Pierrick Bousseau

University of Georgia

MSRI New Four-Dimensional Gauge Theories 24 October 2022 A conjectural relation between two topics:

- Holomorphic Floer theory, enumerative geometry of holomorphic symplectic/hyperkähler manifolds [see Doan's talk]
- Donaldson-Thomas (DT) invariants, enumerative geometry of Calabi-Yau 3-folds, BPS spectrum of $\mathcal{N}=2$ 4d field theories.

Reference:

• Bousseau: "Holomorphic Floer theory and Donaldson-Thomas invariants", arxiv:22xx.xxxx

- 1) DT invariants and BPS states in $\mathcal{N}=2$ 4d field theories.
- 2) Analogy with Picard-Lefschetz theory and BPS states in $\mathcal{N}=(2,2)$ 2d field theories.
- 3) Holomorphic Floer theory and DT invariants.

• DT invariants:

$$\Omega_{\gamma}(u) \in \mathbb{Z}$$

counts of geometric objects on a Calabi-Yau 3-fold X, with given topology class $\gamma \in \mathbb{Z}^n$ and satisfying a stability condition u.

- Examples:
 - Stable holomorphic vector bundles of Chern character γ for a Kähler parameter u.
 - Special Lagrangian submanifolds of class γ for a complex parameter u.

• $\mathcal{N} = 2$ supersymmetric 4d field theories

- B: Coulomb branch of vacua of the 4d theory, $B \simeq \mathbb{C}^r$.
- ▶ In a generic vacuum $u \in B \setminus \Delta$, abelian gauge theory $U(1)^r$
- Supersymmetry: charge γ , central charge $Z_{\gamma}(u) \in \mathbb{C}$, BPS bound

$$|M| \geq |Z_{\gamma}(u)|$$

- Space of BPS states, saturating the BPS bound: $H_{\gamma}(u)$
- BPS index

$$\Omega_{\gamma}(u) = \operatorname{Tr}_{H_{\gamma}(u)}(-1)^{F}$$

- Geometric constructions from string theory: IIA or IIB string on Calabi-Yau 3-fold \boldsymbol{X}
- DT invariants = BPS indices: stability $u \in B \setminus \Delta$
- From now on: consider $\mathcal{N} = 2$ 4d field theories without gravity.
 - Geometrically: non-compact Calabi-Yau 3-folds.

Wall-crossing

- $\Omega_{\gamma}(u)$: constant function of u away from codimension one loci in B, called walls, across which $\Omega_{\gamma}(u)$ jumps discontinuously.
- Jumps controlled by a universal wall-crossing formula [Kontsevich-Soibelman]:

$$\{\Omega_{\gamma}(u^{-})\}_{\gamma} o \{\Omega_{\gamma}(u^{+})\}_{\gamma}$$
 .

• Example: $\mathcal{N} = 2 SU(2)$ gauge theory

Seiberg-Witten integrable system

• \mathcal{M} : Coulomb branch of the theory on $\mathbb{R}^3 \times S^1$, hyperkähler manifold of complex dimension 2r, complex integrable system:

$$\pi\colon \mathcal{M} \longrightarrow B$$

- Low energy: 3d $\mathcal{N} = 4$ sigma model with target \mathcal{M}
- Twistor sphere of complex structures I, J, K
 - π *I*-holomorphic: in complex structure *I*, generic fibers of π are abelian varieties of dimension *r*.
 - For every θ ∈ ℝ/2πℤ, generic fibers of π are special Lagrangians in complex structure J_θ = (cos θ)J + (sin θ)K.
- $u \in B \setminus \Delta$, $\gamma \in \pi_2(\mathcal{M}, \pi^{-1}(u)) \to H_1(\pi^{-1}(u), \mathbb{Z}) = \mathbb{Z}^{2r}$,

$$Z_{\gamma}(u) = \int_{\gamma} \Omega_I$$

Seiberg-Witten integrable system

• Example: $\mathcal{N} = 2 SU(2)$ gauge theory

- Class S on C: $\pi: \mathcal{M} \to B$ is (essentially) the Hitchin integrable system for C.
- BPS spectrum $\{\Omega_{\gamma}(u)\} \rightarrow$ hyperkähler geometry of \mathcal{M} .
- Wall-crossing formula = smoothness of the hyperkähler geometry [Gaiotto-Moore-Neitzke]

Analogy with $\mathcal{N} = (2,2)$ 2d.

- Simpler wall-crossing story for BPS states in $\mathcal{N} = (2, 2)$ 2d field theories [Cecotti-Vafa].
- Example: LG model (P, W)
 - ▶ *P*: Kähler manifold of complex dimension *n*, *W* : *P* \rightarrow \mathbb{C} holomorphic Morse function.
 - Finitely many critical points $\{z_i\}$ of W
 - ► $\theta \in \mathbb{R}/2\pi\mathbb{Z}$, $\operatorname{Re}(e^{-i\theta}W)$ is a real-valued Morse function, critical points $\{z_i\}$, index *n*.
 - ► z_i , z_j , $\theta = \theta_{ij} := \operatorname{Arg}(W(z_i) W(z_j))$, μ_{ij} : count of gradient flow lines between z_i and z_j , 2d BPS indices.
- Wall-crossing formula for μ_{ij} as a function of W [Cecotti-Vafa] (Picard-Lefschetz formula).

Analogy with $\mathcal{N} = (2,2)$ 2d.

- Space *H_{ij}* of 2d BPS states?
- Morse homology of the space of paths in *P* connecting z_i to z_j for the functional $\mathfrak{p} \mapsto \int_{\mathfrak{p}} \left(d^{-1}\omega \operatorname{Im}(e^{-i\theta}W)dt \right)$. Homology of the complex:
 - generated by gradient flow lines $\mathbb{R} \to P$ between z_i and z_j
 - With differential given by counts of ζ-instantons ℝ² → P asymptotic to two gradient flow lines.

•
$$\mu_{ij} = \operatorname{Tr}_{H_{ij}}(-1)^F$$

Analogy with $\mathcal{N} = (2,2)$ 2d.

- Category Brane of supersymmetric branes of the $\mathcal{N} = (2,2) \ 2d$ theory: Fukaya-Seidel category of (P, W), can be constructed using similar Morse theory techniques [Haydys, Gaiotto-Moore-Witten].
- Analogy between BPS states in $\mathcal{N} = (2, 2)$ 2d and BPS states in $\mathcal{N} = 2$ 4d [Gaiotto-Moore-Neitzke, Kontsevich-Soibelman, Bridgeland-Toledano-Laredo, Bridgeland].

$$\begin{array}{c|c} \mathsf{4d} & \mathsf{2d} \\ \{\gamma\} & \{z_i\} \\ Z_{\gamma} & \mathcal{W}(z_i) \\ \Omega_{\gamma} & \mu_{ij} \\ H_{\gamma} & H_{ij} \\ ? & \text{Brane} \end{array}$$

Question

Is it more than an analogy? Can we find a LG model (P, W) recovering the BPS states of a $\mathcal{N} = 2$ 4d field theory?

- LG model (*P*, *W*):
 - Critical points $z_i \in P$
 - Gradient flow lines $\mathbb{R} \to P$
 - ζ -instantons $\mathbb{R}^2 \to P$
- General idea: consider LG models (*P*, *W*) for infinite dimensional Kähler manifolds *P*.
- Examples: Holomorphic Floer theory
 - P: space of paths between two holomorphic Lagrangians in a holomorphic symplectic manifold
 - ► W: holomorphic action functional
 - [B, Doan-Rezchikov, Kontsevich-Soibelman, Khan]

Holomorphic Floer theory

- $(\mathcal{M}, I, \Omega_I)$: holomorphic symplectic manifold.
 - Hyperkähler structure $I, J, K, J_{\theta} := (\cos \theta)J + (\sin \theta)K$.
 - $L_1, L_2 \subset \mathcal{M}$: *I*-holomorphic Lagrangian, $\Omega_I|_{L_1} = \Omega_I|_{L_2} = 0$.
- P: space of paths between L_1 and L_2 , $W := \int_{\mathfrak{p}} d^{-1}\Omega_I$ (multivalued!)
 - Critical points: intersection points $L_1 \cap L_2$.
 - Gradient flow lines: J_{θ} holomorphic curves, $u : \mathbb{R}^2 \to \mathcal{M}$.
 - ζ -instantons, $u : \mathbb{R}^3 \to \mathcal{M}$, solutions to Fueter equation

$$\partial_{\tau} u + I(\partial_{s} u + J_{\theta} \partial_{t} u) = 0.$$

- LG model for (*P*, *W*):
 - ▶ $p, q \in L_1 \cap L_2 \rightarrow$ vector space H_{pq} of 2d BPS states of (P, W)
 - $L_1, L_2 \rightarrow$ Fukaya-Seidel category FS(P, W)
 - $\mathcal{M} \rightarrow 2$ -category of *I*-holomorphic Lagrangians $Ft(\mathcal{M})$ such that

$$\operatorname{Hom}_{Ft(\mathcal{M})}(L_1,L_2)=FS(P,W)$$

Holomorphic Floer theory versus Rozansky-Witten

- $(\mathcal{M}, I, \Omega_I)$: holomorphic symplectic manifold.
 - ▶ Ft(M) Fueter 2-category, \mathbb{Z} -graded, not Calabi-Yau,

 $\operatorname{Hom}_{Ft(\mathcal{M})}(L_1, L_2) = FS(P, W).$

▶ RW(M) Rozansky-Witten category, $\mathbb{Z}/2\mathbb{Z}$ -graded, Calabi-Yau,

 $\operatorname{Hom}_{RW(\mathcal{M})}(L_1, L_2) = MF(P, W).$

2-category of boundary conditions of Rozansky-Witten 3d TQFT [Kapustin-Rozansky-Saulina]

• General principle: known constructions for finite-dimensional FS(P, W) and MF(P, W) should be upgraded to $Ft(\mathcal{M})$ and $RW(\mathcal{M})$.

Holomorphic Atiyah-Floer conjecture

- Another example of infinite-dimensional Fukaya-Seidel: complexified Chern-Simons [Haydys, Witten]
 - Complex-valued Chern-Simons CS on the space A of G_C-connections on a 3-manifold X and G_C.
 - Expect to construct a category CS_{G_C}(X) := FS(A, CS) attached to X and G_C (from counting solutions to Kapustin-Witten equation on X × ℝ and Haydys-Witten equation on X × ℝ²).
- Given a Heegard splitting of X along a surface Σ , $X = X_1 \cup_{\Sigma} X_2$
 - \mathcal{M} : $G_{\mathbb{C}}$ -character variety of Σ , holomorphic symplectic.
 - ► L₁, L₂: G_C-local systemes extending to X₁ and X₂, holomorphic Lagrangian submanifolds of M
 - Conjecture:

$$CS_{G_{\mathbb{C}}}(X) = \operatorname{Hom}_{Ft(\mathcal{M})}(L_1, L_2).$$

- Back to a $\mathcal{N}=2$ 4d field theory.
- How to recover the BPS spectrum $\{\Omega_{\gamma}(u)\}\$ from holomorphic Floer theory? Correct holomorphic symplectic manifolds \mathcal{M} and holomorphic Lagrangians L_1, L_2 ?
 - \mathcal{M} : Seiberg-Witten integrable system
 - $L_1 = \pi^{-1}(u)$: fiber of $\pi : \mathcal{M} \to B$ over $u \in B$.
 - L₂ = S: natural section of π. Physical definition: boundary condition for the 3d sigma model of target *M* defined by the cigar geometry [Nekrasov-Witten]. Hitchin system example: Hitchin section.

•
$$L_1 \cap L_2 = \pi^{-1}(u) \cap S = \{p\}$$

- But $\pi_1(P) \neq 0$ and W is multivalued.
- $\pi_1(P) = \pi_2(\mathcal{M}, \pi^{-1}(u))$: on \widetilde{P} , critical points of W indexed by

$$\gamma \in \pi_2(\mathcal{M},\pi^{-1}(u))$$

Conjecture (B)

Given a $\mathcal{N} = 2$ 4d field theory, the space of BPS states $H_{\gamma}(u)$ of class γ in the vacuum u is isomorphic to the vector space $H_{0\gamma}$ associated by holomorphic Floer theory for the Seiberg-Witten integrable system \mathcal{M} to the lifts 0 and γ of the intersection point between the fiber $\pi^{-1}(u)$ and the section S:

 $H_{\gamma}(u)\simeq H_{0\gamma}$

Physics derivation

Numerical limit: BPS indices

- $\Omega_{\gamma}(u)$ = count of J_{θ} -holomorphic disks in \mathcal{M} with boundary on the fiber $\pi^{-1}(u)$, $\theta = \operatorname{Arg}(Z_{\gamma}(u))$ [Lu, Kontsevich-Soibelman]
- Projection to B given by attractor flow trees

• Holomorphic disks/Instanton corrections in mirror symmetry:

➤ X Calabi-Yau manifold → counts of holomorphic curves → mirror Calabi-Yau Y

• $\mathcal{M} \rightarrow \text{counts of holomorphic curves} = \text{BPS indices} \xrightarrow{\text{GMN}} \mathcal{M}$ (self-mirror)

Categories of line operators

- What is Hom(S, π⁻¹(u))? A categorical version of the category of IR line operators.
- Conjecture: Hom(S, S) is a monoidal categorification of the algebra of regular functions on (M, J) (the character variety for class S). UV line operators.
- Hom(S, π⁻¹(u)) is naturally a module over Hom(S, S). Choice of 0 in Hom(S, π⁻¹(u)) gives a functor

$$\operatorname{Hom}(S,S) \to \operatorname{Hom}(S,\pi^{-1}(u))$$
.

Conjecture: this functor is a categorification of the UV to IR map [Gaiotto-Moore-Neitzke, Cordova-Neitzke] and is an equivalence of categories.

Thank you for your attention !