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Introduction

Given a topological manifold of dimension at least 4, usually an exotic
phenomena appears: it may admit more than one smooth structures.
Exotic structures have been studied since Milnor’s foundational work on
exotic S7.

In four dimensions, the story gets much more interesting. Unlike in higher
dimensions, a smooth 4-manifold usually admits infinitely many exotic
structures, and it is almost impossible to classify all possible smooth
structures on a given topological 4-manifold.

Thus it is natural to ask, if two smooth 4-manifolds are homeomorphic but
not diffeomorphic, can we make them diffeomorphic by possibly adding
something in common?
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For that purpose, it is natural to consider stabilization, i.e. taking a
connected sum with S2 × S2.

Theorem (Wall)

Any two simply-connected homeomorphic smooth 4-manifolds become
diffeomorphic after finitely many stabilizations.

In other words, exoticness in simply-connected 4-manifolds are “unstable”.
Thus it is natural to ask how many stabilizations are needed to trivialize
them all.

Or we can also ask, for any n > 0, is there any exotic pair of closed
simply-connected 4-manifolds which remains exotic after n stabilizations.
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It turns out that this is an extremely hard question; almost all known
examples of exotic closed simply-connected 4-manifolds trivialize after one
stabilization.

So, to start with: is there any exotic closed simply-connected 4-manifold
which stays exotic after one stabilization? A natural starting point would
be to construct a nice cork.
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A cork is a triple (Y ,W , f ) where Y is a homology 3-sphere bounding a
contractible 4-manifold W , and f : Y → Y is an orientation-preserving
diffeomorphism which does not extend smoothly to W . This serves as a
“building block” of exotic 4-manifolds.

Given a smooth 4-manifold with a smoothly embedded cork, one can
perform a cork twist: one removes W and glues it back via f . This gives
another smooth structure on the given space, which is potentially
non-diffeomorphic to the original structure.

Cork twisting is a universal way of building exotic structures in dimension
4. Any two smooth structures (rel ∂) on an simply-connected 4-manifold
are related by a single cork twist! (Curtis-Freedman-Hsiang-Stong,
Matveyev)
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So we should ask whether there exists a cork (Y ,W , f ) where f does not
extend to a self-diffeomorphism of not just W , but also of W ♯(S2 × S2).

Note that Wall’s theorem also applies to contractible 4-manifolds with
boundary, where diffeomorphism is considered rel boundary. Hence every
cork gets uncorked after sufficiently many stabilizations.

So, given any cork (Y ,W , f ), there exists some n > 0 for which f extends
to a self-diffomorphism of W ♯n(S2 × S2). However, just as in the closed
case, there has been no known example for which the minimal required n
is greater than 1.
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Theorem (K.)

There exists a cork which cannot be uncorked after one stabilization.

Combined with a work of Akbulut-Ruberman on absolutely exotic
4-manifolds, the above theorem implies the following corollary.

Corollary (K.)

There exists a exotic pair of contratible 4-manifolds (with boundary)
W1,W2 such that W1♯(S

2 × S2) and W2♯(S
2 × S2) are not diffeomorphic.

Hence, one stabilization is not enough for corks and contractible
4-manifolds.
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There are other known “one is not enough” type statements, which were
usually proven using invariants defined by Seiberg-Witten theory. For
example,

There exists an exotic pair of disks in a punctured K3 which stays
exotic after one stabilization (Lin-Mukherjee)

There exists a self-diffeomorphism of K3♯K3 which is topologically
but not smoothly isotopic to the identity, and this phenomenon
persists after one stabilization (Lin)

There exists an exotic pair of codimension 1 submanifolds of
K3♯(S2 × S2) which stays exotic after arbitrarily many stabilizations
(Lin-Mukherjee-Taniguchi)

However, nothing was known about exotic structures on 4-manifolds.
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Constructing a cork

How do we construct our cork? We start by performing (+1)-surgery
along a disk. Let K be a knot which bounds a smoothly embedded disk D
in B4. By removing a point in the interior of D, we get a concordance C
from K to an unknot U.

Then we can perform (+1)-surgery along the concordance C , which gives
a cobordism from S3

+1(K ) to S3. Then we cap off S3 by attaching a 4-ball
to get a compact 4-manifold bounding S3

+1(K ).

This always produces a contractible 4-manifold. Its diffeomorphism class
(rel ∂) depends only on the smooth isotopy class (rel ∂) of D; we write it
as B4

+1(D), the (+1)-surgery of B4 along D.

Sungkyung Kang (IBS-CGP) One is not enough Nov 17, 2022 9 / 46



Suppose that we are given two slice disks D1,D2 bounding a knot K , such
that they are not smoothly isotopic rel boundary in B4, and possibly also
in a punctured S2 × S2, but there exists a self-diffeomorphism F of B4

satisfying F (K ) = K and F (D1) = D2.

This induces a diffeomorphism F̃ between B4
+1(D1) and B4

+1(D2), which
restricts to F |∂B4 on the boundary. If we can prove that B4

+1(D1) and
B4
+1(D2) are not diffeomorphic rel boundary after one stabilization, then

this gives us a cork (S3
+1(K ),B4

+1(D1), F̃ ) which survives one stabilization.

Thus we have to find such a pair (D1,D2).
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Now, given a knot K in S3, suppose that we are also given a
self-diffeomorphism (i.e. symmetry) f of S3, satisfying f |K = idK . Then
we can consider the deform-spun disk DK ,f bounding K ♯− K .

Intuitively, DK ,f is formed by rotating K half times along an axis, where
we apply the diffeomorphism f as we rotate.

The key property is that DK ,f is always diffeomorphic, but usually not even
continuously isotopic, to the standard ribbon disk DK ,id, so we can use
them to construct a cork.
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We will focus on special kinds of knots K which carries an obvious
symmetry. We take

K = K0♯K0,

where f swaps the two K0 summands and then rotates half times along
itself. Then we take

K0 = (−T6,13♯2T6,7)3,−1♯(−T6,13♯2T6,7)3,−1.

It turns out that this choice works. The knot K0 is carefully chosen so that
an obstruction from involutive Heegaard Floer theory can be applied.

Sungkyung Kang (IBS-CGP) One is not enough Nov 17, 2022 12 / 46



Obstruction

To a homology sphere Y , Heegaard Floer theory associates to it a
Z-graded chain complex CF−(Y ) of F2[U]-modules, well-defined up to
homotopy equivalence.

Furthermore, given a homology ball W (or in general, a Spinc 4-manifold)
bounding a 3-manifold Y , we have an associated cobordism map

F−
W : CF−(S3) → CF−(Y ),

well-defined up to homotopy. Since CF−(S3) ≃ F2[U], the homotopy class
of F−

W is defined by the homology class of F−
W (1), denoted cW .
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For our purpose, we have to consider their involutive refinements.
Hendricks-Manolescu defined an involution

ιY : CF−(Y ) → CF−(Y ),

well-defined up to homotopy, satisfying ι2Y ∼ id.

Thus, given a homology sphere Y , we take the mapping cone

CFI−(Y ) = Cone(1 + ιY ),

which is a chain complex of F2[U,Q]/(Q2)-modules. This is called
involutive Heegaard Floer homology of Y .

Sungkyung Kang (IBS-CGP) One is not enough Nov 17, 2022 14 / 46



Hendricks-Hom-Stoffregen-Zemke proved that involutive Heegaard Floer
homology is natural and functorial up to homotopy.

This allows us to consider cobordism maps between involutive Heegaard
Floer homology. Thus, given a homology ball (or in general, a Spinc

4-manifold) W bounding Y , we have a cobordism map

F I
W : CFI−(S3) → CFI−(Y ),

from which we can define c IW ∈ HFI−(Y ) = H∗(CFI
−(Y )). This

homology class is again a diffeomorphism (rel ∂) invariant of W .
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The key property of involutive Heegaard Floer homology is that, unlike the
non-involutive version, the cobordism map

F I
S2×S2 : CFI

−(S3) → CFI−(S3)

for S2 × S2 is nonzero: it is the multiplication map by Q. Note that
CFI−(S3) ≃ F2[U,Q]/(Q2).

The statement that we have to prove is that

Q(c IB4
+1(D1)

+ c IB4
+1(D2)

) ̸= 0.

Note: this resembles a similar phenomenon in Pin(2)-equivariant SWF, in
which the cobordism map induced by S2 × S2 is also Q in the base ring
F2[V ,Q]/(Q3).
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Now we observe that this condition is equivalent to saying that

cB4
+1(D1)

+ cB4
+1(D2)

̸∈ Im(1 + ιS3
+1(K♯−K)).

To see why, write

Q(c IB4
+1(D1)

+ c IB4
+1(D2)

) = ∂(g + Qh)

in chain level. Then we have

∂(g + Qh) = ∂g + Q(∂h + (1 + ι)g).

Hence we should have

c IB4
+1(D1)

+ c IB4
+1(D2)

= ∂h + (1 + ι)g

for some cycle g . This proves our observation.
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Reduction to knot Floer homology

Now we reduce our problem further; this will involve knot Floer homology.
Recall that Heegaard Floer homology admits cobordism maps. The same
also holds for knot Floer homology and knot cobordisms, although we
need extra data.

Given a slice disk D of a knot K , functoriality of CFK gives a chain map

FD : F2[U,V ] = CFKUV (S
3, unknot) → CFKUV (S

3,K ).

We denote the homology class of FD(1) by tD ∈ CFKUV (S
3,K ); this class

always generates the homology of (U,V )−1CFKUV (S
3,K ). Sometimes we

will consider it as an element of ĈFK (S3,K ).
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Knot Floer homology determines Heegaard Floer homology of large
surgery. For any knot K and integer N ≥ 2g(K ), one can define, via
holomorphic triangle counting, the large surgery isomorphism

ΓN,0 : CF
−(S3

+N(K ), [0])
∼−→ A0(K ),

where [0] denotes the zero spin structure and A0(K ) denotes the
Alexander grading 0 subcomplex of CFKUV (S

3,K ).

With respect to the absolute Q-grading on CF−(S3
+N(K ), [0]) and the

absolute Z-grading on A0(K ) induced by the bigrading on CFKUV (S
3,K ),

the map ΓN,0 has degree shift 1−N
4 .
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Since ΓN,0 is defined by counting holomorphic triangles, it is easy to see
that it homotopy-commutes with concordance maps.

CF−(S3
+N(U), [0])

ΓN,0
//

F−
B4
+N

(Di )

��

A0(U) ⊂ CFKUV (S
3,U)

FDi

��

CF−(S3
+N(K ), [0])

ΓN,0
// A0(K ) ⊂ CFKUV (S

3,K )
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Given a knot K , we consider the negative-definite cobordism W1,N from
S3
+1(K ) to S3

+N(K ), defined by taking N − 1 parallel copies of (-1)-framed
meridians of K , which is (+1)-surgered. This cobordism is
negative-definite, spin, and admits a unique spin structure s.

This cobordism commutes with the “surgery along a concordance”
cobordisms. Hence we have

CF−(S3
+1(U))

F−
W1,N ,s

//

F−
B4
+1

(Di )

��

A0(U) ⊂ CF−(S3
+N(U), [0])

F−
B3
+N

(Di )

��

CF−(S3
+1(K ))

F−
W1,N ,s

// CF−(S3
+N(K ), [0])
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Given any knot K , we consider the composition

ΓN,0 ◦ F−
W1,N ,s

: HF−(S3
+1(K )) → A0(K ).

The degree shifts of ΓN,0 and F−
W1,N ,s

are 1−N
4 and N−1

4 , respectively, so

the composed map is degree-preserving (and identity when K is unknot).

So we have

CF−(S3
+1(U))

= //

F−
B4
+1

(Di )

��

A0(U) ⊂ CFKUV (S
3,U)

FDi

��

CF−(S3
+1(K ))

ΓN,0◦F−
W1,N ,s

// A0(K ) ⊂ CFKUV (S
3,K )
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Note that CFKUV (S
3,U) ≃ F2[U,V ]. By definition, the homology class of

the FDi
(1) is tDi

. Hence we have

(ΓN,0 ◦ F−
W1,N ,s

)(cB4
+1(D1)

+ cB4
+1(D2)

) = tD1 + tD2 .

Furthermore, since ΓN,0 commutes with ι (and ιK ) up to homotopy and s
is self-conjugate, we see that if cB4

+1(D1)
+ cB4

+1(D2)
) is contained in the

image of 1 + ι, then tD1 + tD2 should be contained in the image of 1 + ιK .

Therefore we seek to find D1 and D2 bounding K such that
tD1 + tD2 ̸∈ Im(1 + ιK ) in HFKUV (S

3,K ). We will find them so that the

condition actually holds on ĤFK (S3,K ).
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A glimpse on the proof of the main theorem

Recall that our ansatz for constructing (D1,D2) is by choosing a knot K0

and taking
K = K0♯K0♯− K0♯− K0,

where D1 is the standard ribbon disk DK0♯K0,id and D2 is the deform-spun
disk DK0♯K0,f . Here, f denotes the “component swapping” diffeomorphism
of K0♯K0.

As mentioned earlier, we are taking K0 to be the knot

K0 = (−T6,13♯2T6,7)3,−1♯(−T6,13♯2T6,7)3,−1.

Note that the −T6,13♯2T6,7 is the simplest knot in the family

{−T2n,4n+1♯2T2n,2n+1|n odd},

which was used by Hendricks-Hom-Stoffregen-Zemke to prove that Θ3
Z is

not generated by Seifert fibered spaces.
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We are making such a complicated choice because its involutive knot Floer
homology looks interesting. The CFKUV of the knot −T6,13♯2T6,7 has a
summand of the form

b

V 3

��

a
U3

oo

V 3

��

x ⊕

d c
U3

oo

This component is the “essential component” - other components can be
ignored up to ιK -local equivalence.

The involution ιK is given by a 7→ a+ U2V 2x , x 7→ x + d , b ↔ c , d 7→ d .
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This is very similar to the involutive knot Floer homology of the
figure-eight knot 41. The complex CFKUV (S

3, 41) is given by

b

V

��

a
Uoo

V

��

x ⊕

d c
U

oo

The involution ιK in this case is given by a 7→ a+ x , x 7→ x + d , b ↔ c ,
d 7→ d .
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We are now taking (3,-1)-cable of the knot −T6,13♯2T6,7; then we have to

figure out how the involution ιK acts on its ĤFK . However, there is no
“involutive cabling formula” right now. We will have to use a very
technical argument via involutive bordered Floer homology to carry out a
partial computation.

We will not explain the bordered techniques used in the proof. Instead, we
will focus on the prediction: based on the ιK action on (41)3,−1, we will
predict the ιK action on (−T6,13♯2T6,7)3,−1.
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The action of ιK on CFKUV (S
3, (41)3,−1) was computed (for

(2n + 1,−1)-cables, n ≥ 1) by Hom-K.-Park-Stoffregen. It consists of four
irreducible summands:

•

V
��

a1
U3

oo

V

��

•

V
��

a2
UV

��

U2
oo

V 2

��

•

V 3

��

a3
Uoo

V 3

��

d1 •U3
oo d2 •

U
oo

V

��

x

• •
U
oo

d3 •Uoo

The action of ιK maps ai 7→ ai + x and x 7→ x + U2d1 + Ud2 + V 2d3. So

in ĤFK , x is ιK -invariant, but ai is still mapped to ai + x .
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This is because we had both a 7→ a+ x and x 7→ x + d in CFKUV (S
3, 41).

Intuitively, taking a (3,-1)-cable killed the arrow x 7→ x + d , but could not
kill a 7→ a+ x .

On the other hand, if we take (3,1)-cable instead of (3,-1), we would have
killed a 7→ a+ x instead, while d 7→ d + x would still remain in the ιK
action of CFK of the cabled knot.

So what should we do? First possible idea would be to take the (3,1;3,-1)
iterated cable of 41. But one can check that this also doesn’t work!
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This leads us to consider the (3,-1)-cable of −T6,13♯2T6,7. The difference
between this case and the case of 41 is that, while we still have x 7→ x + d ,
instead of a 7→ a+ x in the case of 41, we have a 7→ a+ U2V 2x .

As in the 41 case, we should first compute the CFK of the (3,-1)-cable.
This is possible over R, i.e. modulo diagonal arrows, via Hanselman’s
cabling formula in terms of immersed curves.

The formula goes: CFK → immersed curve → immersed curve of cable →
CFK (modulo UV = 0) of cabled knot.
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We have an algorithm for drawing an immersed curve from
CFKUV (S

3,K ), which becomes very simple when CFK admits a
horizontally and vertically simplified basis.

For example, the 1-by-1 box summand in the CFK of 41 corresponds to
the figure-eight curve.
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Applying Hanselman’s cabling formula allows us to easily compute
CFKR(S

3, (41)2n+1,−1).
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The n-by-n box summand of the CFK of −T6,13♯2T6,7 corresponds to the
n-times stretched figure-eight curve.
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Applying Hanselman’s cabling formula gives the immersed (multi)curve
invariant for the cabled knot, (−T6,13♯2T6,7)3,−1.
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Components of immersed curves correspond to irreducible summands of
CFD of knot complement, which then corresponds to those of
R-coefficient CFK complex. This allows us to compute (a part of) the
R-coefficient CFK of (−T6,13♯2T6,7)3,−1. (Note: there are other
components as well)

•

��

•oo

��
•
��

•oo
��

• •oo

��

• •oo

��
• •oo

��
• ζoo

��

•
��

•oo

��
• •oo

��

• •oo

��

• •oo
��

• •oo
��

x
• •oo

��

• •oo
��

• •oo
��

• •oo
��

• •oo

• •oo
��

• •oo

��

• •oo

��
• •oo

��
• •oo • •oo

��
• •oo
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Then one proves that the free summand x is “isolated” under the action of

ιK on ĤFK .

However it turns out that the element ζ is also isolated. First of all, we

have ιK (ζ) = ζ in ĤFK . Furthermore, for any other basis element ξ, its

image ιK (ξ) in ĤFK does not contain ζ when we write it as a linear
combination of basis elements.

The same also holds for the “basepoint actions” Φ and Ψ. This is because
x generates the free summand and all “arrows” connected to ζ have
coefficients U2 or V 2, i.e. no length 1 arrows.

These “isolated elements” (and the fact that we have more than one) are
crucial in our computation.
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Juhasz and Zemke proved that, under the identification

ĤFK (S3,K ♯− K ) ≃ EndF2(ĤFK (S3,K )),

the element tDK ,f
, associated to the deform-spun disk DK ,f defined by a

symmetry f of (S3,K ), corresponds to the induced action f∗ of f on

ĤFK (S3,K ).

Furthermore, if f denotes the “swapping symmetry” when K = K0♯K0,
then the action f∗ is given by

f∗ = Sw ◦ (1⊗ (1 + ΦΨ) + Φ⊗Ψ),

where Sw denotes the “swapping isomorphism”, i.e. x ⊗ y 7→ y ⊗ x .
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Clearly, the invariant tDK ,f
, which corresponds to the identity

endomorphism, can be written as the cotrace class:

tDK ,f
= cotr(1) =

∑
basis element b

b∗ ⊗ b.

Hence, in our case when K = 4K0 where K0 = (−T6,13♯2T6,7)3,−1, the
linear combination expression of tDK ,f

contains the term s:

s = x∗ ⊗ ζ∗ ⊗ ζ∗ ⊗ x∗ ⊗ x ⊗ ζ ⊗ ζ ⊗ x .

Note that we are identifying ĤFK (S3,−K0) with the dual space of

ĤFK (S3,K0).
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Since both x and ζ are “isolated” under the (hat-flavored) actions of ιK ,
Φ, and Ψ, we know that f∗ acts by

f∗(x ⊗ ζ ⊗ ζ ⊗ x) = ζ ⊗ x ⊗ x ⊗ ζ.

Thus the term s does not appear in tDK ,f
; instead it contains the term

x∗ ⊗ ζ∗ ⊗ ζ∗ ⊗ x∗ ⊗ ζ ⊗ x ⊗ x ⊗ ζ.

Hence s still appears in tDK ,id
+ tDK ,f

.

Now assume that tDK ,id
+ tDK ,f

is contained in the image of 1 + ιK ; write
it as y + ιK (y). Then s should appear in either y or ιK (y), but not both.
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Suppose first that s appears only in y . Then we know that it also appears
in ιK (y), because s is ιK -invariant and cannot be cancelled by terms in
ιK (other things). A contradiction.

Now suppose that s appears only in ιK (y). By applying the same logic
three times, we can say that s still appears in ι3K (ιK (y)) = ι4K (y). But ι

4
K

is homotopic to the identity map! Thus s should also appear in y , a
contradiction again.

Therefore tDK ,id
+ tDK ,f

cannot be contained in the image of 1 + ιK , and
hence our main theorem is proven.
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Further remarks

One may ask whether using such a complicated knot is necessary. Our
lives are already so complicated, so why add more?

It turns out that simplest possible choices, like linear combinations of torus
knots, cannot work, due to an argument of Zemke. First of all, for my
argument to work, there should exist a homology class of
HFKUV (S

3,K ♯− K ) which is not contained in the image of 1 + ιK .

This is impossible if the knot K “dualizes perfectly”, i.e. we have a
splitting

CFKUV (S
3,K ♯− K ) ≃ F2[U,V ]⊕ C ⊕ C ′,

where the free summand is ιK -invariant and ιK maps C to C ′, and also C ′

to C , isomorphically.
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Clearly, if K dualizes perfectly, then −K also does. Also, if K1,K2 dualize
perfectly, then K1♯K2 also dualizes perfectly.

Furthermore, Floer-thin knots and torus knots dualize perfectly. (I think
(odd,1)-cables of the figure-eight knot also dualizes perfectly, but not sure)
Hence linear combinations of those knots cannot be used in my arguments.

However, those knots are the almost all cases in which the action of ιK is
completely understood. Actually, the knot (−T6,13♯T6,7)3,−1 is the first
example of a knot which does not dualize perfectly. So my argument was
destined to be complicated!
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One can also try to use “twisted” stabilizations. Instead of S2 × S2, we
may use S2×̃S2 instead. (This is necessary for nonorientable 4-manifolds)

What happens if we attach S2×̃S2 to my cork? Observe:

S2×̃S2 ≃ CP2♯− CP2.

When we attach CP2 to my cork, the boundary diffeomorphism extends.

This is because, for any knot K bounding a smooth slice disk D, the
diffeomorphism class (rel ∂) of B4

+1(D)♯CP2 does not depend on the
isotopy class of D. (informed to me by Hayden)
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It might also be very interesting to provide an upper bound on the number
of stabilizations needed to trivialize my cork. We know that one
stabilization is not enough and finitely many stabilization is enough, but
don’t know how many is needed.

In general, given a knot K and two smooth slice disks D1,D2 bounding K ,
how can we find an upper bound on the number n satisfying

B4
+1(D1)♯n(S

2 × S2) ≃ B4
+1(D2)♯n(S

2 × S2) rel ∂?

Thing might become easier if K = K0♯−K0, D1 = DK0,id, and D2 = DK0,f

for some symmetry f of K0.
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One can ask other questions as well. For example,

Can we perform a cork twist using the cork that we just described to
construct an exotic pair of closed simply-connected 4-manifolds?

Is there a cork which survives two stabilizations? How about n
stabilizations for general n > 1?

How about surfaces? Is there an exotic pair of two properly embedded
smooth disks in B4 which stays exotic after one stabilization?
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Thank you!
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