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There are many beautiful strands in the story 

mathematics and physics.

of 

interactions between 



Two of the most fruitful ones 

involve 

knot theory and mirror symmetry.

In this talk, I will describe a new connection between the two.



mirror symmetry.

We will find a solution to a central problem in knot theory,

as a new application of 

the knot categorification problem,



some well known aspects of knot invariants.

To begin with, it is useful to recall



In ’84,  Vaughan Jones discovered a polynomial link invariant

depending on one variable.



and the “Skein” relation it satisfies as one unties the knot,

by picking a planar projection of the knot

The Jones polynomial 

where one takes               .

is defined



It turned out other values of 

also lead to knot invariants.

Taking 

which the first know polynomial knot invariant

dating to 1923.

 

         the Alexander polynomial,one gets



 Chern-Simons theory with gauge group based on the Lie algebra 

with (effective) Chern-Simons level

Edward Witten explained in ’88 that, 

related to          by

 the Jones polynomial comes from



The Jones polynomial is the expectation value of

a collection of Wilson loops 

supported along the link components,

in Chern-Simons theory on        . 

in the fundamental representation of 



This placed the Jones polynomial into a more general framework  

different Lie algebras           and the representations.

which one gets by 

considering Chern-Simons theory based on



The Alexander polynomial comes from the same setting,

by taking            to be the  

Lie superalgebra:



The resulting invariants of the link

are known as the                 quantum group invariants.

The relation of Witten’s link invariants

was developed by Reshetikhin and  Turaev in ’89.

to quantum groups 



Most works on categorification start with quantum groups. 

For us, it will be crucial to recall the precise way 

quantum groups came into the story.



x
x

x
x

 associates to a Riemann surface with punctures 

Chern-Simons theory  

a vector space, its Hilbert space.



The punctures are positions of heavy charged particles,

so they are “colored” by representations of the Lie algebra.

x
x

x
x

at an instant of time,



is spanned by vectors which have a name:

they are known as “conformal blocks” of

an affine Lie algebra at level          , associated to 

x
x

x
x

Witten showed this finite dimensional vector space



discovered by Knizhnik and Zamolodchikov in ’84:

x
x

x
x

The variables in the equation are the positions of punctures on      .

as solution to a very famous           linear differential equation

Every conformal block of can be produced explicitly,



In a topological theory such as Chern-Simons theory

the time evolution

x x x x

x x x x

x x x x

x x x x

acts trivially on the Hilbert space,



To get something interesting 

one wants to let the positions of heavy particles vary in time:

x x x x

and then the path integral computes an invariant of a colored  braid in



x x x x

x x x x

acting on

The braid invariant

the space of            conformal blocks.

  is a matrix



x x x x

x x x x

The braiding matrix 

Knizhnik-Zamolodchikov equation:

along the path corresponding to the braid.

describes analytic continuation of the space of solutions to the 



by Drinfeld and by Kazhdan and Lustig,

the monodromy problem was solved in ’89 by 

In the case of the  Knizhnik-Zamolodchikov equation 

Such monodromy problems are in general very hard.



corresponding to 

They showed that monodromy matrix  is a product of

which act by exchanging a neighboring pair of punctures

“R-matrices” of the quantum group



x x x x

x x x x

In this way, Chern-Simons theory

leads to invariants of braid isotopy, based on the

 quantum group.



The

is a quantum symmetry of

without being a symmetry manifest in the theory classically.

which acts on  its Hilbert space, 

quantum group symmetry

Chern-Simons theory



Any link can be represented as a 

=

a closure of some braid.



The path integral of Chern-Simons together with the link

x x x

xxxx

x

computes a very specific braiding matrix element.



is that which is picked out by the states            in the Hilbert space

describing  a collection of cups or caps.

x x x

xxxx

x

The braiding matrix element



The states            in the Hilbert space

x x x x

x x

braids into links are very special solutions to the KZ equation.

that can close off



The state            

x x

x

describes a pair of punctures on the Riemann surface

which come together and “fuse” to disappear.

colored by complex conjugate representations



x x

x

This is a special instance of   

where a pair of charged particles fuse to a single one. 

“fusion”



 both braiding and fusion in conformal field theory

play an important role in getting knot invariants from Chern-Simons theory.

This way,



Chern-Simons knot invariants    

are always Laurent polynomials 

with coefficients that turn out to be integers.



This suggests that Chern-Simons theory, 

may be shadows of a deeper, more fundamental theory.

or at least its link invariants



whose graded Euler characteristic is the Jones polynomial

which produces a collection of bi-graded vector spaces,

a “homology theory”

In ’98  Khovanov showed one can associate to every link



The integer coefficients of the Jones polynomial

are the signed counts of dimensions of knot homology groups.



Khovanov’s construction is part of

“categorification program”

pioneered by Crane and I. Frenkel.



Categorification program aims to

to vector spaces,

vector spaces to “categories”,

and maps between vector spaces to “functors” between categories.

integerslift 



whose homology groups

categorify its  Euler characteristic.

A simple toy example of “categorification”

comes from a Riemannian manifold



The homology groups

with boundary maps between them that compose to zero. 

are constructed starting with a complex of vector spaces

The complex of vector spaces, obtained by a triangulation of         ,

have far more information about the geometry  

than the Euler characteristic.



of supersymmetric quantum mechanics with          as a target space.  

From physics perspective,

the Euler characteristic is the partition function



A collection of vector spaces  

as perturbative supersymmetric ground states,

Morse theory approach to supersymmetric quantum mechanics,

indexed by the fermion number              .

is provided by 



The action of  the         supercharge

is generated by instantons. 

defines a differential as it squares to zero,

on the complex



Khovanov showed how to assign to every link

a complex of vector spaces

graded by the fermion number and one additional grading,

bi-graded homology groups categorify the Jones polynomial

and are themselves link invariants.

such that their



Khovanov’s remarkable categorification of the Jones polynomial is explicit, 

and easily calculable,

although computational complexity

grows exponentially with the number of crossings.



In 2013

for categorification of quantum link invariants for arbitrary

showed there is anWebster

which, unlike Khovanov’s construction,

is anything but explicit.

abstract algebraic framework



the construction has no right to exist.

Despite the successes of the program 

one is missing a fundamental principle that 

explains why is categorification possible:



our toy example of categorification of the Euler characteristic

Khovanov’s construction and its generalizations

do not come from either geometry, 

or physics in any unified way.

Unlike in 

of a Riemannian manifold



The problem Khovanov initiated is to find 

a general framework for construction of  link homology groups,

that works uniformly for all Lie algebras,

which explains what link homology groups are,

and why they exist.



to the space conformal blocks one obtains at a fixed time slice

a   bi-graded category.

x
x

x
x

In addition to the usual fermion number grading

the category should have an additional grading associated to 

To categorify quantum knot invariants,

one would like to associate 



To braids,

one would like to associate functors between the categories 

x x x x

x x x x

corresponding to the top and the bottom.



 the top and the bottom,

up to the action of the braiding functor.

To links

x x x

xxxx

x

we would like to associate 

between the “objects” of the categories

a vector space

whose elements are  “morphisms”



de-categorification.

Moreover,

we would like to do that in the way that

recovers the quantum knot invariants upon



the quantum knot invariants one set out to categorify.

 

One typically proceeds by coming up with a category,

and then one has to work to prove

that de-categorification gives



with virtue that the second step is automatic.

we will find two solutions to the problem,

As I will explain, 



Mirror symmetry is a remarkable duality

which originates from string theory.



Mirror symmetry, 

which are fibrations by a pair of “dual tori”

over a common base.

relates pairs of  Calabi-Yau manifolds

and 



A theory of strings

has a symmetry that exchanges string winding and momentum modes.

This symmetry is why string theories based

can be equivalent.

manifolds

on a pair of dual tori,

on distinct



Calabi-Yau manifolds like 

always come in families. 

and 



complex 

structure

“B-type” 

The family members are parameterized  by choices of 

“A-type”

and

which modify the metric on the manifold.

symplectic or Kahler 
structures



complex 

structure

“B-type” “A-type”

Mirror symmetry exchanges

and

while exchanging variations of

symplectic or Kahler 
structures

and 



This way, mirror symmetry exchanges problems in 

algebraic geometry  symplectic geometry  and



An example of such a correspondence involves 

This is an infinite  series of difficult problems  

one for each degree. 

counting “rational curves”

or more precisely, of holomorphic maps

in

to         which is a Calabi-Yau 3-fold.

enumerative geometry, 

x

x x



In the mirror,

one reproduces all counts at once,

by computing periods of the top holomorphic form 



Mirror symmetry is enriched by introducing 

“branes”

supported on submanifolds.

By including them,  one allows otherwise closed strings to have boundaries.

A brane is a boundary condition. 



Branes are key objects in string theory, 

and asking how mirror symmetry acts on them

turned out to lead to deep insights 

into mirror symmetry.



They showed that, in order for every pointlike brane on 

to have a mirror brane on       

mirror pairs of manifolds must be fibered by dual tori.

One such insight was due to Strominger, Yau and Zaslow.

,



A spectacular insight into mirror symmetry was provided by 

Kontsevich in his ’94 ICM address.



One can regard branes on a Calabi-Yau manifold         

whose “morphisms” 

as “objects” of a category,

are open strings stretching between the branes.



Kontsevich conjectured that the way to understand mirror symmetry

a pair of categories of branes associated to 

one of which comes from complex,

and the other from symplectic geometry.

and  

is as equivalence 



B-branes 

“(derived) category of coherent sheaves”

The category of branes coming from complex geometry is

supported on complex submanifolds of 

whose objects are 



A-branes 

“derived Fukaya category”

The category of branes coming from symplectic geometry is

supported on real, or “Lagrangian submanifolds” of 

whose objects are 



Kontsevich’s homological mirror symmetry

is a conjecture that

category of B-branes  

(the derived category

on

category of A-branes 

(derived Fukaya category)

on

are equivalent.

of coherent sheaves)



Mirror symmetry thus provides a supply of categories of

geometric origin.

In an appropriate setting, they solve the knot categorification problem.



In parallel to solving the knot categorification problem

we will discover a new family of mirror pairs, 

where homological mirror symmetry 

can be made as explicit as in the simplest known examples.

connected to representation theory,



In the end,

I will describe the superstring theory origin

of the two approaches. 



The Knizhnik-Zamolodchikov equation 

which plays a central role

in geometric representation theory

in knot theory

and

has a geometric counterpart.



In the world of mirror symmetry, 

there is an equally fundamental differential equation

which is sometimes called 

“the quantum differential equation.”



The “quantum differential equation”        

 over the moduli space of either 

is a linear differential equation for a vector valued function

the symplectic (A-type) 

or complex structures (B-type) on 



The name 

“quantum differential equation”

comes from symplectic geometry where the coefficients in 

are computed by  “quantum multiplication”  with a class in



on                 

 is defined by counting rational curves on 

Quantum product



The first,                 term of quantum multiplication 

                          

subsequent               terms are quantum corrections.

is the classical product  on                :



featured prominently starting with the very first papers on mirror symmetry.

Both the equation,

and its monodromy problem,



live in a finite dimensional vector space 

associated to the manifold

which is spanned by the charges of its branes.

The solutions to the quantum differential equation



are counts of holomorphic maps 

 

Solutions to the quantum differential equation  

of all degrees

       with an        boundary at infinity.

from a domain curve         which is  best thought of an infinite cigar



.

by choosing a B-type brane 

as the boundary condition at infinity,

We get a specific solution of the equation

The solution depends on the brane only through its charge,

and not the details of its shape.



The Knizhnik-Zamolodchikov equation

as the quantum differential equation:

not only has the same flavor

under certain conditions, they coincide.



rather than a complex plane with punctures.

x
x

x

x

x
x

xx
xx

we want to take On the knot theory side, 

to be a punctured infinite cylinder,the Riemann surface



This enriches the theory,  allowing it to describe 

invariants of knots in 

and not only in 



to be the moduli space of

On the geometric side, we want to take the target manifold

 -monopoles on 



The Chern-Simons gauge group        

is related to

by

electric-magnetic type duality.

whose Lie algebra was

Langlands, or



view the knots in three dimensional space 

as paths of heavy particles electrically charged under 

In Chern-Simons theory,



In the geometric description, the same heavy particles 

appear as Dirac monopoles of the Langlands dual group

This magnetic description is key

to categorification.



The manifold

has played an important role in mathematics before,

Langlands correspondencein geometric

incarnations of electric-magnetic duality

in geometry and in representation theory.

which is an area of mathematics that studies 

There,

“transversal slice to affine Grassmanian of        .” 

it is known as a



positions of  some number of smooth             

The monopole moduli space

is parameterized in part by  

positions of singular, Dirac-type monopoles are fixed,

and determine the metric on 

whereas 

’t Hooft-Polyakov type monopoles on



To get the KZ equation to coincide with the quantum differential equation of

Then, rotations of this plane  

we want to place all the singular, Dirac-type monopoles at the origin of 

lead to an isometry of 

         ina complex  plane



The parameter 

of knot theory will be related to keeping track of charges

under this symmetry.

of states



The fact that quantum group invariants

become interesting  only for

has a geometric counterpart.



Because 

in that it differs from classical cohomology 

has more symmetries than a typical Calabi-Yau,

(it is “hyper-Kahler” as opposed to just Kahler) 

the quantum cohomology theory is interesting,

 only as long as 



The fact that Knizhnik-Zamolodchikov equation of

has a geometric interpretation as the quantum differential equation 

by Ivan Danilenko.is a recent theorem

for a Riemann surface which is

xx
x



The positions of punctures on the Riemann surface

        
x

x

x x

turn out to coincide with the

(complexified) Kahler moduli of 



since these moduli of 

are the relative positions of punctures on 

a braid           It follows that 

(complexified) Kahler moduli  as a path in

has a geometric interpretation

x x x x

x x xx



is categorified by a functor acting on the category of branes, 

is the fact that 

monodromy of the quantum differential equation along the path

A central expectation in mirror symmetry,

which “transports” the category along the path

and which is an equivalence.



One can understand why one expects that 

physically as follows.

Proving this in the category of B-branes is difficult,

although nobody doubts it is true.



Braid group action is  realized physically 

by letting the moduli of the theory vary

The direction along the cigar coincides with the “time” along the braid.

according to the braid near the boundary at infinity. 

in the sigma model on the cigar



One can cut the infinite cigar

very near the boundary,  by inserting a “complete set of branes”,

to extract matrix elements.



the matrix element of the monodromy

between a pair of branes 

Thus, sigma model on the annulus

with moduli that vary according to the braid computes

For this, we view the time to run along the annulus.



It turns out one can take all the variation of the moduli 

to happen near one of two boundaries,

at the expense of changing a boundary condition,



a functor       , 

the moduli being varied.

since the category of B-type branes turns out to be independent of 

The change of the boundary condition

associated to the braid

The functor is an equivalence of categories



the time to run around the        ,

which is the index of a supercharge        preserved by the two branes.

The theory is euclidian, so we can equally well take the

         

Viewed this way, the path integral computes the supertrace



The cohomology of the supercharge Q 

 

a graded vector space,

is the basic ingredient in the category of branes  

the space of morphisms between a pair of branes.



While a mathematical proof of this is not available for a general

in our specific setting, 

the proof was given by 

Calabi-Yau

Bezrukavnikov and Okounkov

(it uses quantization in characteristic p).



         

Thus, by viewing the same annulus two different ways

       of the Knizhnik-Zamolodchikov equation.

manifestly categorifies 

we learn that the braid group action on the category of branes

the monodromy matrix 



we find a graded vector space,

whose Euler characteristic 

the space of morphisms between a pair of branes,

By cutting the annulus open, 

is the braiding matrix element.



The quantum invariants of links should be categorified by

since they too can be expressed as matrix elements of the braiding matrix

between pairs of conformal blocks. 



The first step is to find objects of   

whose vertex functions are conformal blocks 

in which pairs of vertex operators fuse to trivial representation.



I showed that fusion

and  its category of B-type branes.

also has a natural geometric interpretation in terms of 



As one brings a pair of singular monopoles close together 

            develops a singularity where a collection of cycles vanishes, 

our manifold

as the distance between the monopoles

controls their size.



The singularities occur due to monopole “bubbling”

to leave behind a single singular monopole of lower charge.

a number of smooth monopoles can bubble off of them and disappear.

When a pair of singular monopoles come together,



In conformal field theory fusion diagonalizes braiding.

The analogue of this in the category of branes is

turns out to be existence of a “perverse filtration”

envisioned by Chuang and Rouquier

in abstract terms.



which shrink to a point as punctures come together in pairs. 

come from  branes on 

             

One learns from this that cups and caps  

They are branes supported on vanishing cycles    

with simple geometric meaning.

known as “minuscule Grassmanians” 



Using very special properties of perverse filtrations

manifestly categorify the  corresponding                  link invariants,

they are themselves link invariants.

 not only do the homology groupsI proved that

and these vanishing cycle branes



Recently,  Ben Webster proved that homological link invariants 

that come from

are equivalent to algebraic invariants he defined in ’13,

using an algebra

B-type branes on 

known as the KLRW algebra.



nor by KRLW algebras is very explicit.

As stated, neither the approach by

Neither are really amenable to any calculations.



In the rest of the talk I will explain how to

reformulate the problem,

The resulting description is completely new.

and solve the theory.



To solve the theory

we will make use of homological mirror symmetry,

or more precisely,

an equivariant version of it.



Homological mirror symmetry is a statement  

that a pair of categories 

category of B-branes 

supported  on

category of A-branes 

supported on real,

complex submanifolds of or “Lagrangian” submanifolds” of 

are equivalent:



In the very best instances,

and both theories based on

one learns how to make homological mirror symmetry manifest,

solvable exactly.

and on 



One of the very simplest examples of homological mirror symmetry is when

and 

are taken to be simply a pair of infinite cylinders,

their torus fibers being simply circles.



While the branes look different,

their algebras of open strings ending on this brane

are each generated by a single brane:

Categories of branes on the two sides

The algebra is simply the algebra of functions on a complex cylinder 

are the same.



The fact that the algebras of open strings are the same on both sides

turns out to mean that the entire categories of branes are equivalent,

both being equivalent to a (derived) category of modules of  the algebra 

of functions on a complex cylinder.



This simple example is the model for

how one hopes to understand homological mirror symmetry in all cases.



Webster’s proof of equivalence of categorification

via B-type branes on            

and via KLRW algebra 

of                   link invariants 

is really the first of the two equivalences in homological mirror symmetry:



As we are after a simpler and more direct

approach to homological link invariants,

we will not try to describe 

or aim to complete the other half of homological mirror symmetry



Recall that 

is a moduli space of monopoles on 

plays a key role —  this is how we got      into the problem.

corresponds to rotations of 

where a symmetry that 



of half the dimension        

singular or not, are at the origin of           and at points in  

where all monopoles,

  

This means that all the relevant information about the geometry  of             

 

is much more efficiently contained in a small        

“core” subspace, 



mirror

mirror

equivariant 
mirror

to be the ordinary mirror of its core:

  We will define the equivariant mirror of          , call it

The key fact is that

the bottom row has as much information about the geometry as the top.



and of       

The common base torus fibrations of 

in presence of some singular ones.

and otherwise identical.

parameterizes positions of smooth monopoles on a real line:

The smooth monopoles are labeled by simple roots of 



is (a cousin of) configuration space of points on 

           our Riemann surface with punctures

(with some locus deleted and singularities resolved).

The equivariant mirror 

“colored” by simple roots of          but otherwise indistinguishable,



There is a potential on 

which is a multi-valued holomorphic function 

which makes the mirror theory into a “Landau-Ginzburg” model,



Knizhnik-Zamolodchikov equation

is an A-brane at the boundary of         at infinity,

Corresponding to a solution of the

the “derived Fukaya-Seidel category” of        with potential      . 

The brane is an object of the category of A-branes



 conformal blocks of  

geometric interpretation to works of Feigin and E.Frenkel in the ’80’s

and Schechtman and Varchenko.

leads to “integral” formulation of  

The mirror description based on 

as period integrals. 

This gives a 



One can describe this category  very explicitly

thanks to the fact

essentially a configuration space of colored points

on the punctured Riemann surface.

x x x x
x



Objects of the category of boundary conditions, 

are  A-branes, or Lagrangians on 

are all products of one dimensional curves

on the Riemann surface, colored by simple roots.

*x x x xxx



are defined by 

which is modeled after Morse theory approach to supersymmetric 

quantum mechanics.

Floer theory, 

In any category of A-branes

the spaces of morphisms between a pair of branes



The starting point is the Floer complex,

and graded by cohomological and the q-degrees.

spanned by the intersection points of the two Lagrangians, 

which is the vector space



is generated by instantons,

The action of the differential         on this space 

of perturbative supersymmetric ground states

which come from holomorphic maps from the strip to 



A vast simplification in the present case is that

just as the branes have a description in terms of  the Riemann surface 

so do their intersection points, 

as well as the maps between them.

*...



“Heegard-Floer theory,”

The theory which results is a generalization of 

and categorifies the Alexander polynomial.

which is associated to

to arbitrary 

Heegard-Floer theory is phrased in the same, one dimensional, terms,



Mirror symmetry   

equivariant 
mirror

mirror

mirror

helps us understand exactly which questions we need to ask

to recover homological knot invariants from       ,

for an arbitrary simply laced Lie algebra  



Equivariant homological mirror symmetry

and 

is not an equivalence of categories,

which come  from a pair of “adjoint functors”,

relating

but a correspondence of branes and associated vector spaces,



Every B-brane on           which is relevant to us  

“comes from”       

that maps the brane on         to its mirror on       ,                            

and then interprets  it as a brane upstairs.          

an A-brane on via a functor, 



agree with the Hom downstairs, in                  

any pair of branes  on         that come from       

the Homs between them, computed upstairs,  in 

after replacing           with              ,

Adjointness implies that

given



For any simply laced Lie algebra 

originate from vanishing cycle branes

branes which serve as “cups” and “caps” “upstairs” on

of the downstairs theory

that are generalizations of these interval branes,

and project back down as generalized figure eight branes.

...* *

**

(associated to “minuscule Grassmanians”)



Start with a projection of a link to a the surface       : 

In the description based on 

both the Lagrangians and the action of braiding on them are geometric.



by equal number           of segments of each color,

such that red always underpasses the blue.

To translate it to a pair of Lagrangians, choose a bicoloring,



replacing all the red segments by the interval-type branes 

and the blue segments by figure eight-type branes:

The mirror Lagrangians           and             are obtained by 

* * * *



between the pair of branes.

The homological link invariant is 

the space of morphisms

* ** *

* * * *



 one simply counts the intersection points of Lagrangians, keeping track of gradings.

To evaluate the Euler characteristic

* * * *



Bigelow from the ‘90s.

* * * *

The fact that, for             

the graded count of the intersection points in

computes the Jones polynomial is a theorem by



The dimensions of the complex

the vector space with the action of the differential   

whose cohomology is the Link homology

which should be compared to exponential  growth

grows polynomially with the number of crossings in our case,

in Khovanov’s case.



problem in complex analysis in one dimension.

can be translated to a sequence well defined, but hard

computing the action of the differential

Surprisingly, this problem can be solved.

* ** *

As in Heegard-Floer theory,



One solves all the disk counting problems 

by making the homological mirror symmetry that relates

manifest.

at once, 

“downstairs” mirror pair 



As in the simplest examples of homological mirror symmetry,

the categories on the two sides

are generated by a finite number of branes.

Strikingly, understood in this way,

homological mirror symmetry becomes easier than the topological one.



the generating set of branes   

are products of  real line Lagrangians, 

From perspective of 

x

x

x

colored by simple roots.

This is a simple generalization of our very simplest example.



x

x

x

x

The associated “downstairs” algebra of open strings

and turns out to be a far simpler cousin of the “upstairs” KRLW algebra.

is computable explicitly



In the vast new family of mirror symmetries

we just discovered

homological mirror symmetry also becomes manifest, 

with the added benefit that 

resulting categories are interesting and rich:

They categorify representations of the                   quantum group.



In the remaining time,

let me try to explain the string theory origin of this construction.

The two dimensional theories we have been 

discussing originate directly from string theory.



A helpful observation is another interpretation of 

In addition to being the  intersection of slices in the affine Grassmannian 

and the moduli space of singular        -monopoles, 

is also a Coulomb branch of a three dimensional gauge theory.



 three dimensional quiver gauge theory

The theory is a

V1

W1

V2

W2

with quiver           

based on the Dynkin diagram of



This gauge  theory arises on  defects,

of a certain six dimensional “little” string theory

labeled by a simply laced Lie algebra              

with (2,0) supersymmetry.

or more precisely, on D-branes



The six dimensional string theory is

obtained by taking a limit of IIB string theory on  an

 ADE surface singularity of type

In the limit, one keeps only the degrees of freedom

supported at the singularity and decouples the 10d bulk.



One wants to study the six dimensional (2,0) little string theory on 

where 

x x
x

x

is the Riemann surface where the conformal blocks live:

and           is the domain curve of the 2d theories we had so far.



The punctures on the Riemann surface 

x x
x

x

come from a collection of defects in the little string theory,

which are inherited from D-branes of the ten dimensional string.



two dimensional defects of the six dimensional theory on

      

 

supported on         and points on

x x
x

x

x

The D-branes needed are 



The theory on the D-branes is the quiver gauge theory 

This is a consequence of the familiar description of 

D-branes on ADE singularities

due to Douglas and Moore in ’96.
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is a three dimensional quiver gauge theory on               

rather than a two dimensional theory on       ,
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W2

 due to string winding modes which one can sum up by T-duality.

The theory on the D-branes supported on

x
xx



One can study the three dimensional theory on 

which comes from little string theory,

in much the same way

as we did  the two dimensional theory.



The fact that the string scale is finite,

leads to a deformation of the structures 

we had found, in particular, it breaks conformal invariance.



Rather than getting conformal blocks 

and Knizhnik-Zamolodchikov equation,

from partition functions of the 3d theory on

corresponding to replacing

 quantum affine algebraaffine Lie algebra

one obtains their deformation



Pursuing our story further,

rather than discovering knot invariants

we would discover integrable lattice models,

those of, in some sense, very general kind.

This story is developed in joint works with Andrei Okounkov.



The six dimensional (2,0) string theory has a point particle limit

in which it becomes the six dimensional conformal field theory

of type        

This limit coincides with the conformal limit of the quantum affine algebra



In the point particle limit,

the winding modes that made the theory

on the defects three dimensional, instead of two,

 become infinitely heavy.

x
xx

As a result,  in the conformal limit,  the theory on the defects

becomes a two dimensional theory on 



The resulting theory is not a gauge theory,

but it has the two other descriptions,

I described earlier in the talk,

related by two-dimensional mirror symmetry.


