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Modular forms

Let
SL2(R) =

{(
a b
c d

)
∈ M2(R) : ad − bc = 1

}
and

SL2(Z) =
{(

a b
c d

)
∈ M2(Z) : ad − bc = 1

}
.

Recall:

SL2(R) acts on h = {z ∈ C : Im(z) > 0} as
(
a b
c d

)
· z = az+b

cz+d

Suppose ` > 0 is a positive integer.

Modular forms

A modular form of weight ` for SL2(Z) is a holomorphic function
f : h→ C satisfying

1 Invariance: f (γz) = (cz + d)`f (z) for all γ =
(
a b
c d

)
∈ SL2(Z);

2 Moderate growth: The SL2(Z)-invariant function |y `/2f (z)|
on h is bounded by C (y + y−1)N for some C ,N > 0.
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Fourier expansion

Note that
SL2(Z) ⊇ Γ∞ = {( 1 n

0 1 ) : n ∈ Z} .
As

( 1 n
0 1 ) · z =

1 · z + n

0 · z + 1
= z + n,

f (z + n) = f (z) for all n ∈ Z.

Fourier expansion

The holomorphy and the invariance imply

f (z) =
∑
n∈Z

af (n)e2πinz

for some af (n) ∈ C. The moderate growth implies af (n) = 0 if
n < 0, i.e.,

f (z) =
∑
n≥0

af (n)e2πinz =
∑
n≥0

af (n)qn

where q = e2πiz .
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Examples

1 (Eisenstein series) For an even integer ` ≥ 4, define

E`(z) =
∑

m,n∈Z2\{(0,0)}

1

(mz + n)`
.

2 (Poincare series) Fix D > 0, and an integer k ≥ 2. Define

fD,k(z) =
∑

(a,b,c)∈Z3:b2−4ac=D

1

(az2 + bz + c)k
.

3 (Ramanujan ∆ function) Define

∆(q) = q
∏
n≥1

(1− qn)24.
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Eisenstein series

The condition ` ≥ 4 implies the sum converges absolutely to a
holomorphic function

For the invariance condition:

E`

(
az + b

cz + d

)
=
∑
m,n

1(
m
(
az+b
cz+d

)
+ n
)`

= (cz + d)`
∑
m,n

1

(m(az + b) + n(cz + d))`

= (cz + d)`
∑
m,n

1

((ma + nc)z + (mb + nd))`

= (cz + d)`E`(z)

by rearranging the sum.
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Broadening the definition

If N ≥ 1 is a positive integer, set

Γ(N) =
{(

a b
c d

)
∈ SL2(Z ) :

(
a b
c d

)
≡ ( 1 0

0 1 ) (mod N)
}
.

Congruence subgroup

A subgroup Γ ⊆ SL2(Z) is called a congruence subgroup if
Γ ⊇ Γ(N) for some N.

Modular forms for congruence subgroups

A modular form of weight ` for Γ is a holomorphic function
f : h→ C satisfying

1 Invariance: f (γz) = (cz + d)`f (z) for all γ =
(
a b
c d

)
∈ Γ;

2 Moderate growth: The Γ-invariant function |y `/2f (z)| on h is
bounded by C (y + y−1)N for some C ,N > 0.
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Generating functions

Sums of squares

For an integer k ≥ 0 set

rk(n) = #{(x1, x2, . . . , xk) ∈ Zk : x2
1 + · · ·+ x2

k = n}

the number of ways of expressing n as a sum of k squares. Then if
k > 0 is even, θk(z) =

∑
n≥0 rk(n)qn is a modular form of weight

k/2.

More generally, modular forms are known to be generating
functions of interesting arithmetic quantities: E.g.,

1 class numbers of imaginary quadratic fields (Cohen, Zagier)

2 intersection numbers of curves on certain surfaces
(Hirzebruch-Zagier, Kudla-Millson)
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Some standard facts

Let M`(Γ; C) be the C-vector space of modular forms of weight `
for Γ.

Finite dimensionality

The C-vector space Mk(Γ; C) is finite dimensional.

Denote by M`(SL2(Z); Q) the Q-vector space of modular forms
with rational Fourier coefficients, i.e.,

M`(SL2(Z); Q) = {f ∈ M`(SL2(Z); C) : f =
∑
n≥0

af (n)qn

with all af (n) ∈ Q}.

Rational structure

One has M`(SL2(Z); Q)⊗ C = M`(SL2(Z); C), i.e., M`(SL2(Z); C)
has a basis consisting of modular forms with rational Fourier
coefficients.

Aaron Pollack Modular forms on exceptional groups



Why modular forms

Modular forms, their generalizations, and their degenerate versions:

1 Generating functions: are generating functions of interesting
arithmetic quantities

2 Iwasawa theory: Can be used to understand the class groups
of cyclotomic fields (Ribet, Mazur-Wiles)

3 Elliptic curves I: Parametrize elliptic curves over Q
(Shimura, Eichler-Shimura, Wiles, Taylor-Wiles)

4 Elliptic curves II: Can be used to understand the rank of an
elliptic curve over Q (Gross-Zagier)

5 The Tate conjecture: conjecturally predict the existence of
nontrivial algebraic cycles on algebraic varieties

6 The Langlands program: conjecturally control the category
of motives
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The factor of automorhpy

Define j : SL2(R)× h→ C as j(γ, z) = cz + d if γ =
(
a b
c d

)
.

The invariance condition can be rewritten as f (γz) = j(γ, z)`f (z)
for all γ ∈ Γ.

Transition to the group

If f ∈ M`(Γ; C) a modular form for Γ of weight `, define
ϕf : SL2(R)→ C as ϕf (g) = j(g , i)−`f (g · i).

The function ϕf is left-Γ-invariant:

ϕf (γg) = ϕf (g) for all γ ∈ Γ.

If kθ =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, then because kθ · i = i ,

ϕf (gkθ) = e−`iθϕf (g).
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Proof of invariance

j(γ, z) satisfies j(γ1γ2, z) = j(γ1, γ2z)j(γ2, z) for all
γ1, γ2 ∈ SL2(R) and z ∈ h.

Thus

Γ-Invariance

ϕf (γg) = j(γg , i)−`f (γg · i)
= (j(γ, g · i)j(g , i))−` j(γ, g · i)`f (g · i)
= j(g , i)−`f (g · i)
= ϕf (g).

Also:

ϕf (gkθ) = j(gkθ, i)
−`f (gkθ · i)

= (j(g , kθ · i)j(kθ, i))−` f (g · i)
= e−i`θϕf (g).
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Alternate definition

Modular form: alternate definition

Suppose ` > 0 is a positive integer and Γ ⊆ SL2(Z) is a
congruence subgroup. Then a function ϕ : Γ\ SL2(R)→ C is a
modular form of weight ` if

ϕ(gkθ) = e−i`θϕ(g) for all kθ ∈ SO(2)
D`,CRϕ ≡ 0, for a certain linear differential operator D`,CR
that can be defined entirely from the pair SO(2) ⊆ SL2(R)
|ϕ(g)| ≤ C ||g ||N for some C ,N > 0, where ||g ||2 = tr(gg t).

Here D`,CRϕ = 0 is a condition equivalent to
fϕ(g · i) = j(g , i)`ϕ(g) satisfies the Cauchy-Riemann equations.

Upshot: One can make a definition of modular forms entirely
from the group theory of the pair SO(2) ⊆ SL2(R)!
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The differential equation

Let

g = Lie(SL2(R))⊗ C and

k = Lie(SO(2))⊗ C

Lie algebra decomposition

Then as a representation of SO(2),

g = k⊕ p− ⊕ p+

where p± are one-dimensional.

Let X− be a basis of p−

Then DCR,`ϕ(g) = X−ϕ(g).
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The G ⊇ K setup

The relationship of SO(2) to SL2(R) is that SO(2) is a maximal
compact subgroup of SL2(R)

Maximal compact subgroup

If G is a simple Lie group (i.e., its Lie algebra has no
nontrivial ideals)
Then G has a (unique conjugacy class of) maximal compact
subgroups K :

1 K is compact
2 maximal with respect to inclusion among compact subgroups
3 any other such subgroup L is conjugate to K in G
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Automorphic forms

Suppose G is a simple Lie group, and

Γ ⊆ G is an appropriate discrete subgroup.

Let K ⊆ G be a fixed maximal compact subgroup,
corresponding to the Cartan involution θ.

Automorphic forms

A smooth function ϕ : Γ\G → C is an automorphic form if
ϕ is K -finite, i.e., the right K -translates of ϕ generate a
finite-dimensional subspace of C∞(Γ\G ; C)
ϕ is Z (g)-finite, i.e., ϕ is annihilated by a finite codimension
ideal J of the center Z (g) of the universal enveloping algebra
U(g) of g.
ϕ is of moderate growth, i.e., |ϕ(g)| ≤ C ||g ||N for some
C ,N > 0, where ||g ||2 = tr(Ad(g)Ad(θ(g)−1)).
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Holomorphic modular forms

Suppose G is a simple Lie group and K ⊆ G is a maximal compact
subgroup. Sometimes, G/K has complex structure.

Some examples

1 Sp2n(R) = {g ∈ GL2n(R) : gJng
t = Jn}, Jn =

(
1n

−1n

)
.

2 SO(2, n) = {g ∈ SL2+n(R) : g
(

12
−1n

)
g t =

(
12
−1n

)
}

3 U(p, q) = {g ∈ GLp+q(C) : g
(

1p
−1q

)
g∗ =

(
1p
−1q

)
}

Let Γ ⊆ G be an appropriate discrete subgroup of G .

Holomorhpic modular forms

If G has G/K with C-structure, can consider
those holomorphic functions f : G/K → C that satisfy
f (γz) = j(γ, z)`f (z) for all γ ∈ Γ and z ∈ G/K .
Equivalently, smooth, moderate growth functions
ϕ : Γ\G → C that satisfy a K -equivariance condition and a
certain very special differential equation.
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Holomorphic modular forms

These special functions are called holomorphic modular forms

They again have1 a semiclassical Fourier expansion

Are connected with algebraic geometry, and have special
rationality properties

Motivating question

If G is a simple Lie group with G/K not Hermitian, is there a
special class of automorphic forms for G which deserve to be
called “modular forms”?

1When G/K is a tube domain
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Lie algebras and Lie groups

Suppose L is a real Lie algebra.

Lie algebra

A real Lie algebra L is a finite-dimensional R vector space, that
comes equipped with a Lie bracket [ , ] : L× L→ L satisfying

1 [ , ] is bilinear, i.e., [x + y , z ] = [x , z ] + [y , z ]
2 [ , ] is antisymmetric, i.e., [y , x ] = −[x , y ]
3 [ , ] satisfies the Jacobi identity, i.e.,

[x , [y , z ]] = [[x , y ], z ] + [y , [x , z ]].

Associated to L one can define a group G (L) as

G (L) = {g ∈ AutR(L) : g [x , y ] = [gx , gy ] ∀x , y ∈ L}.

Then G (L) is a real Lie group with Lie algebra L.
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The Lie algebra sln

Let Vn = Rn and V ∨n the dual vector space

The Lie algebra of gln:

gln = Mn(R) = End(Vn) = Vn ⊗ V ∨n

The Lie bracket is [X ,Y ] = XY − YX .

The Lie algebra sln is the trace 0 matrices: sln = Mn(R)tr=0.

There is a projection Vn ⊗ V ∨n → sln given as

v ⊗ φ 7→ v ⊗ φ− φ(v)
n 1n.

If δ ∈ sln, v ∈ Vn and φ ∈ V ∨n , then δ(v) ∈ Vn and
δ(φ) ∈ V ∨n are defined

There is an identification ∧n−1Vn ' V ∨n and ∧n−1V ∨n ' Vn
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The Lie algebra g2

Notation as above. Set

g2 = sl3 ⊕ V3 ⊕ V ∨3 .

This is a 14-dimensional real vector space. One defines [ , ] on g2

as follows:

1 If δ1, δ2 ∈ sl3, then [δ1, δ2] is the usual commutator in sl3
2 If δ ∈ sl3, v ∈ V3, φ ∈ V ∨3 , then [δ, v ] = δ(v) ∈ V3,

[δ, φ] = δ(φ) ∈ V ∨3
3 If v1, v2 ∈ V3, then [v1, v2] = 2v1 ∧ v2 ∈ ∧2V3 ' V ∨3 and

similarly if φ1, φ2 ∈ V ∨3 then [φ1, φ2] = 2φ1 ∧ φ2 considered in
∧2V ∨3 ' V3

4 If v ∈ V3 and φ ∈ V ∨3 then [φ, v ] = 3v ⊗ φ− φ(v)13 ∈ sl3.
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The Lie group G2 and other exceptional Lie groups

G2

The group G2 = G (g2) is the group associated to the Lie algebra
g2. It is a noncompact Lie group of dimension 14.

One can define a discrete subgroup Γ = G2(Z) ⊆ G2 as follows:

1 Let g2(Z) = M3(Z)tr=0 ⊕ Z3 ⊕ (Z3)∨.

2 Then g2(Z) ⊆ g2 is a lattice, closed under the Lie bracket.

3 Let G2(Z) = {g ∈ G2 : g(g2(Z)) ⊆ g2(Z)}.

Other Lie groups

There are Lie groups, which can be defined similarly, with the
names F4,E6,E7,E8. They have dimensions

dimF4 = 52
dimE6 = 78
dimE7 = 133
dimE8 = 248.
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Motivating question

If G is a simple Lie group with G/K not Hermitian, is there a
special class of automorphic forms for G which deserve to be
called “modular forms”?

If G is such that G/K is Hermitian, then K admits a surjection to
U(1), and conversely.

For example, if G = Sp2n(R), then K ' U(n)

Gross-Wallach

Consider G which have K that admits a surjection to
SU(2)/µ2 = SO(3)

Examples:

G2, K = (SU(2)× SU(2))/µ2

F4, K = (SU(2)× Sp6)/µ2

E8,4, K = (SU(2)× E7)/µ2.
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Exceptional groups have ‘modular forms’

The groups

G : G2 ⊆ D4 ⊆ F4 ⊆ E6,4 ⊆ E7,4 ⊆ E8,4

K ⊆ G the maximal compact. K � SU(2)/µ2.

G/K : no Hermitian structure

Definition of modular forms on G

Let ` ≥ 1 be an integer. A modular form on G of weight ` is
an automorphic form ϕ : Γ\G → Sym2`(C2)
satisfying ϕ(gk) = k−1 · ϕ(g) for all g ∈ G , k ∈ K
and D`ϕ = 0 for a certain special linear differential operator
D`

Definition is a paraphrase of one due to Gross-Wallach,
Gan-Gross-Savin
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These modular forms have nice properties

Theorem 1

The modular forms of weight ` ≥ 1 on G have a robust Fourier
expansion, normalized over the integers, that is compatible with
pullbacks between groups G above.

The theorem means:

1 For λ varying in a certain lattice Λ, there are explicit functions
Wλ : G → Sym2`(C2)

2 such that if ϕ is a modular form of weight ` then

3 ϕ(g)“ = ”
∑

λ∈Λ cϕ(λ)Wλ(g) for certain complex numbers
cϕ(λ).

The numbers cϕ(λ) are (by definition) the Fourier coefficients of
ϕ.
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Fourier coefficients

Given a modular ϕ form of weight `, one can ask the question
“Are all of ϕ’s Fourier coefficients in some ring R ⊆ C?”

If ι : G1 ⊆ G2 in the above sequence of groups, and if ϕ is
modular form on G2 of weight `, then the pullback ι∗(ϕ) on
G1 is a modular form of weight `.

Moreover, the Fourier coefficients of ι∗ϕ are finite sums of
the Fourier coefficients of ϕ

Fourier coefficients

If R ⊆ C is a subring, one says that ϕ has Fourier coefficients in R
if all the values cϕ(λ) are in fact valued in R.

If λ is non-degenerate in a certain sense, these Fourier
coefficients were defined by Gan-Gross-Savin, using a
multiplicity one result of Wallach.

There is no a priori reason to expect any modular form to
have Fourier coefficients in a small ring (e.g., Z,Q,Q)
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Modular forms with algebraic Fourier coefficients

Theorem 2

There are examples of modular forms with Fourier coefficients in
small rings:

1 On E8,4, the minimal and next-to-minimal modular forms
(weight 4 and weight 8) have Fourier coefficients in Q. These
modular forms have many Fourier coefficients equal to 0.
Uses key input from work of W.T. Gan and G. Savin.

2 On E6,4, there is a weight 4 modular form with all Fourier
coefficients in Z. This example is “distinguished” but not
“singular”, and is closely connected to “arithmetic invariant
theory”.

3 On G2, there are nonzero cusp forms of arbitrarily large weight
with all Fourier coefficients in Q. Examples constructed using
the theta correspondence SO(4, 4)↔ Sp4.

The Theorem says that some modular forms on exceptional
groups possess “surprising” arithmeticity.
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A weight 1/2 modular form

Suppose R is a cubic ring, with R ⊗Q a totally real field.

Let QR be the number of square roots of the inverse different
in the narrow class group of R

Call a cubic ring R even monogenic if
R = Z[x ]/(x3 + bx2 + cx + d) with b, c , d even integers.

Theorem 3 (Leslie-P.)

There is a weight 1/2 modular form on G2 whose Fourier
coefficients are the numbers QR for R even monogenic.

More precisely

Let d−1 be the inverse different of R. One says a pair (I , µ) of a
fractional R-ideals and a totally positive unit µ ∈ (R ⊗Q)× is a
square root of d−1 if

1 µI 2 ⊆ d−1 and
2 N(µ)N(I )2dR = 1
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Thank you

Thank you for your attention!
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