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“Multivalued” objects (functions, forms, spinors, . . . )
Example

√
z on C.

Defined as

function on cut plane;

section of a flat bundle over C \ {0} with holonomy −1;

function on branched cover.
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Section 1. Some classical topics ( real dimension 2,
Riemann surfaces)
I. Submanifolds (complex curves).

C ⊂ S a smooth curve in a complex surface.

Ci ⊂ S a sequence of curves converging to C. Modelled on
sections si of the normal bundle N → C.

If instead Ci converge to 2C (multiplicity 2), the models are
multivalued sections of N, i.e. si +

√
σi for sections σi of N⊗2.
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II. Periods Let X → D be a family of n-dimensional varieties
over the disc such that the central fibre X0 has an ordinary
double point singularity. The cohomology Hn(Xt) of the fibres
defines a flat vector bundle E over D \ {0}. Holonomy given by
the Picard-Lefschetz formula

α 7→ α + (δ.α)δ,

where δ ∈ Hn is the “vanishing cycle”. For n even, the holonomy
takes δ to −δ.
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Suppose that Ω is a holomorphic (n + 1)-form on the total
space X . Then the contraction with ∂

∂t defines a family ωt of
holomorphic n-forms on the Xt— a section of E . For example,
the periods ∫

δ
ωt ,

yield a multivalued function f on D.

More invariantly, this is a multivalued holomorphic 1-form f (t)dt .
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III. Gauge theory
Hitchin’s equations for an SU(2)-bundle P → S, where S is a
Riemann surface.
SU(2)-connection A, section ψ ∈ Ω1(adP),

d∗
Aψ = 0;

dAψ = 0;

FA = [ψ,ψ].

Kobayashi-Hitchin correspondences with

Stable flat SL(2, C) connections;

Stable pairs (E , φ): E a holomorphic vector bundle and
φ ∈ Ω1,0(EndE) holomorphic.
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For a pair (E , φ) we have σ = detφ, a holomorphic quadratic
differential on S.
Locally, away from the zero set, E = L ⊕ L−1 and

( √
σ 0

0 −
√

σ

)

.
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Differential geometry: consider scaled version εFA = [ψ,ψ] with
parameter ε → 0 (Mazzeo,Swobada, Weiss, Witt . . . ).

In the limit [ψ,ψ] = 0. Locally, away from the zero set,
ψ = λ ⊗ v for a unit section v of adP and harmonic 1-form λ.

But v , λ are only defined up to sign, so λ is a multivalued
harmonic 1-form.

(In fact λ = Re
√

σ.)
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Section 2: Higher dimensions

More recent developments, in particular work of Taubes from
2012, consider multivalued objects on an n-dimensional
manifold M with branching on a codimension 2 submanifold
Σ ⊂ M. These include higher dimensional analogues of each of
the topics I,II, III.
Common features:

geometry is locally modelled on the 2-dimensional case,
transverse to Σ;

analysis is more complicated because there is an infinite
dimensional space of deformations of Σ, and in some
situations Σ might have singularities.
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Gauge theory : Taubes analysed limits of flat SL(2, C)
connections over a 3-manifold M (and more generally data
which satisfy the equation up to term bounded in L2). The limit
defines a multivalued harmonic 1-form on M \ Σ.

Similar results for other equations in 3 and 4 dimensions.
(Taubes, Haydys, Walpsuski, Zhang . . . ). For example, Taubes
(arxiv 1702.04610) studied limits of solutions to the Vafa-Witten
equations on a 4-manifold X , which lead to multivalued
self-dual harmonic 2-forms on X \ Σ.
See also the talk of Greg Parker in this workshop. There are
also connections with gauge theory in higher dimensions
(Haydys, Walpuski).
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Calibrated submaifolds

Siqi He constructed sequences of Special Lagrangian
submanifolds of a Calabi-Yau manifold converging to a
multiplicity 2 limit using multivalued harmonic 1-forms. See the
talk of Siqi He in this workshop.

Related work of Doan and Walpuski in the context of
enumerative theories, for 3-dimensional associative
submanifolds in 7-dimensional G2 manifolds.

Perhaps also for 4-dimensional coassociative submanifolds and
Cayley submanifolds of 8-dimensional Spin(7)-manifolds.
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There are intriguing connections between these developments.
For example the problem of defining Vafa-Witten invariants on
general 4-manifolds might well be relevant to the problem of
counting coassociative subamifolds in G2-manifolds.
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Section 3: Multivalued harmonic 1-forms: some analysis
foundations
Consider a compact Riemannian n-manifold (M, g), a
co-oriented codimension 2 submanifold Σ ⊂ M and a flat R-line
bundle E → M \ Σ with holonomy −1 around Σ.
We want to study bounded harmonic 1-forms λ on M \ Σ with
values in E . Locally these are derivatives of E-valued harmonic
functions. More generally they can be identified with harmonic
sections u of an affine extension of E .
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Such a 1-form λ has a single-valued lift λ̃ to a double branched
cover M̃ → M. This defines a de Rham cohomology class in
HE = H1

−(M̃), the −1 eigenspace of the involution on H1(M̃).
The lift of the metric g to M̃ is not a smooth Riemannian metric
but a version of the Hodge Theorem applies, so any class c in
HE has a harmonic representative λ̃ which corresponds to a λ
on M.
The problem is that for general data (g, Σ, c) the 1-form λ will
not be bounded.
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Local model.
Let z be a coordinate transverse to Σ and y a coordinate along
Σ. Then λ = du where, as z → 0,

u ∼ Re(A(y)z1/2 + B(y)z3/2).

Globally, A is a section of ν−1/2 and B is a section of ν−3/2,
where ν → Σ is the normal bundle.

For du to be bounded we need A = 0.

To achieve this we need to choose Σ depending on the other
data (g, c).
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Deformation Theorem Suppose that we have a solution λ0 for
data (g0, c0) with branch set Σ0. Suppose that the subleading
term B is nowhere 0 on Σ0. Then for any (g, c) close to (g0, c0)
there is a submanifold Σ close to Σ0 such that a bounded
solution λ exists.

A similar result was obtained by Takahashi in the case of
harmonic spinors.
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Let S be the space of all submanifolds Σ and V → S the
infinite-dimensional vector bundle with fibres Γ(ν−1/2). So we
can think of A as defining a section of V → S. The derivative, at
Σ0, is defined by the pairing with B under the map

ν ⊗ ν−3/2 → ν−1/2,

so the hypothesis on B implies that this is surjective.

Thus the statement is of implicit function theorem type.
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It seems that the implicit function theorem in Banach spaces
(Sobolev, Hölder, . . . ) does not suffice due to loss of derivatives
of the submanifolds.

But a version of the Nash-Moser theory covers the situation.
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Remark in the “classical case”, when n = 2, this theorem
becomes a well-known statement about quadratic differentials.
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Section 4: Adiabatic G2-structures
A nonlinear variant of the harmonic 1-form equation
Let E be a flat bundle over an n-manifold M0 with fibre Rn,m (i.e
the structure group is O(n, m)) and let L be a 1-form on M0 with
values in E . At each point x ∈ M0 we have a map

Lx : TMx → Ex .

Suppose that the image of this map is a maximal positive
subspace, with respect to the quadratic form on the fibre. Then
we get a Riemannian metric γ on M0 (so that the Lx are
isometries).
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We have a system of PDE for L:
1 dL = 0;
2 d∗

γ L = 0.

where d∗
γ is the operator defined by the metric γ (which also

depends on L). So this is a nonlinear PDE for L.

These equations for L are locally equivalent to the “maximal
submanifold” equations for positive 3-dimensional submanifolds
in R3,19.

That is, equation (1) means that we can write L = dU, locally,
for a map U into R3,19 and the submanifold is the image of this
map.
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Motivation
A torsion-free G2-structure on a 7-manifold Y can be defined by
a closed 3-form φ satisfying certain conditions ( a “positivity”
condition and a PDE).

A 4-dimension submanifold N ⊂ Y is coassociative if φ|N = 0.
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Consider a 7-manifold Y and a smooth map π : Y → M to a
3-manifold M which is a fibration outside a codimension 2
submanifold Σ ⊂ M (i.e. a link).

We suppose that for x ∈ M \ Σ the fibres π−(x) are
diffeomorphic to the K3 manifold N, and that over Σ the fibres
have ordinary double point singularities.

A particular case is for Y = Z × S1 and M = S2 × S1 with the
product of a Lefschetz fibration Z → S2 and a trivial S1-factor.
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We have a flat cohomology bundle E → M \ Σ with fibre
H2(N) = R3,19 (the cup product form on H2).

General fact:
Any closed 3-form on Y which vanishes on the fibres of π
defines a closed 1-form L on M \Σ with values in the flat bundle
E .
(One way of seeing this: locally, over an open set π−1(U) for
U ⊂ M \ Σ we can write φ = dρ. Then on each fibre ρ is a
closed 2-form which defines a section of E . The derivative of
this section is the desired E-valued 1-form.)
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One can show/argue that the adiabatic limit of the G2-equations
for a manifold Y with a coassociative fibration π, as the volume
of the fibre tends to zero, is the above system of equations for L.

The main ingredient is the Torelli theorem for hyperkähler
metrics on the K3 manifold N.
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We can abstract the whole set-up and consider a flat vector
bundle E → M \ Σ where the fibres have a form of signature
(3, q) and with Picard-Lefschetz monodromy around Σ. A
closed E-valued 1-form L defines a class c in a certain
cohomology group HE . The general question is when does
there exist an L in a given class c satisfying the equation
d∗

γ L = 0.

In the case when Y = Z × S1 this becomes a question of Torelli
type for Lefschetz fibred Calabi-Yau structures on Z .
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There is a deformation theorem, with respect to variations in c,
similar to that in Section 3 above. The nonlinearity of the PDE
introduces extra difficulties.
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More challenging, for the future, is to understand what can
happen for “large variations” in c.

Examples of phenomena that might occur:

The diameter of M in the metric γ goes to infinity. (Twisted
connected sums ?)

Two components of the link Σ come together.
(Bryant-Salamon cones over S3 × S3)?)

A component shrinks to a point. (Bryant-Salamon cones
over C¶3 ?)
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There are also various interesting connections with other topics
we have discussed in this talk (gauge theory, calibrated
geometry, enumerative theories . . . ).
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