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1. Classification of arithmetic principal bundles



Classification of arithmetic principal bundles
Over a point?

The point is
Spec(F ),

where F is an algebraic number field, which has a complicated étale
topology.

The data of the principal bundle is a topological group R and a
space P with simply-transitive continuous right action of R .
However, these are sheaves on Spec(F ).

There is the inclusion F ⊂ Q̄ ⊂ C, where Q̄ is the field of all
algebraic numbers and a natural topological group associated to it:

π1(Spec(F )) := Gal(Q̄/F ).

The sheaf structure is encoded in the fact that both R and P are
equipped with compatible left actions of π1(Spec(F )).



Classification of arithmetic principal bundles
We denote by

M(F ,R) = H1(F ,R) = H1(π1(Spec(F )),R),

the set of isomorphism classes of principal R-bundles on Spec(F ),
which can also be described as a set of R-valued cocycles on
π1(Spec(F )) modulo an equivalence relation.

The group R is often a p-adic Lie group, e.g., GLn(Zp), or a finite
group, the two cases being related by

GLn(Zp) = lim←−GLn(Z/pn).

But it might be a finite group like A[p] for an abelian variety A or

TpA = lim←−A[pn] ' Z2g
p ,

which has a highly non-trivial action of π1(Spec(F )).



Classification of arithmetic principal bundles

The classification problem, i.e, understanding the structure of
H1(F ,R), is difficult mostly because of the complexities of
π1(Spec(F )).

For example, when R has trivial action, then

H1(F ,R) = Hom(π1(Spec(F )),R)/R,

a space of representations.

So a complete description would comprise the Langlands reciprocity
conjecture.



Classification over arithmetic 3-folds

Let OF be the ring of algebraic integers in F and let

X := Spec(OF ),

which is the set of prime ideals in OF , endowed with a complicated
topology (étale). It has many properties of a compact closed
three-manifold.

If v is a maximal ideal in OF , then kv = OF/v is a finite field and
the inclusion

Spec(kv ) ⊂ - X

is analogous to the inclusion of a knot.

The completion Spec(OF ,v ) (e.g., Zp) is like the tubular
neighbourhood of the knot.



Classification over arithmetic 3-folds

The completion Fv (e.g. Qp) of F is the fraction field of OF ,v , so
that

Spec(Fv ) = Spec(OF ,v ) \ v

is like the tubular neighbourhood with the knot deleted, which
should be homotopic to a torus.

If B is a finite set of primes and OF ,B is the set of B-integers, then

XB := Spec(OF ,B) = Spec(OF ) \ B

is like a three-manifold with boundary, the boundary having one
torus component Spec(Fv ) for each prime in B .

∂X =
∐
v∈B

Spec(Fv ) - XB
⊂ - X .



Classification over arithmetic 3-folds: Fundamental groups

Rather easy to describe:

π1(Spec(kv )) = Gal(k̄v/kv ) = Ẑ

Somewhat harder, but still explicit and natural:

πv = π1(Spec(Fv )) = Gal(F̄v/Fv ).

This leads to fairly accessible descriptions of

H1(Fv ,R) = H1(πv ,R),

in many cases.

The global fundamental groups are much harder.



Classification over arithmetic 3-folds: Fundamental groups

A finite field extension K/F is unramified over P ∈ Spec(OF ) if
the decomposition

POK =
∏
Qi

into prime ideals in OK has no multiplicity.

F un/F is the compositum of all finite field extensions that are
unramified over all primes of F .

F un
B /F is the compositum of all finite field extensions that are

unramified over all primes not in B .

We have the following arithmetic fundamental groups:

π1(X ) = Gal(F un/F );

π1(XB) = Gal(F un
B /F ).



Classification over arithmetic 3-folds: Fundamental groups
Very difficult to describe in general, even though π1(X )ab is finite
and isomorphic to Pic(OF ), the ideal class group of F .

Some triviality:

π1(Spec(Z)) = 0

More triviality
π1(Spec(OF ) = 0

when F is an imaginary quadratic field of class number 1.

Some difficult examples:

π1(Spec(OQ
√

653)) = A5.

(Kwang-Seob Kim, subject to RH)

π1(Spec(OQ
√
−1567)) = PSL2(F8)× C15.

(Kwangseob Kim and Jochen König, subject to RH).



Classification over arithmetic 3-folds
The group

π1(XB) -- π1(X )

is essentially inaccessible at present.

Nonetheless, we would like to understand

M(XB ,R) = H1(XB ,R) = H1(π1(XB),R),

the isomorphism classes of principal R bundles over XB .

Also

M(XB ,R) = H1(XB ,R)
locB-

∏
v∈B

H1(Fv ,R) =
∏
v∈B
M(Fv ,R)

whose image can sometimes be given a Lagrangian structure inside
a non-Archimedean symplectic manifold.

When R has trivial action of π1(XB), then this is a space of
representations:

H1(π1(XB),R) = Hom(π1(XB),R)//R.



Classification over arithmetic 3-folds

Note that elements of H1(X ,R) are like flat connections, while
H1(XB ,R) are like flat connections with singularities? What are the
’off-shell fields’?

Some possible answers:

–Families
{Pv}v

where Pv is a principal R bundle over Spec(Fv ).

–For R = GLn(Zp), families (Mv )v , where Mv is a C-vector space
with an action of the Weil-Deligne group of Fv .

–These are already off-shell, while the on-shell fields are the
principal bundles of geometric origin.



II. Arithmetic actions



Arithmetic Actions

For technical reasons, we will assume throughout that F is
complex, i.e., F = Q[x ]/(f (x)) where f (x) has no real roots.

Would like to define

S :M(XB ,R) = H1(π1(XB),R) - K

as well as path integrals∫
ρ∈M(XB ,R)

exp (cS(ρ))dρ

possibly also on off-shell fields and/or related moduli spaces.

Motivating example: when R = GL(V ) with trivial action of
π1(XB), so thatM(XB ,R) is a space of homomorphisms

ρ : π1(XB) - R.



Arithmetic actions: L-function
In that case, one has:

L :M(XB ,GL(V )) - C (or Cp).

To a representation ρ : π1(XB) - GL(V ), assign the value

L(ρ) =
∏

v primes of OF

1
det([I − Frv ]|V Iv )

= (
∏
v /∈B

1
det([I − Frv ]|V )

)(
∏
v∈B

1
det([I − Frv ]|V Iv )

).

This is often infinite, so instead define

L(ρ(s)) =
∏
v

1
det([I − |kv |−sFrv ]|V Iv )

for Re(s) >> 0 and try to compute L(ρ) by analytic continuation.



Arithmetic actions: L-function
Even when the continuation can be carried out, we can have
L(ρ) = 0.

In this case we focus on L(r)(0)/r !, where r = ords=0L(ρ(s)). Both
the order and value have arithmetic interpretations.

For example, if ρ = Triv , then

r = rank(O×F )

and we have
L(r)(Triv , 0)

r !
= −|Pic(OF )|‖ det(O×F )‖.

When ρ is TpE , for E/Q an elliptic curve, then (BSD-conjecturally)

r = rankE (Q),

and
L(r)(TpE , 0)

r !
= (
∏
v

cv )|XE ||‖ det(E (Q))‖2



Preliminary on arithmetic orientations

Orientation: Let µn be the n-th roots of 1. Then

H3(X , µn) = H3(Spec(OF ), µn) ' 1
n
Z/Z.

This follows from

1 - µn - Gm
(·)n- Gm

- 1,

leading to
H3(X , µn) ' H3(X ,Gm)[n].

Meanwhile
H3(X ,Gm) ' Q/Z.



Arithmetic orientations

Local class field theory:

H2(Fv ,Gm) ' Q/Z

Global class field theory:

0 - H2(F ,Gm)
loc- ⊕v H

2(Fv ,Gm)
∑
- Q/Z - 0.

0 - H2(XB ,Gm)
locB- ⊕v∈B H2(Fv ,Gm)

∑
- Q/Z - 0.

But
⊕v∈BH

2(Fv ,Gm) = H2(∂XB ,Gm),

so that
coker(locB) ' H3

c (XB ,Gm) ' H3(X ,Gm).



Arithmetic Chern-Simons Functionals (Finite Case)

Assume µn ⊂ F . Then

H3(X ,Z/n) ' H3(X , µn) ' 1
n
Z/Z,

so we get a map

inv : H3(π1(X ),Z/n) - H3(X , µn) ' 1
n
Z/Z.

Let R have trivial π1(X )-action. On the moduli space

M(X ,R) = Hom(π1(X ),R)//R,

of continuous representations of π1(X ), a Chern-Simons functional
is defined as follows.



Arithmetic Chern-Simons Functionals (Finite Case)

The functional will depend on the choice of a cohomology class (a
level)

c ∈ H3(R,Z/n).

Then
CS :M(X ,R) - 1

n
Z/Z

is defined by

ρ 7→ ρ∗(c) ∈ H3(π1(X ),Z/n) 7→ inv(ρ∗(c)).



Arithmetic Chern-Simons Functionals (Finite Case)
Example:

Let R = Z/n. Then

MX = Hom(Pic(X ),Z/n),

where Pic(X ) is the group of invertible line bundles on
X = Spec(OF ) (the ideal class group of F ).

Take c ∈ H3(R,Z/n) to be given as

a ∪ δa,

where a ∈ H1(R,Z/n) = Hom(Z/n,Z/n) is the class coming from
the identity map, while

δ : H1(R,Z/n) - H2(R,Z/n)

is the Bockstein map coming from the extension

0 - Z/n - Z/n2 - Z/n - 0.

Then
CSa∪δa(ρ) = inv(ρ∗(a) ∪ ρ∗(δa)).



Arithmetic Chern-Simons invariants

[Joint work with H. Chung, D. Kim, G. Pappas, J. Park, H. Yoo]

Let n = p, a prime and assume the Bockstein map

d : H1(X ,Z/n) - H2(X ,Z/n)

is an isomorphism. Let a = dimFp(Pic(X )/p).

Then ∑
ρ∈(Pic(X )/p)∨

exp[2πiCS(ρ)]

= pa/2
(
det(d)

p

)
i [

a(p−1)2

4 ].



Arithmetic differentials

The Bockstein map

d : H1(X ,Z/n) - H2(X ,Z/n)

is very much like a differential. In crystalline cohomology of
varieties over perfect fields of positive characteristic, Bockstein
maps on crystalline cohomology sheaves are used to construct the
De Rham-Witt complex.

In general, whenever you have an extension

0 - V - E - V - 0,

there is a differential

H1(X ,V ) - H2(X ,V )

that can be used to construct arithmetic functionals.



Arithmetic BF -theory: [Joint work with Magnus Carlson]
There is also a bilinear map

BF : H1(X ,Z/n)× H1(X , µn) - 1
n
Z/Z,

(a, b) 7→ inv(da ∪ b).

Note that da∪ b ∈ H3(X , µn) and µn doesn’t need to be trivialised.

Proposition
For n >> 0, ∑

(a,b)∈H1(X ,Z/n)×H1(X ,µn)

exp(2πiBF (a, b))

= |Pix(X )[n]||O×X /(O×X )n|.

Compare with

L(r)(Triv , 0)

r !
= −|Pic(X )|‖ det(O×F )‖



Arithmetic BF -theory
Similarly, if E is an elliptic curve with Neron model E , then we have

0 - E [n] - E [n2] - E [n] - 0

for n >> 0. This gives us a map

H1(X , E [n])× H1(X , E [n]) - 1
n
Z/Z,

as
(a, b) - inv(da ∪ b).

Proposition
For n >> 0, ∑

(a,b)∈H1(X ,E[n])×H1(X ,E[n])

exp(2πiBF (a, b))

= |X(A)[n]||E (F )/n|2·



Arithmetic BF -theory

Compare

L(r)(TpE , 0)

r !
= (
∏
v

cv )|XE ||‖ det(E (F ))‖2



III. Some Remarks on Function Fields



Fibered 3-manifolds

A curve X/Fq is viewed as analogous to a fibered three-manifold

M
π- S1.

Then
X̄ = X ⊗ F̄q

is the analogue of
Σ := π−1(1),

and the Frobenius becomes analogous to the isotopy class of the
monodromy transformation

f : Σ ' Σ.



Fibered 3-manifolds

A 3d TQFT will assign a vector space

H(Σ)

to the surface Σ.

In that case,
Z (M) = Tr(f |H(Σ)).

Can we assign
X̄ 7→ H(X̄ )

with Frobenius action?



Fibered 3-manifolds

[joint work in progress with David Ben-Zvi and Akshay Venkatesh]

Choose N such that q ≡ 1 mod N. Let

H(X̄ ) := Γ(J,LN),

where J is the Jacobian of a lift of X̄ to characteristic zero.

Then J[N] acts projectively on H(X̄ ) and so does the symplectic
group of J[N] via the Weil representation.

The action of Frq on J[N] puts it into the symplectic group.



Fibered 3-manifolds

Assume J[N] = W ×W ′, where W ,W ′ are Lagrangian, stabilised
by Frobenius. Then

Theorem

Tr(Frq|H) =
√
|Cl(X )[N]|.

This is kind of a µN -CS-invariant of X .

Interesting to compare with the number field case, where

CS(X , µp) =
√
|CF [p]|

(
det(d)

p

)
i [

dim(CF [p])(p−1)2

4 ]



Fibered 3-manifolds

Gaitsgory, Rosenblyum, Raskin, ....study a 4d theory over finite
fields.

Thus,
H(X̄ )

is a dualisable category.

They then take a categorical trace

Tr(Frq|H(X̄ ))

which is a vector space over Q̄`. This is identified with a space of
automorphic forms.

We are trying a 3d version of this.



IV. Chern-Simons with Boundaries



Finite Arithmetic Chern-Simons Functionals with Boundaries

XB = Spec(OF [1/B]) for a finite set B of primes;

∂XB =
∐

v∈B Spec(Fv ).

π1(XB) := Gal(F un
B /F ), πv := Gal(F̄v/Fv ),

and fix a tuple of homomorphisms

iS = (iv : πv - π1(XB))v∈B

corresponding to embeddings F̄ ⊂ - F̄v .

Assume B contains all places dividing n.

Now c ∈ Z 3(R,Z/n) will denote a 3-cocycle.



Finite Arithmetic Chern-Simons Functionals with Boundaries

In addition to the global moduli space

M(XB ,R) = Hom(π1(XB),R)//R

we have the local moduli space

M(∂XB ,R) := {φB = (φv )v∈B | φv : πv - R}//R

Thus, we get a localisation map

locB = i∗B :M(XB ,R) - M(∂XB ,R)



Finite Arithmetic Chern-Simons Functionals with Boundaries

Key cohomological facts:

H2(πv ,Z/n) ' 1
n
Z/Z.

H i (πv ,Z/n) = 0 for i > 2.

There is a symplectic non-degenerate pairing

H1(πv ,Z/n)× H1(πv ,Z/n) - H2(πv ,Z/n) ' 1
n
Z/Z.

There is an exact sequence

0 - H1(XB ,Z/n) -
∏
v∈B

H1(πv ,Z/n)
∑
- 1

n
Z/Z - 0.



Finite Arithmetic Chern-Simons Functionals with Boundaries

For any φB = (φv ), each φ∗v (c) ∈ Z 3(πv ,Z/n) is trivial. Thus,

Tv := d−1(φ∗v (c)) ∈ C 2(πv ,Z/n)/B2(πv ,Z/n)

is a torsor for H2(πv ,Z/n) ' 1
nZ/Z.

Hence, ∏
v∈B
Tv

is a torsor for ∏
v∈B

H2(πv ,Z/n) '
∏
v∈B

1
n
Z/Z.

.



Finite Arithmetic Chern-Simons Functionals with Boundaries

We push this out using the sum map

Σ :
∏
v∈B

1
n
Z/Z - 1

n
Z/Z

to get a 1
nZ/Z-torsor

T (φB) := Σ∗(
∏
v

d−1(φv )).

As φB varies, we get a 1
nZ/Z-torsor

T - M(∂XB ,R)

over the local moduli space.



Finite Arithmetic Chern-Simons Functionals with Boundaries
If ρ ∈M(XB ,R), because H3(π1(XB),Z/n) = 0, we can solve

dβ = ρ∗(c) ∈ Z 3(π1(XB),Z/n),

and put
CS(ρ) = Σ∗(locB(β)) ∈ T (locB(ρ)).

Lemma
CS(ρ) is independent of the choice of β.

This follows immediately from the reciprocity sequence

0 - H2(π1(XB),Z/n) -
∏
v∈B

H2(πv ,Z/n)
∑
- 1

n
Z/Z - 0,

Thus, as ρ varies, we get a canonical section

CS ∈ Γ(M(XB ,R), (locB)∗(T )).



Finite Arithmetic Chern-Simons Functionals with Boundaries

Can use the map

exp 2πi :
1
n
Z/Z - S1.

to push T out to a unitary line bundle U overM(∂XB ,R).

Can also do this to the individual Tv to get a line bundle Uv over
M(Fv ,R).

Then
U ' �v∈BUv

and

HB = Γ(M(∂XB),R),U) ' ⊗v∈BΓ(M(Fv ,R),Uv )

= ⊗v∈BHv



Finite Arithmetic Chern-Simons Functionals with Boundaries

Thus, one has
exp(2πiCS(ρ)) ∈ UlocB(ρ)

and ∫
{ρ | locB(ρ)=ρB}

exp(2πiCS(ρ)) ∈ UρB .

As ρB varies get an element of H.

From the view of topological quantum field theory, this is the state

Ψ(XB) ∈ Γ(loc(M(∂XB ,R)),U)

on ∂XB that the theory assigns to XB .



V. Entanglement of primes



Entanglement entropy of primes
If we put

Hv = Γ(M(Fv ,R),U),

Then
Γ(M(∂XB ,R),U) ' ⊗v∈BHv .

Let B := v1, v2 be two primes in OF . For

Ψ(XB) ∈ Hv1 ⊗Hv2 ,

let
ρv1 := Trv2(Ψ(XB))

Define the entanglement entropy of v1 and v2 by

Ent(v1, v2) := −Tr(ρv1 log ρv1),

Arithmetic analogue of construction of V. Balasubramanian, J.R.
Fliss, R.G. Leigh and O. Parrikar, ‘Multi-boundary entanglement in
Chern-Simons theory and link invariants’.



Entanglement entropy of primes
[Joint work with Hee-Joong Chung, Dohyeong Kim, Jeehoon Park,
and Hwajong Yoo]

Take n = p and R = Fp. Let

locv :M(XB ,Fp) - M(πv ,Fp)

be the localisation map to the moduli space over Fv .

Then

Theorem
Assume Pic(XB)[p] = 0. Then

Ent(v1, v2)

= [dimM(XB ,Fp)− dimKer(locv1)− dimKer(locv2) + |AS
F ,p|] log p.

Here, AS
F ,p is the Galois group of the maximal unramified p-torsion

extension of F that is split over the primes in S .



Entanglement entropy of primes

Explicit example:

F = Q(ζ25), R = F5, B = {v = (1− ζ25),w = (3)}.

Then
Ent(v ,w) = 2 log 5


