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Lattice vs. continuum QFT

QFT is enormously successful. Yet, it is not mathematically
rigorous.

One approach is to regularize it by placing it on a lattice.

 Then, the functional integral is well defined.

 Continuum limit: introduce a lattice spacing a, take

a — 0 and the number of sites to infinity holding all the
lengths fixed.

— Compute correlation functions at positions a < x.

In condensed matter physics, the problem is
defined on a lattice and the goal is to find its
low-energy/long-distance limit.

* I|tis expected to be described by an effective
continuum field theory.




Challenges in using a lattice to define a
given continuum QFT

Does the limit exist and is it independent of the details of the
lattice theory?

Some continuum theories depend on the topology of field
space (winding numbers, characteristic classes, Chern-
Simons terms, ...), which relies on continuity of the fields.
How is this captured by the lattice theory?

— This issue affects various topological terms in the action,
certain global symmetries, anomalies, etc. (More below.)

Some QFTs (e.g., theories with self-dual forms or fermions)
do not admit a suitable Euclidean lattice action.

Some QFTs do not even have a continuum Lagrangian, let
alone a lattice version of it. ;



Challenges in finding a continuum low-
energy QFT of a given lattice model

Exotic lattice models, e.g., XY-plaquette model [Paramekanti,
Balents, Fisher; ...] (see below), fracton models [Chamon; Haah;
Vijay, Haah, and Fu; ...], do not have a standard continuum limit.

 They are characterized by an exact or emergent subsystem
global symmetries [...; Emery, Fradkin, Kivelson, Lubensky; ...]
— separate symmetry group element for different subspaces.
(More below.)

— Observables vary at the lattice scale a, and hence they are
discontinuous (and even singular) in the continuum limit.

— Infinite ground state degeneracy in the continuum limit
(sometimes no well defined limit).

UV/IR mixing — long-distance phenomena depend on short-
distance details — reminiscent of some string theory constructions.



Exotic continuum QFT [NS, Shao]

Elements in our continuum theories
e Spacetime symmetries (in addition to translations)
— No Lorentz invariance
— No rotation symmetry (only discrete rotations)
* Impose exotic global symmetries and then gauge them
e Discontinuous fields and gauge parameters

— Not as discontinuous as on the lattice — the allowed
discontinuities are restricted

— Universal —independent of most of the details at the lattice
scale

Does this make sense?
In order to explore it, let us review a more standard case...



Canonical example of lattice vs. continuum:
XY-model in 1+1d

[...; Jose, Kadanoff, Kirkpatrick, Nelson; ...]

Use a Euclidean-time, Lagrangian formulation.

On the lattice, phases e'? at the sites with the action

S=-p0 2 cos(Aqu)

links

Global U(1) symmetry (momentum)
d(x, 1) = p(x, 7))+

The continuum theory (same [ when it is large)

p
S = Efdrdx(augb)z




XY-model in 1+1d — the continuum theory

p 2
=5 f drdx(9,¢)
* Thisis the famous ¢ = 1 compact boson. Free (quadratic) action.
* Global symmetries "j, =0
— U(1)™ momentum (charge) jut = —ipo,¢

— U(1)" winding (vorticity), emergent  j’ —62‘2’ 0, P

— Mixed ‘t Hooft anomaly between them
1

(2m)2p

* Exact self-duality (T-duality): exchanging f < and

U(1)™ & U(1)™. Not present on the lattice.

*  How much of this continuum discussion can be present on the
lattice? 7



XY-model in 1+1d — modify the lattice theory

Following [...; Gross, Klebanov; ...; Sachdey, Park; ...; Sulejmanpasic,
Gattringer; ...], “suppress the vortices” on the lattice

Use the Villain formulation — replace ¢ € S with ¢ € R coupled to
a Z gauge field n,, on the links

B 2
Svillain = E z (Auqb — 27'[71#)

links

o~¢+2nm

n, ~n, +4,m
Suppress the vortices by adding the curvature square

K z (Arnx — Axnr)z

plaq



XY-model in 1+1d — getting closer to the

continuum
B (A, — 2mn,)” + (A, — Ayn,)?
0 u® ny, K Ty xNz
links plaq

For k — oo, the field strength of the Z gauge field, A.n,, — A, n;
vanishes — the gauge field is flat.

We can replace the action by the modified Villain action
[Sulejmanpasic, Gattringer]

p 2 -
Smod. Villain = E z (A”(P — 27‘[71”) + 1 z $(Any, — Ayny)

links plaq
with a Lagrange multiplier field 65 ~ QB + 2.

This lattice theory is similar to the continuum theory...



XY-model in 1+1d — getting closer to the
continuum

Smod. Villain = g z (Au¢ — Znnu)z + z (ﬁ(Arnx — Axnr)
links plaq
* Free (quadratic)
e Exact global symmetries
— U(1)™ momentum (charge), - d+a
— U(1)" winding (vorticity), d—>¢+a
— ‘t Hooft anomaly. The symmetries act locally. But the

Lagrangian density is not invariant; only e ™ is invariant.

1
(2m)*p

* Using Poisson resummation, self-duality: ¢ < $, f e
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An exotic theory: XY-plaguette model in

2+1d [Paramekanti, Balents, Fisher; ...]

Use a Euclidean-time, Lagrangian formulation.

On the lattice, phases e'? at the sites with the action

S=—fo ) cos(bp)=F ) cos(hedyd)
T—Llinks xy—plaq
Global U(1) subsystem (momentum) symmetry
¢(x,y,7) > d(x,y,7) + ax(x) + a,(y)

Related continuum theory 2+1d ¢-theory
1
S = f dtdxdy (% (0:9)% + ﬂ(axayqs)z)

What is the relation between them?

11




2+1d ¢@-theory [NS, Shao]

5 = f drdxdy (% (3:4)* + i(axaycb)z)

Free (quadratic)

Because of the derivative structure, some discontinuous field
configurations are not suppressed, e.g., ¢(x, T) discontinuous in
X.

Subsystem global symmetries 0rjr = 0x0yjxy
— U(1)™ momentum (charge) ji* = iug0d:¢, jxy = —6 x0y P
— U(1)Y winding (vorticity), emergent

Jr —0 xOy®, Jxy = _ar¢

— Mixed ‘t Hooft anomaly between them



2+1d ¢@-theory [NS, Shao]

Exact self-duality — T-duality (not present on the lattice)

U
— Ug <& (21)2

- U()"eu)”

Many questions:

How should we treat more precisely such a continuum field
theory with discontinuous fields and other peculiarities? Make

the treatment more rigorous.

How much of that depends on the continuum limit? Can we
find these phenomena (winding subsystem symmetry, ‘t Hooft
anomaly, self-duality, etc.) on the lattice?

What is the nature of the continuum limit?



XY-plaquette model in 2+1d — getting closer
to the continuum [Gorantla, Lam, NS, Shao]
Repeat the discussion of the 1+1d XY-model for this model.

S=—fo » cos(bp)=f Y cos(bdy)

T—links xy—plaq

Use the Villain form

Svillain = % Z (A — Znnr)z +§ Z (AxAy¢ — 27-[nxy)2
T—links xy—plaq
Here ¢ € R, n;, ny, € Z with the Z tensor gauge symmetry
o~¢d+2mm
ny, ~n;+A4Am
Nyy ~ Nyy + AxAym
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XY-plaguette model in 2+1d — getting closer
to the continuum [Gorantla, Lam, NS, Shao]

 Add to the action the gauge invariant term

K z (Arnxy — AxAynT)z

cubes
 For k = oo the field strength of the Z tensor gauge field

(ng, Nyy), Arnyy, — AxAyng vanishes. We can replace the action
by the modified Villain action

Smod. Villain

= % z (AT¢ — 277:711-)2 +§ z (AxAy¢ o ZnnXY)z

T—links xy—plaq

+ 2 (ﬁ(Atnxy R AxAynT)

cubes

with a Lagrange multiplier qB ~ qB + 2. 15



XY-plaguette model in 2+1d — getting closer
to the continuum [Gorantla, Lam, NS, Shao]

Smod. Villain

= % 2 (AT¢ — ZnnT)Z +§ z (AxAy¢ o ZnnxJ/)z

T—links xy—plaq

+ 1 z QE(ATnxy o AxAynT)
cubes
Similar to the continuum version of the XY-plaquette model:

* Free (quadratic)

* Exact subsystem global symmetries with mixed ‘t Hooft anomaly
— U(1)™ momentum ¢(x,y,7) = ¢(x,y,7) + a,(x) + a,(y)

— U(1)" winding d(x,y,7) > dlx,y,7) + @y (x) + a,(y)
1

* Using Poisson resummation, self-duality: ¢ < ¢, B, © @n)2p




XY-plaguette lattice model and the

continuum ¢-theory in 2+1d
[Gorantla, Lam, NS, Shao]

Now, we can ask more questions about the theory
* Spectrum
e Correlation functions

We can study them either on the lattice (in its modified Villain form)
or in the continuum.

We'll present it in the continuum, but the same answers are
obtained on the lattice.

As a preliminary, let us review briefly the spectrum of the 1+1d
compact boson.



1+1d compact boson — the spectrum

p
S = fdrdxi(augb)z

Denote the circumference of space by £

X Znik—x
d(x,t) = Ppo(t) + 2nW — + a,(t)e”™ 2
KEZ 4
* Plane wg¥es (osci E~1/¢

* Statesch d under the momentum symmetry E~1/p¢

e States charged under the winding symmetry E~p/f

The spectrum is gapless — the energies of all these states vanish as
£ — oo,

The energies of all these states are of order 1/£ and hence they are
equally important.

18



2+1d ¢-theory — spectrum [NSs, Shao]

Analyze the continuum theory in Lorentzian signature. (Can do it
on the lattice.) For simplicity, £, = ¢, = ¢

¢(x,y,t)
271 <k§x+k¥y>
= ¢(x,t) + ¢y v, t) + 2 Ak ky) (t)e
KKy €L 20
4 kzky ,
Plane waves (oscillators) with w? = (2m) i Because of this
0

dispersion relation:
 w~ 1/¢? (and not 1/#¢, as in more standard systems)

* Forlarge ?, can have low w with large p,, = k,. /£, provided
Py = ky/f is sufficiently small — high momentum with low

energy. This leads to UV/IR mixing. (More below.)

19



2+1d @-theory — spectrum

$(x,y,t)

A kyx kyy>

= ¢x(x, 1) + ¢y (¥, 1) + Z a(kx,ky)(t)ezm< £

V KxKy€Lxo
States charged under the momentum subsystem symmetry:

* The modes ¢, (x,t), ¢, (y,t) can be thought of as associated
with the spontaneous breaking of this symmetry. We will soon
see that this is not the case in the quantum theory

* They include the standard winding modes ¢ = — (W X +

yy) and hence these should not be con5|dered separately.

20



2+1d @-theory — spectrum

* For simplicity, ignore the common zero mode of ¢, (x,t) and
¢y (y,t). Then, ¢, (x,t) and ¢, (y, t) are independent rotors at
different positions:

g 2 2
s==2] dt (35 dx (8., (x, 1)) + 7§ dy (0.4, (. 1)) )
Like 1+1d free fields without the spatial derivatives (pointwise
periodic).

Going back to the lattice with lattice spacing a,

H=2£;Oa(2nx@>2+2ny@)2> . @, €1

A\ N\

y

1

Their energies diverge £ ~ > 00,
Hota

21



2+1d @-theory — spectrum

A\

1
H=2€H0a<znx<@2+gny@>2> . @@ e

: : . 1
Their energies diverge £ ~ ta 0,
e The momentum subsystem symmetry was spontaneously broken

in the classical theory, but it is restored in the quantum theory.

22



2+1d @-theory — spectrum

What about states charged under the winding subsystem
symmetry?

To be periodic modulo 2 and carry the winding charge,

2T Xy
6= (00 -y) +y0(r—x) =)  0=xy<d
1 1 1
jT :%a ay¢—— 5()’_3’0)"‘5(95—%)—?

0*(x) = 35 dy j¥ = 8(x — xo),
) = fdxjf = 5y — o)

These configurations have infinite energy. Restoring the lattice
(2m)?
ufa

spacing a, their energy is ~

23



2+1d @-theory — spectrum

To summarize:

* Plane waves (oscillators), created by 0,0, ¢, 0 ¢, etc.
1

E ~y
VR £?
* States charged under the momentum subsystem symmetry,
. m 1
created by exp(i¢) E o
e States charged under the winding subsystem symmetry,
7 w L
created by exp(i¢) E a

Only the plane waves are present in the spectrum of the
continuum theory.

24



2+1d @-theory — spectrum

The main surprising result of the analysis of the spectrum is that
the states charged under the momentum and winding subsystem
symmetries have high energy — infinite in the continuum limit.

* The momentum and winding states exist in the Hilbert space of
the lattice theory (in its modified Villain form), but they are not
dynamical excitations in the continuum theory — they are not
present in the Hilbert space of the continuum theory.

e Since they carry conserved charges, they are well-defined
defects that can be added to the continuum theory. Note that
they are exchanged by the self-duality.



2+1d ¢-theory — UV/IR mixing

Go back to the lattice with L, = L,, = L sitesand £ = alL

1 1

Plane waves E ~ =T
o 1 1

Momentum and winding states E~—=—
fa La

We are interested in L. » o,

Above, we took a — 0 with fixed £ = La. This kept the plane
waves and pushed the charged states to infinity.

Alternatively, if we hold a fixed, i.e., £ — oo, all these states
approach zero energy.

We see that
| > c0,a > 0] #0

UV/IR mixing.
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2+1d ¢-theory — correlation functions

Consider the lattice theory in its modified Villain form. Fix a gauge
and then all the correlation functions are determined by the
Green’s function (propagator)

(p) = explicit but complicated expression

Study correlation functions of “good” local operators like exp(i@),
A, etc. and then take L, = L, = L — co. This can be done in
two different ways

e Continuum limit: a — 0, with £ = alL fixed. Operators at fixed

positions in space are separated by many (infinite in the limit)
lattice sites. Can later take £ — o,

 Thermodynamic limit: fixed a, i.e., £ = al. — oco. Can later
separate operators to be many lattice spacings apart.

27



(0:¢ 0:¢)

Take the continuum limit and then infinite volume —i.e., £ > oo
(For simplicity, set u = uy = 1 and drop constants of order one.)

7] < |xy]
(ar¢(0»0»o)ar¢(x' Y, T» -~ <

UV divergence as xy — 0.

This singularity is not present on the lattice with nonzero a.
As x — 0 with fixed vy, it is associated with large momenta p,..
Similarly for y — 0 with fixed x.

2
Because of the dispersion relation w? ~ (pxpy) , We can have
large p, with finite w, provided p,, is small enough.

28



(0:¢ 0:¢)

(0:¢(0,0,0)0:¢(x,y,7)) ~ 1

Regularize the IR by restoring finite £, then, |p, | = % . The
singularity as x = 0 becomes — Tizlogﬁ.

“)

(If both x and y are small, it becomes — Tizlog pr

This reflects the UV/IR mixing in the spectrum of plane waves.

29



(exp(igp) exp(—i¢))

The subsystem symmetry forces the two operators to be at the
same spatial position (otherwise, the correlation function
vanishes)

(exp(i¢(0,0,0)) exp(—i(0,0,7)))

As we take the continuum limit,

(exp(ic,b(0,0,0)) exp(—igb(0,0, T))) ~ exp (— l;;) > 0

The exponent represents the energy of the lowest momentum
state E~1/fa — oo,

This demonstrates our statement above that these exponential
operators vanish in the continuum limit — they are infinitely

irrelevant — “redundant operators.” .



(exp(igp) exp(—i¢))

In the thermodynamic limit (finite a) [Paramekanti, Balents, Fisher],

2
<eXp(l¢(0,0,0)) eXp(_iC,b(O»O» T>)> ~ €Xp <_ <log (?)) )

For large 7, it decays faster than any power, but is not exponentially
suppressed (as in the continuum limit). The a dependence cannot
be absorbed in wave-function renormalization.

Consistent with our claim that these operators are not part of a
scale invariant continuum theory.
Identical analysis for the winding operators (exp(icﬁ) exp(—icﬁ)).

This reflects the UV/IR mixing in the spectrum of the momentum
and winding modes — their energies go to zero as L — oo, but
slower than the plane waves.
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Many other models

* Gapped models with Z, subsystem symmetries
* Gauge theories of subsystem symmetries
 More possible subsystem symmetries in 3+1d

* Acertain 3+1d Zjy gauge theory of a subsystem symmetry
describes the long-distance behavior of one of the most
celebrated fracton models, the X-cube model [Vijay, Haah, Fu].

All these models have a modified Villain version and a
corresponding continuum description. (Often, it uses generalized
Chern-Simons terms.)

They exhibit even more peculiar UV/IR mixing.

For example, the ground state degeneracy of the X-cube model
depends on the number of sites:
N2(Lx+Ly+Lz)-3 -



Summary

 The low-energy limit of a lattice theory is expected to be a
continuum quantum field theory.

* Exotic lattice models are challenging counter-examples because

— Subsystem global symmetry

— UV/IR mixing

— Large ground state degeneracy (infinite in the continuum
limit)

— Discontinuous and even singular observables in the
continuum limit

— Defects with restricted mobility

 Some peculiar continuum theories can capture these facts.
They involve discontinuous fields. They can be made rigorous
using modified Villain lattice models.



Happy Birthday

Thank you
Stay healthy



