes \phi \frac{\phi(v)}{n} \mathbf{1}_n$.
- If $\delta \in \mathfrak{sl}_n$, $v \in V_n$ and $\phi \in V_n^{\vee}$, then $\delta(v) \in V_n$ and $\delta(\phi) \in V_n^{\vee}$ are defined
- There is an identification $\wedge^{n-1}V_n\simeq V_n^{\vee}$ and $\wedge^{n-1}V_n^{\vee}\simeq V_n$

Notation as above. Set

$$\mathfrak{g}_2=\mathfrak{sl}_3\oplus V_3\oplus V_3^{\vee}.$$

This is a 14-dimensional real vector space. One defines [,] on \mathfrak{g}_2 as follows:

- If $\delta_1, \delta_2 \in \mathfrak{sl}_3$, then $[\delta_1, \delta_2]$ is the usual commutator in \mathfrak{sl}_3
- If $\delta \in \mathfrak{sl}_3$, $v \in V_3$, $\phi \in V_3^{\vee}$, then $[\delta, v] = \delta(v) \in V_3$, [δ, ϕ] = $\delta(\phi) \in V_3^{\vee}$
- If $v_1, v_2 \in V_3$, then $[v_1, v_2] = 2v_1 \wedge v_2 \in \wedge^2 V_3 \simeq V_3^{\vee}$ and similarly if $\phi_1, \phi_2 \in V_3^{\vee}$ then $[\phi_1, \phi_2] = 2\phi_1 \wedge \phi_2$ considered in $\wedge^2 V_3^{\vee} \simeq V_3$
- $If v \in V_3 and \phi \in V_3^{\vee} then [\phi, v] = 3v \otimes \phi \phi(v) \mathbf{1}_3 \in \mathfrak{sl}_3.$

The Lie group G_2 and other exceptional Lie groups

G_2

The group $G_2 = G(\mathfrak{g}_2)$ is the group associated to the Lie algebra \mathfrak{g}_2 . It is a noncompact Lie group of dimension 14.

One can define a discrete subgroup $\Gamma = G_2(\mathbf{Z}) \subseteq G_2$ as follows:

• Let
$$\mathfrak{g}_2(\mathbf{Z}) = M_3(\mathbf{Z})^{\mathrm{tr}=0} \oplus \mathbf{Z}^3 \oplus (\mathbf{Z}^3)^{\vee}$$
.

2 Then $\mathfrak{g}_2(\mathbf{Z}) \subseteq \mathfrak{g}_2$ is a lattice, closed under the Lie bracket.

3 Let
$$G_2(\mathsf{Z}) = \{g \in G_2 : g(\mathfrak{g}_2(\mathsf{Z})) \subseteq \mathfrak{g}_2(\mathsf{Z})\}.$$

Other Lie groups

There are Lie groups, which can be defined similarly, with the names F_4 , E_6 , E_7 , E_8 . They have dimensions

- dim $F_4 = 52$
- dim $E_6 = 78$
- dim $E_7 = 133$
- dim $E_8 = 248$.

- 2 Automorhpic forms
- 3 Exceptional groups

4 Modular forms on exceptional groups

Motivating question

If G is a simple Lie group with G/K not Hermitian, is there a **special class** of automorphic forms for G which deserve to be called "modular forms"?

If G is such that G/K is Hermitian, then K admits a surjection to U(1), and conversely.

• For example, if $G = \operatorname{Sp}_{2n}(\mathbf{R})$, then $K \simeq U(n)$

Gross-Wallach

Consider G which have K that admits a surjection to $SU(2)/\mu_2 = SO(3)$

Examples:

- G_2 , $K = (SU(2) \times SU(2))/\mu_2$
- F₄, $K = (SU(2) \times Sp_6)/\mu_2$
- $E_{8,4}$, $K = (SU(2) \times E_7)/\mu_2$.

Exceptional groups have 'modular forms'

The groups

$G: G_2 \subseteq D_4 \subseteq F_4 \subseteq E_{6,4} \subseteq E_{7,4} \subseteq E_{8,4}$

- $K \subseteq G$ the maximal compact. $K \twoheadrightarrow SU(2)/\mu_2$.
- *G*/*K*: no Hermitian structure

Definition of modular forms on G

Let $\ell \geq 1$ be an integer. A modular form on ${\it G}$ of weight ℓ is

- an automorphic form $\varphi : \Gamma \setminus G \to Sym^{2\ell}(\mathbb{C}^2)$
- satisfying $\varphi(gk) = k^{-1} \cdot \varphi(g)$ for all $g \in G$, $k \in K$
- and $\mathcal{D}_\ell \varphi = 0$ for a certain special linear differential operator \mathcal{D}_ℓ
- Definition is a paraphrase of one due to Gross-Wallach, Gan-Gross-Savin

< 回 > < 回 > < 回 > <

Theorem 1

The modular forms of weight $\ell \ge 1$ on G have a robust Fourier expansion, normalized over the integers, that is compatible with pullbacks between groups G above.

The theorem means:

- For λ varying in a certain lattice Λ, there are explicit functions W_λ : G → Sym^{2ℓ}(C²)
- ${\it @}$ such that if φ is a modular form of weight ℓ then
- $\varphi(g)$ " = " $\sum_{\lambda \in \Lambda} c_{\varphi}(\lambda) W_{\lambda}(g)$ for certain complex numbers $c_{\varphi}(\lambda)$.

The numbers $c_{\varphi}(\lambda)$ are (by definition) the **Fourier coefficients** of φ .

Fourier coefficients

- Given a modular φ form of weight ℓ, one can ask the question
 "Are all of φ's Fourier coefficients in some ring R ⊆ C?"
- If ι : G₁ ⊆ G₂ in the above sequence of groups, and if φ is modular form on G₂ of weight ℓ, then the pullback ι*(φ) on G₁ is a modular form of weight ℓ.
- Moreover, the Fourier coefficients of $\iota^*\varphi$ are finite sums of the Fourier coefficients of φ

Fourier coefficients

If $R \subseteq \mathbf{C}$ is a subring, one says that φ has Fourier coefficients in R if all the values $c_{\varphi}(\lambda)$ are in fact valued in R.

- If λ is non-degenerate in a certain sense, these Fourier coefficients were defined by Gan-Gross-Savin, using a multiplicity one result of Wallach.

Modular forms with algebraic Fourier coefficients

Theorem 2

There are examples of modular forms with Fourier coefficients in small rings:

- On E_{8,4}, the minimal and next-to-minimal modular forms (weight 4 and weight 8) have Fourier coefficients in Q. These modular forms have many Fourier coefficients equal to 0. Uses key input from work of W.T. Gan and G. Savin.
- On E_{6,4}, there is a weight 4 modular form with all Fourier coefficients in Z. This example is "distinguished" but not "singular", and is closely connected to "arithmetic invariant theory".
- On G₂, there are nonzero cusp forms of arbitrarily large weight with all Fourier coefficients in Q. Examples constructed using the theta correspondence SO(4,4) ↔ Sp₄.
 - The Theorem says that some modular forms on exceptional groups possess "surprising" arithmeticity, and the second s

A weight 1/2 modular form

- Suppose R is a cubic ring, with $R \otimes \mathbf{Q}$ a totally real field.
- Let Q_R be the number of square roots of the inverse different in the narrow class group of R
- Call a cubic ring R even monogenic if $R = \mathbf{Z}[x]/(x^3 + bx^2 + cx + d)$ with b, c, d even integers.

Theorem 3 (Leslie-P.)

There is a weight 1/2 modular form on G_2 whose Fourier coefficients are the numbers Q_R for R even monogenic.

More precisely

Let \mathfrak{d}^{-1} be the inverse different of R. One says a pair (I, μ) of a fractional R-ideals and a totally positive unit $\mu \in (R \otimes \mathbf{Q})^{\times}$ is a square root of \mathfrak{d}^{-1} if

$$1 \mu I^2 \subseteq \mathfrak{d}^{-1} and$$

2
$$N(\mu)N(I)^2 d_R = 1$$

Thank you for your attention!

æ