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Chern-Simons theories in dimension 4, 5, 6 are non-topological field
theories. There has been a great deal of work on these theories in
the last few years:

1 4d CS is a unifying framework for integrable 2d models

2 5d CS is a supersymmetric sector of M-theory – gives an
accessible model of holography

3 6d CS is related to some “integrable” 4d QFTs (and also
holography)

I will survey some of these developments, mostly focused on a nice
geometric relationship between

4d CS ⇐⇒ 2d integrable PDEs/ integrable QFTs
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I will survey work by:

Jacob Abajian, K.C., Francois Delduc, Richard Derryberry, Davide
Gaiotto, Sylvain Lacroix, Si Li, Marc Magro, Jihwan Oh, Natalie

Paquette, Benoit Vicedo, Brian Williams, Edward Witten,
Masahito Yamazaki, Yehao Zhou, and others
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What is Chern-Simons theory in dimension > 3?

Prototype

Holomorphic Chern-Simons: X a Calabi-Yau 3-fold, A ∈ Ω0,1(X , g)
a ∂ connection,

hCS(A) =

∫
X

ΩX ∧ CS(A).

Equations of motion:
F (0,2)(A) = 0

A defines a holomorphic bundle.

4d CS: dimensional reduction

C× × C× × Σ R2 × Σ (1)
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4d Chern-Simons: consider the 4 manifold Σ1 × Σ2 where Σi are
Riemann surfaces and ω is a meromorphic one-form on Σ2 with no
zeroes.

Gauge field:

A ∈ Ω1(Σ1 × Σ2) modulo Ω1,0(Σ2)

a gauge field with with no (1, 0) term in Σ2 direction.

Lagrangian: ∫
R2×Σ

ω ∧ CS(A)

Equations of motion:
ωF (A) = 0

Holomorphic bundle on Σ2, flat bundle on Σ1, in a compatible way.
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Integrable PDEs

We will see that 4d CS gives a unified understanding of 2d
integrable PDEs/integrable field theories.

Basic example of an integrable PDE: G a compact Lie group,
σ : R2 → G a map.

Harmonic map equation on σ is an integrable PDE.

Lax presentation: From σ we can build ∇(σ, z) a principal
G -bundle with connection on R2 depending meromorphically on
spectral parameter z ∈ CP1 such that

F (∇(σ, z)) = 0 for all z ⇐⇒ σ is harmonic.
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Formula for ∇(σ, z):

∇1,0 = σ−1∂σ
1

1− z

∇0,1 = σ−1∂σ
1

1 + z

Important generalization: include WZW term. Euler-Lagrange
equations for ∫

Σ
〈dσ, ∗dσ〉G + c

∫
M3

σ̂∗MC (2)

dM3 = Σ, MC ∈ Ω3(G ) is Maurer-Cartan 3-form.

This remains an integrable PDE for all values of c .
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Integrability and conserved quantities

Lax formulation of integrability implies there are infinitely many
conserved quantities.

View σ as a map R× S1 → G , or as R→ LG .

Define
M(z , t) = Holt×S1(∇(z , σ))

Function of σ, harmonic:

M(z , t) ∈ C∞(T ∗LG )

Conserved quantity:
∂tM(z , t) = 0

from flatness of ∇(z , σ).

(Also {M(z),M(z ′)} = 0).
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Given Riemannian manifold (M, g) with closed 3-form Ω, when is
harmonic map equation on (M, g ,Ω) integrable?

Fairly small list of traditional examples:

1 G as above.

2 Riemannian symmetric spaces.

3 Certain deformations of these: e.g.
Fateev-Onofri-Zamolodchikov sausage, S2 with metric

et − e−t

et + e−t + e−2x + e2x
(dx2 + dθ2) (3)

(t a parameter, (x , θ) coordinates)
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Integrable PDEs from 4d CS

Consider 4d Chern-Simons on R2 × Σ, ω meromorphic one-form
on Σ.

Assume ω has

1 Double poles

2 Simple zeroes

We will find EOM of 4d CS on R2 × Σ can be rewritten as maps

σ : R2 →M(Σ,G ) (4)

where M(Σ,G ) has metric g , three-form Ω. Harmonic map
equation is automatically integrable!

Σ = CP1: recovers all previously known examples.
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Poles and zeroes

Local coordinate z on Σ, complex coordinate w on R2.

When ω has a pole ∫
CS(A)

dz

z2

is not gauge invariant. Solution: require that A = 0 at z = 0.

When ω has a zero∫
CS(A)zdz =

∫
Aw∂zAwzdzdz + . . . (5)

is not elliptic.

Solution: ask that Aw (or Aw ) has a first order pole in z . (n poles,
2g − 2 + 2n zeroes: g − 1 + n have Aw = 0, g − 1 + n have
Aw = 0).
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Assume Σ is defined over R, all zeroes/poles of ω are real, choose
a real form of G .

Let M(Σ, ω) be the moduli of semistable G bundles on Σ over R,
trivialized at poles of ω.

Theorem

Equations of motion of 4dCS are equivalent to harmonic map
equation for a map

R2 →M(Σ, ω) (6)

M(Σ, ω) has a canonically defined real-algebraic metric and
3-form, built from the Szëgo kernel defined using ω.
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Theorem (Conjectured by C. and Yamazaki, proved by R.
Derryberry)

The harmonic map equation with target M(Σ, ω) is always
integrable.

Proof.

Direct proof due to R. Derryberry – he explicitly computes,
without reference to 4d CS, that flatness of ∇(z , σ) is equivalent
to the harmonic map equation.

General 4d CS argument: Lax connection ∇(z , σ) comes from
gauge field A in 4d CS, flatness of ∇(z , σ) comes from equations
of motion of 4d CS

Fww (A) = 0.
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Monodromy matrix M(z) comes from holonomy of the gauge field
in 4d CS.

Conservation of M(z) follows from 4d CS equations of motion
ωF (A) = 0.
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Traditional examples: Σ = CP1.

ω = dz
(z − p1)(z − p2)

z2
(7)

Poles at z = 0, z =∞, zeroes at p1, p2.

M(Σ, ω) is G .

Metric is (p1 − p2)κ, three form is (p1 + p2)MC .

ω = dz
(z − p1) . . . (z − p2n)

(z − q1)2 . . . (z − qn)2
(8)

n + 1 poles, 2n zeroes, M(Σ, ω) = Gn.

Symmetric spaces/FOZ sausage metric, etc : modifications of the
construction – first order poles in ω, branch cuts,...

g > 0: very hard to write an explicit global form of the metric. It
is defined on each tangent space using the Szëgo kernel.
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Ricci flow and integrability

Riemannian manifold with closed 3-form: can apply modified Ricci
flow, variation of g depends on 3-form:

δgµν = Ricµν −1
4 ΩµζηΩζη

ν

Ricci flow is closely tied with integrability: e.g. FOZ sausage
metric is the unique ancient solution to Ricci flow equation in
dimension 2.

Conjecture

The family of manifolds M(Σ, ω) is closed under modified Ricci
flow. Further, Ricci flow corresponds to an explicit geometric flow
on the moduli space of (Σ, ω)
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Geometric flow and Ricci flow

(Σ, ω) has n second order poles, 2g − 2 + 2n simple zeroes, divided
into groups p+

i , p−i of size g − 1 + n.

There is a natural flow on the moduli of (Σ, ω) so that

δ

∫ p+
j

p−i

ω = 1 δ

∮
ω = 0 δ

∫ p±j

p±i

= 0. (9)

(Construction of flow : remove small neighbourhood of p+
i , glue

back in with singular vector field 1
ω ).

Conjecture

This flow is proportional to the modified Ricci flow.

True in genus 0 (Delduc, Lacroix, Magro, Vicedo) .
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5d non-commutative Chern-Simons

On R× C2 can write a gauge field

A ∈ Ω1(R× C2, gln)/Ω1,0(C2) (10)

with Lagrangian∫
dz1dz2 tr(AdA) + 2

3 tr(A ∗ A ∗ A) (11)

where ∗ combines ∧ and Moyal product:

A1 ∗ A2 = A1 ∧ A2 + cεij∂ziA1 ∧ ∂zjA + . . . (12)

c a formal variable.

Non-commutativity seems to be essential to build quantum theory.
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5d non-commutative CS is a super-symmetric sector of M-theory:

M-theory on

(R2
ε1
× R2

ε2
)/ZK−1 × R2

−ε1−ε2
× R× C2

is 5d non-commutative CS for glK .

Conjectured by K.C., largely proved by Richard Eager, Fabian
Hahner, Surya Raghavendran and Brian Williams.

εi : equivariant parameters (“Ω-background”).
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Holography: can match supersymmetric OPEs on N M2 branes (or
M5 branes) with computations in 5d non-commutative CS 1

N M2 branes in this setting: QM particle moving on ADHM
moduli space of rank K instantons on R4 of charge N.

Theorem

The following three algebras are equal:

1 M2 algebra of operators as N →∞
2 A certain quantization U~(glK ⊗ Diff(C)) (“shifted affine

Yangian”)

3 Koszul dual of algebra of operators of 5d CS

1K.C., Abajian-Gaiotto, Oh-Zhou, Gaiotto-Rapčak, related to
Mezei-Pufu-Wang
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Holomorphic Chern-Simons

Most natural variant is holomorphic Chern-Simons on a Calabi-Yau
3-fold: A ∈ Ω0,1(X ),

∫
ΩX ∧ CS(A).

Problem: this does not exist as a quantum theory because of a
gauge anomaly.

Math terms: X a CY3,

c1(BunG (X )) =

∫
X

Td(TX ) ch(Adg)

(Grothendieck-Hirzebruch-Riemann-Roch).
Td0(TX ) ch4(Adg) is non-vanishing even if X
is flat.
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Solution2 : include Kodaira-Spencer field3 µ ∈ Ω0,1(X ,TX ).

Anomaly cancels by Green-Schwarz mechanism when G = SO(8),
G2 × G2:

cancels with

if
Tradjoint(X

4) ∝ tr(X 2)2 (13)

X ∈ g; also need dim g = 28.

2K.C., Si Li
3Bershadsky, Cecotti, Ooguri, Vafa
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Why is holomorphic CS interesting?

1 Mirror symmetry (mirror to counts of un-oriented curves)

2 Construction of 4d integrable field theories.

Holomorphic CS plus Kodaira-Spencer theory, placed on twistor
space

O(1)⊕O(1)→ CP1 ∼= R4 × CP1

gives rise to a very interesting QFT on R4.
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Field
σ : R4 → SO(8)

and Kähler potential ρ. Lagrangian∫
R4

Tr J ∧ ∗J + 1
3

∫
R4

(α + ∂ρ) ∧ Tr(J ∧ [J, J]) + . . .

dα = ω, Kähler form.

1 Power-counting non-renormalizable

2 Even so, defined uniquely at the quantum level!

3 Forced to include gravity (by Green-Schwarz mechanism).

4 Has strong hints of integrability.
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