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The Chern-Weil form

G Lie group with ⇡0G finite

x´, ¨ ¨ ¨ ,´y : gbp ›Ñ R G-invariant symmetric p-linear form on the Lie algebra g

⇡ : P ›Ñ M principal G-bundle

A⇡ a�ne space of connections ⇥ P ⌦1
P pgq

⌦ “ d⇥ ` 1

2
r⇥ ^ ⇥s curvature of the connection ⇥

Example: G compact Lie group
p “ 2
x´,´y : g ˆ g Ñ R G-invariant inner product

Lemma: ! “ !p⇥q “ x⌦ ^ ¨ ¨ ¨ ^ ⌦y is a closed 2p-form which descends to the base M
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The universal connection on ⇡

⇥⇡ universal connection on A⇡ ˆ P ›Ñ A⇡ ˆ M characterized by

⇥⇡

ˇ̌
t⇥uˆP

“ ⇥, ⇥⇡

ˇ̌
A⇡ˆtpu“ 0, ⇥ P A⇡, p P P

⌦⇡ “ ⌦p⇥⇡q curvature (in ⌦2
A⇡ˆP

pgq)
!⇡ “ !p⇥⇡q Chern-Weil form (in ⌦2p

A⇡ˆM
)
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Chern-Simons form for two connections

⇥0,⇥1 P A⇡ connections on P ›Ñ M

�1 ›Ñ A⇡ a�ne map with endpoints ⇥0,⇥1

Definition: The Chern-Simons p2p ´ 1q-form of the connections ⇥0,⇥1 is

↵p⇥0,⇥1q “
ª

�1
!p⇥⇡q P ⌦2p´1

M

Stokes’ formula: d↵p⇥0,⇥1q “ !p⇥1q ´ !p⇥0q

Remark: The de Rham cohomology class of !p⇥q in H
2p
dRpMq – H

2ppM ;Rq is
independent of ⇥

.
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Chern-Simons form for one connection

⇡˚P “ P ˆM P
pr2 //

⇡1“pr1

✏✏

P

⇡

✏✏
P

�

TT

⇡ //M

‚ The section � determines a global parallelism on ⇡1

‚ A connection ⇥ on ⇡ pulls back to a connection on ⇡1

Definition: The Chern-Simons p2p ´ 1q-form of the connection ⇥ is

↵p⇥q “ ↵p⇥�,⇡
˚⇥q “

ª

�1
!p⇥⇡1q P ⌦2p´1

P

Stokes’: d↵p⇥q “ ⇡˚!p⇥q P ⌦2p
P
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Transgression

Theorem: The Chern-Simons form ↵p⇥q satisfies

d↵p⇥q “ ⇡˚!p⇥q
i˚m↵p⇥q “ cp x✓m ^ r✓m ^ ✓msp´1sy

This is a de Rham version of transgression in fibrations (Borel et. al.)

Chern had earlier (1943) introduced another version of transgression with di↵erential forms
in his intrinsic proof of the Gauss-Bonnet theorem
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Descent

Four di↵erential forms on the total space of ⇡ : P ›Ñ M , each equivariant for P ˆG ›Ñ P :

⇥ in ⌦1
P pgq (connection form)

⌦ in ⌦2
P pgq (curvature form)

!p⇥q in ⌦2p
P (Chern-Weil form)

↵p⇥q in ⌦2p´1
P (Chern-Simons form)

⌦ and !p⇥q descend to di↵erential forms on the base M (in ⌦2
M pgP q and ⌦2p

M , respectively)

The integral of (the descent of) !p⇥q over closed 2p-cycles on M is a primary invariant; it
is independent of the connection ⇥ and depends only on the topology of ⇡ : P ›Ñ M

⇥ descends to a section of an a�ne bundle over M ; not useful for constructing invariants

↵p⇥q also descends to a section of an a�ne bundle over M , but we can do better. . .
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Descent of the Chern-Simons form

The descent played out in stages over three decades

The first steps are in the Chern-Simons paper, where they introduce a subset of integral
symmetric p-linear forms x´, ¨ ¨ ¨ ,´y : gbp ›Ñ R in the vector space pSymp g˚qG

More precisely, it is the fiber product

I
p
ZpGq //

✏✏

pSymp g˚qG

✏✏

H
2ppBG;Zq{torsion // H2ppBG;Rq

The right arrow is an isomorphism if G is compact

If x´, ¨ ¨ ¨ ,´y lies in I
p
ZpGq, then the mod Z reduction of the real cochain ↵p⇥q descends

to M as an R{Z cochain, but not canonically and only up to a coboundary
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The next steps follow immediately in the work of Cheeger-Simons

They introduce abelian groups CSqpMq of di↵erential characters on a smooth manifold M

and abelian groups ⇤ppGq of “levels” for a Lie group G (with ⇡0G finite):

CSqpMq //

✏✏

⌦q
closedpMq

✏✏
H

qpM ;Zq // HqpM ;Rq

⇤ppGq //

✏✏

pSymp g˚qG

✏✏

H
2ppBG;Zq // H2ppBG;Rq

Given a level, the Chern-Weil form !p⇥q P ⌦2p
closedpMq of a G-connection ⇥ on ⇡ : P ›Ñ M

has a canonical lift !CSp⇥q P CS2ppMq to a di↵erential character on M

If M is closed oriented of dimension 2p ´ 1, define the secondary geometric invariant
ª

M
!CSp⇥q P R{Z
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Fully local descent of the Chern-Simons form

The Cheeger-Simons groups are not local: they do not satisfy a sheaf condition

Rather, they are cohomology groups of a theory of local cochains (Deligne) constructed via

a homotopy pullback of cochain complexes

Hopkins-Singer developed a general theory of di↵erential function spaces

The secondary geometric invariants are partition functions of an invertible field theory

While the connection between (generalized) di↵erential cohomology and invertible field

theories has long been clear, it remains to nail a precise theorem

E✗apk_ : S
'

← I

T
I ← I , ,

Isis
'Rk → o

d
o
→ do

I

±

±

S
'
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Ramifications of locality

Geometric analysis: Traditionally, one used a global functional which is the integral of
a local density and derives local critical point di↵erential equations
which are studied using the functional. The fully local Chern-Simons
functional o↵ered new possibilities, for example in Floer theory

Field theory: Traditionally, one wrote an action which is the integal of a local den-
sity constructed from the fields and constrained by symmetry. The
fully Chern-Simons functional o↵ered new possibilities. They also
appear in condensed matter physics: discrete systems are approxi-
mated by continuous field theories

Full locality is central in both contexts



Ramifications of locality

Geometric analysis: Traditionally, one used a global functional which is the integral of
a local density and derives local critical point di↵erential equations
which are studied using the functional. The fully local Chern-Simons
functional o↵ered new possibilities, for example in Floer theory

Field theory: Traditionally, one wrote an action which is the integal of a local den-
sity constructed from the fields and constrained by symmetry. The
fully Chern-Simons functional o↵ered new possibilities. They also
appear in condensed matter physics: discrete systems are approxi-
mated by continuous field theories

Full locality is central in both contexts



Ramifications of locality

Geometric analysis: Traditionally, one used a global functional which is the integral of
a local density and derives local critical point di↵erential equations
which are studied using the functional. The fully local Chern-Simons
functional o↵ered new possibilities, for example in Floer theory

Field theory: Traditionally, one wrote an action which is the integal of a local den-
sity constructed from the fields and constrained by symmetry. The
fully Chern-Simons functional o↵ered new possibilities. They also
appear in condensed matter physics: discrete systems are approxi-
mated by continuous field theories

Full locality is central in both contexts



Alternative integrality

Integrality of characteristic numbers—e.g., xp1pMq{3 , rM4sy—was a focus of ’50s and ’60s

topology (Hirzebruch et. al.)

This led to the advent of generalized cohomology theories, such as K-theory

Alternative cohomology theories to integer Eilenberg-MacLane can be used to descend ↵p⇥q

Define the extension ⌃
´2

HZ{2Z ›Ñ E ›Ñ HZ, and use E ›Ñ HR to define “E-levels”:

⇤
p
EpGq //

✏✏

pSymp g˚qG

✏✏

E
2ppBGq // H2ppBG;Rq

E cohomology is oriented for spin manifolds; E-levels define spin Chern-Simons invariants
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The extension ⌃
´2

HZ{2Z ›Ñ E ›Ñ HZ leads to the long exact sequence

¨ ¨ ¨ ›Ñ H
qp´;Zq ›Ñ E

qp´q ›Ñ H
q´2p´;Z{2Zq �˝Sq2›››››Ñ H

q`1p´;Zq ›Ñ ¨ ¨ ¨

Apply to BSO3 to obtain the short exact sequence of levels

0 // ⇤2pSO3q // ⇤2
EpSO3q // H2pBSO3;Z{2Zq // 0

Z 2 // Z // Z{2Z

The generator of ⇤
2
EpSO3q is a version of p1{2
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Application to conformal immersions (Chern-Simons)

This appears in the 1973 Chern-Simons paper, here reinterpreted a bit

M closed spin Riemannian 3-manifold
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S
SO3
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is a conformal immersion, then S
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Proof:
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Happy Birthday and Thank You


