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ABSTRACT We define some new global invariants of a
fiber bundle with a connection. They are cohomology
classes in the principal fiber bundle that are defined when
certain characteristic curvature forms vanish. In the case
of the principal tangent bundle of a riemannian manifold,
they are invariant under a conformal transformation of
the metric. They give necessary conditions for conformal
immersion of a riemannian manifold in euclidean space.
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1. Introduction

This work, originally announced in [4], grew out of an attempt to
derive a purely combinatorial formula for the first Pontrjagin number of a
4-manifold. The hope was that by integrating the characteristic curvature
form (with respect to some Riemannian metric) simplex by simplex, and
replacing the integral over each interior by another on the boundary, one
could evaluate these boundary integrals, add up over the triangulation, and
have the geometry wash out, leaving the sought after combinatorial formula.
This process got stuck by the emergence of a boundary term which did not
yield to a simple combinatorial analysis. The boundary term seemed interest-
ing in its own right and it and its generalization are the subject of this
paper.

The Weil homomorphism is a mapping from the ring of invariant poly-
nomials of the Lie algebra of a Lie group, G, into the real characteristic
cohomology ring of the base space of a principal G-bundle, cf. [5], [7]. The
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G Lie group with myG finite
(=5, e g S ] G-invariant symmetric p-linear form on the Lie algebra g
eI ——2 I\ principal G-bundle
A affine space of connections © € Q5 (g)
1
Q=do + 5[@ A O] curvature of the connection ©

Example: G compact Lie group
=7
(=,—): g xg— R G-invariant inner product

Lemma: w =w(©) ={Q A --- A Q) is a closed 2p-form which descends to the base M
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Chern-Simons form for two connections

B0,01 € A, connections on P — M

i affine map with endpoints ©g, ©1
Definition: The Chern-Simons (2p — 1)-form of the connections ©g, 0 is

a((—)o,@l)_f w(©,)  eqil
Al

Stokes’ formula: da(©p,01) = w(01) — w(Oy)

Remark: The de Rham cohomology class of w(©) in Hgﬁ(M) ~ H?*(M;R) is
independent of ©



Chern-Simons form for one connection

TP = Pixiy Pt
|

i =ity : JAN ™

Y
P = M

® The section A determines a global parallelism on 7’

* A connection © on 7 pulls back to a connection on 7’

i

wy

L F7

s | %

/‘W\M




Chern-Simons form for one connection

T*P = Pix 1 Pl e
|

=P : A ™

\
P L M

® The section A determines a global parallelism on 7’

* A connection © on 7 pulls back to a connection on 7’
Definition: The Chern-Simons (2p — 1)-form of the connection © is

o(8) =GB ElE= f w(O,,) = Q?g’_l
Al



Chern-Simons form for one connection

TP = Pixiy Pt
|

7' =pry : A

\
P . M

® The section A determines a global parallelism on 7’

* A connection © on 7 pulls back to a connection on 7’
Definition: The Chern-Simons (2p — 1)-form of the connection © is

o(8) =GB ElE= f w(O,,) = Q?g’_l
Al

’ 2
Stokes’: da(0) = *w(0) € QF
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Theorem: The Chern-Simons form «(0) satisfies

da(0) = m*w(0)
i 0 ©) =R [ TSR Hm]p_l]>

CHARACTERISTIC FORMS

RO N #7) = IP@ A 1) — LiP(0, 0 A 21) + 1eP(0, 0] A 917) = 5

by the computation above. This shows (3.4) and the proposition follows
from (3.3).

The form TP(f) can of course be written without the integral, and, in
fact, setting

A= (1)U =1Y2C+ ) (@ -1 — 3
one computes
(3.5) TP(6) = 37, AP0 A [0, 0] A Q) .

The operation which associates to a e ¢(G) the form TP(6) is natural;
i.e., if @:a—@ is a morphism, since ®*(§) = 6 and thus 9*(Q) = Q, clearly
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Transgression

Theorem: The Chern-Simons form «(0) satisfies
da(0) = m*w(0)
im(0) = cp{Om A [Om A Y L
This is a de Rham version of transgression in fibrations (Borel et. al.)

Chern had earlier (1943) introduced another version of transgression with differential forms
in his intrinsic proof of the Gauss-Bonnet theorem



Descent

Four differential forms on the total space of mw: P — M, each equivariant for P x G — P:

) in Qb (g)
Q in 0% (g)
e
w(O) i Gl
i fop—]
a(O) Ty

connection form)

curvature form) IO ) G
Y4
Chern-Weil form)

S S

Chern-Simons form)

g



Descent
Four differential forms on the total space of mw: P — M, each equivariant for P x G — P:
) in Qb (g)
Q in Q% (g)
w(O) in Qif)
a(O) in Q;p*l

connection form)
curvature form)

Chern-Weil form)

S S

Chern-Simons form)

Q and w(0O) descend to differential forms on the base M (in Q%,(g) and SZ%}, respectively)



Descent

Four differential forms on the total space of mw: P — M, each equivariant for P x G — P:

) in Qb (g)
Q in 0% (g)
S
w(O) i Gl
: 2p—1
a(O) 1

connection form)
curvature form)

Chern-Weil form)

S S

Chern-Simons form)

Q and w(0O) descend to differential forms on the base M (in Q%,(g) and 52?}, respectively)

The integral of (the descent of) w(©) over closed 2p-cycles on M is a primary invariant; it
is independent of the connection © and depends only on the topology of m: P — M



Descent

Four differential forms on the total space of mw: P — M, each equivariant for P x G — P:

) in Qb (g)

Q in 0% (g)
RN

w(O) i Gl

a(O) in Q?Dp*l

connection form)
curvature form)

(
(
(Chern-Weil form)
(

Chern-Simons form)

Q and w(0O) descend to differential forms on the base M (in Q%,(g) and 52?}, respectively)

The integral of (the descent of) w(©) over closed 2p-cycles on M is a primary invariant; it
is independent of the connection © and depends only on the topology of m: P — M

© descends to a section of an affine bundle over M; not useful for constructing invariants



Descent

Four differential forms on the total space of mw: P — M, each equivariant for P x G — P:
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connection form)
curvature form)

(
(
(Chern-Weil form)
(

Chern-Simons form)

Q and w(0O) descend to differential forms on the base M (in Q%,(g) and 52?}, respectively)

The integral of (the descent of) w(©) over closed 2p-cycles on M is a primary invariant; it
is independent of the connection © and depends only on the topology of m: P — M

© descends to a section of an affine bundle over M; not useful for constructing invariants

a(0) also descends to a section of an affine bundle over M, but we can do better. . .
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Descent of the Chern-Simons form

The descent played out in stages over three decades

The first steps are in the Chern-Simons paper, where they introduce a subset of integral
symmetric p-linear forms (—,---, —): g®”? — R in the vector space

More precisely, it is the fiber product

|

\

|

’ Y
H??(BG;Z)/torsion —> H2p(BG§ R)

I2(C) S s e -

/4

The right arrow is an isomorphism if G is compact

If (—,---,—) lies in I}(G), then the mod Z reduction of the real cochain a(©) descends
to M as an R/Z cochain, but not canonically and only up to a coboundary
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DIFFERENTIAL CHARACTERS AND GEOMETRIC INVARIANTS
Jeff Cheeger*
and
James Simons**

State University of New York at Stony Brook
Stony Brook, NY 11794

Abstract

This paper first appeared in a collection of lecture notes which
were distributed at the A.M.S. Summer Institute on Differential
Geometry, held at Stanford in 1973. Since then it has been (and
remains) the authors' intention to make available a more detailed

version. But, in the mean time, we continued to receive requests for

the original notes. Moreover, the secondary invariants we discussed
have recently arisen in some new contexts, e.g. in physics and in the
work of Cheeger and Gromov on "collapse" (which was the subject of the
first author's lectures at the Special Year). For these reasons we
decided to finally publish the notes, albeit in their original form.
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The next steps follow immediately in the work of Cheeger-Simons

They introduce abelian groups CSY(M) of differential characters on a smooth manifold M
and abelian groups A”(G) of “levels” for a Lie group G (with mpG finite):

CS{(M)—- - > DT A
| [
| i . l
¥ y
HI(M;Z) — HI(M;R) H?%(BG;Z) — H?*(BG;R)
Given a level, the Chern-Weil form w(© of a G-connection ©® on w: P — M

has a canonical lift wg(0©) € CS?(M) to a differential character on M

If M is closed oriented of dimension 2p — 1, define the secondary geometric invariant

chs(@) eR/Z
M
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Rather, they are cohomology groups of a theory of local cochains ( ) constructed via
a homotopy pullback of cochain complexes

- developed a general theory of differential function spaces

QUADRATIC FUNCTIONS IN GEOMETRY,
TOPOLOGY, AND M-THEORY

M.J. HOPKINS & I.M. SINGER

Definition 4.1. A differential function t : S — (X;¢) is a triple

C(g)" (M) —— Q*29(M) (¢, h,w)
l l c:S—X, heC"(SR), weQ™(S)
satisfying
C*(M;Z) —— C*(M;R). dh=w-c"
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Fully local descent of the Chern-Simons form
The Cheeger-Simons groups are not local: they do not satisfy a sheaf condition

Rather, they are cohomology groups of a theory of local cochains (Deligne) constructed via
a homotopy pullback of cochain complexes

Hopkins-Singer developed a general theory of differential function spaces
The secondary geometric invariants are partition functions of an invertible field theory

While the connection between (generalized) differential cohomology and invertible field
theories has long been clear, it remains to nail a precise theorem
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Ramifications of locality

Geometric analysis: Traditionally, one used a global functional which is the integral of
a local density and derives local critical point differential equations
which are studied using the functional. The fully local Chern-Simons
functional offered new possibilities, for example in Floer theory

Field theory: Traditionally, one wrote an action which is the integal of a local den-
sity constructed from the fields and constrained by symmetry. The
fully Chern-Simons functional offered new possibilities. They also
appear in condensed matter physics: discrete systems are approxi-
mated by continuous field theories

Full locality is central in both contexts
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Alternative integrality

Integrality of characteristic numbers—e.g., {p1(M)/3, [M*])—was a focus of ’50s and '60s
topology (Hirzebruch et. al.)

This led to the advent of generalized cohomology theories, such as K-theory
Alternative cohomology theories to integer Eilenberg-MacLane can be used to descend a(©)

Define the extension ¥ 2HZ/27 —> E —> HZ, and use E —> HR to define “E-levels”:

FE cohomology is oriented for spin manifolds; E-levels define spin Chern-Simons invariants
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The extension X "?HZ/27 —> E —> HZ leads to the long exact sequence

0Sqg2
oo — HY(—; Z) —> E9(—) e (S vy i ] (. 7,) L

Apply to BSOj3 to obtain the short exact sequence of levels

0 — A%(SO3) — A%(SO3) — H?(BS03;Z/2Z) — 0

Z 7)2Z
The generator of A% (SO3) is a version of p; /2
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Application to conformal immersions (Chern-Simons)

This appears in the 1973 Chern-Simons paper, here reinterpreted a bit

M closed spin Riemannian 3-manifold

Oc Levi-Civita SO3-connection on M

7504 secondary spin invariant for “p;/2”

Theorem: Yy, (RP?,0, ) = -1 Corollary: YSOS(S?’; O1c) =1

Theorem: If M — E* is a conformal immersion, then F50,(M;010) =1

i
Y AR g A
l l Ti(er S

M= 58 S0, M;005) = Fo (8% 055yl — 1

Gauss

Proof:
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