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TAKING THE LONG VIEW
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Classify phases of quantum matter (T = 0 phases)

For a long time, we thought that Landau symmetry breaking theory
classifies all phases of matter and their transitions

• Symmetry breaking phases are classified by a pair
of groups (GΨ,GH) satisfying GΨ ⊂ GH

GH = symmetry group of the system.
GΨ = symmetry group of the ground states.

• 230 crystals from group theory
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Can symmetry breaking describes all phases of matter?

A spin-liquid theory of high Tc superconductors:
• 2d spin liquid → spin-charge separation:

electron→ holon ⊗ spinon,
holon: charge-1 spin-0 boson,
spinon: charge-0 spin-1/2 fermion.

Holon condensation → high Tc superconductivity.

• But do spin liquid exist? If yes, how to characterize them?

A spin liquid was explicitly constructed, and we found that it is a state
that break time reversal and parity symmetry, but not spin rotation
symmetry, with order parameter S1 · (S2 × S3) 6= 0 → Chiral spin
liquid Kalmeyer-Laughlin, PRL 59 2095 (87); Wen, Wilczek, Zee, PRB 39 11413 (89)

• However, we also discovered several different chiral spin states with
identical symmetry breaking pattern.
How distinguish those chiral spin states with the same symmetry
breaking?
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Topological orders in quantum Hall effect

• Quantum Hall (QH) states Rxy = Vy/Ix = m
n

2π~
e2

vonKlitzing Dorda Pepper, PRL 45 494 (1980)

Tsui Stormer Gossard, PRL 48 1559 (1982)

.

• Fractional quantum Hall (FQH)
states have different phases even
when there is no symmetry and
no symmetry breaking.

• Chiral spin and FQH liquids must
contain a new kind of order, which
was named as topological order
Wen, PRB 40 7387 (89); IJMP 4 239 (90)
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What is topological order? How to characterize it?

• How to extract universal information (topological invariants) from
complicated many-body wave function Ψ(x1, · · · , x1020)
Put the gapped system on space with various topologies, and
measure the ground state degeneracy.
(The dynamics of a quantum many-body system is controlled by a
hermitian operator, Hamiltonian H, acting on the many-body wave
functions. The spectrum of the Hamiltonian has a gap)
→ The notion of topological order Wen PRB 40 7387 (89)
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• The name topological order was motivated by Witten’s
topological quantum field theory (field theories that do
not depend on spacetime metrics), such as Chern-Simons
theories which happen to be the low energy effective theories
for both chiral spin states and QH states. Witten CMP 121 351 (1989)
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The ground state degeneracy is a topological invariant

• At first, some people objected that the ground state
degeneracies are be finite-size effects or symmetry effect,
not reflecting the intrinsic order of a phase of matter.
• The ground state degeneracies are robust against

any local perturbations that can break any symmetries.
→ topological degeneracy (another motivation for the name
topological) Wen Int. J. Mod. Phys. B 04 239 (90); Wen Niu PRB 41 9377 (90)
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• The ground state degeneracies can only
vary by some large changes of Hamiltonian
→ gap-closing phase transition.
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One of the argument of topological degeneracy
from low energy effective Chern-Simons theories

• It was conjectured that chiral spin states and quantum Hall states are
described by quantum Maxwell-Chern-Simons theories at low
energies, characterized by an integral K -matrix

Z =

∫
D[aI ]e

−S(aI ) =

∫
D[aI ]e

i2π
∫
M2+1 KIJaI daJ−

∫
M2+1 V impurity

IJ (x)daI ?daJ+···

Quantum theory = a theory defined by path integral of action e−S .
• The impurity term V impurity

IJ (x) does not break the gauge invariance of
the Maxwell-Chern-Simons theory. So even in the presence of
impurities, the states that correspond to different gauge transformations
aI → aI + dφI have the same energy, but those states are actually the
same state and of cause the same state has the same energy.
• The states that correspond to different pseudo-gauge transformations
aI → aI + αI , dαI = 0 also have the same energy, since locally they
differ only by “gauge transformations”. The local interactions cannot
distinguish those states. Those different states give raise to topological
degeneracy. Wen Int. J. Mod. Phys. B 04 239 (90); Wen Niu PRB 41 9377 (90)
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An modern understanding of topological degeneracy

• In 2005, we discovered that topological
order has topological entanglement
entropy Kitaev-Preskill hep-th/0510092

Levin-Wen cond-mat/0510613

and long range quantum entanglement
Chen-Gu-Wen arXiv:1004.3835

• For a long-range entangled many-body quantum
system, knowing every overlapping local parts

still cannot determine the whole.
- In other words, there are different “wholes”,

that their every local parts are identical (Like fiber bundle in math).
- Local interactions/impurities can only see the local parts → those

different “wholes” (the whole quantum states) have the same energy.

Topological degeneracy comes from long range entanglement.

The pseudo-gauge transformations → different “wholes” with identical
local “parts”. Long-range entanglement → Chern-Simons theory

Xiao-Gang Wen (MIT) Chern-Simons theory and non-Abelian topological order 9 / 23



Examples of topological order (materials and toy models)

• Symmetry breaking (SB) phases:
-500(bc) Ferromagnet (exp.) ... ...

• Topologically ordered phases:
1904 Superconductor (exp.) Onnes (Z2 topo. order, but regarded as SB)
1980 Integral quantum Hall (IQH) states (exp.) von Klitzing (with no topo. exc.)
1982 Abelian fractional quantum Hall (FQH) states (exp.) Tsui-Stormer-Gossard

1987 Chiral spin liquids (d + id -superconductor for spinons) (theo.)
Kalmeyer-Laughlin 87; Wen-Wilczek-Zee 89

→ The notion of topological order (theo.) Wen 90

1991 Z2-spin liquids (theo.) Read-Sachdev 91; Wen 91, Kitaev 97

1991 Non-Abelian FQH states, (theo.) Wen 91; Moore-Read 91 (slave, CFT)
1992 All 2+1D Abelian topological states (theo.) Wen-Zee 92 (K -matrix)
2000 p + ip -superconductor (theo.) Read-Green 00 (

√
IQH at ν = 1)

2002 Hundreds symmetry enriched topological orders (theo.) Wen 02 (PSG)
2003 Chiral spin liquid (p + ip -superconductor for spinons) (theo.) Kitaev 03

2005 All 2+1D topo. orders with gapped edge (theo.) Levin-Wen 05 (UFC)
2007 Z2-spin liquid (exp.?) Helton-Lee-etc 07 Herbertsmithite ZnCu3(OH)6Cl2
2009 ν = 5/2 non-Abelian FQH states (exp.) Willett etal 09; Heiblum 17

2017 p + ip Chiral spin liquid (exp.???) Wolter etal 17; Jansa etal 17; Hentrich 17

α-RuCl3
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Abelian and non-Abelain FQH states

Abelian topological order → Abelian fractional statistics
• IQH and Laughlin many-body wavefunction Laughlin PRL 50 1395 (1983)

χ1 =
∏

1≤i<j≤N(zi − zj)e
− 1

4

∑
|zi |2 , ΨF ,B

ν=1/n =
∏

(zi − zj)
n e−

n
4

∑
|zi |2

= (χ1)n

0 2 31 ... ...

bulk excitation edge excitation

E

µ

l = kR

ωc

.

where zi = xi + iyi and χn = n filled Landau levels.

Non-abelian top. order → non-Abelian statistics
• SU(m)2 state via slave-particle and Chern-Simons theory Wen PRL 66 802 (1991)

ΨF
SU(2)2

= χ1(χ2)2, ν =
1

2
; ΨF

SU(3)2
= (χ2)3, ν =

2

3
;

→ SU(m)2 Chern-Simons effective theory → non-abelian statistics

• Pfaffien state via correlation in CFT Moore-Read NPB 360 362 (1991)

ΨB
Pfa = A[

1

z1 − z2

1

z3 − z4
· · · ]

∏
(zi − zj)e

− 1
4

∑
|zi |2 , ν = 1

- The SU(2)2 and Pfaffien states have the same non-abelian statistics
- The SU(3)2 state has the Fibonacci non-abelian statistics
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How to see non-Abelian statistics? Projective construction

Why Ψ(z1, ..., zN) = [χm(z1, ..., zN)]n is a non-Abelian QH state?
What kind of non-Abelian statistics?

.

• Cut an electron into n kinds of partons

- Each kind of partons z Ii form a IQH
state described by wavefunction of
m-filled Landau levels: χm(z Ii ).

- The wavefunction for all partons are
χm(z1

i )χm(z2
i )χm(z3

i ) · · ·
- We then glue partons together
z1
i = z2

i = · · · = zi to form electrons
and obtain electron wave function
Ψ(zi ) = [χm(zi )

]n
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Doing the gluing via path integral

• Start with path integral for independent partons Wen PRL 66 802 (1991)

Z =

∫
D[ψI ]e

−
∫

dt d2x iψ†I ∂tψI− 1
2M
ψ†I (∂− i 1

n
AB-field)2ψI

where I = 1, · · · , n labels kinds of partons.

• The independent partons motion cause the fluctuations of SU(n)
density and current

ρa = Γa
IJψ
†
I ψJ , j a = Γa

IJRe
(
ψ†I

∂

iM
ψJ

)
.

• Gluing partons back to electron kills the SU(n) fluctuations ρa = j a = 0.

• This can be achieved via a Lagranian multiplyer – an SU(n) gauge field:

.

Z =

∫
D[ψI ]D[(aµ)IJ ]e−

∫
dt d2x iψ†I [∂tδIJ− i (a0)IJ ]ψJ

e−
∫

dt d2x − 1
2M
ψ†I [∂δIJ− i 1

n
AB-fieldδIJ− iaIJ ]2ψJ

• Integrating out the parton fields ψI → non-Abelian Chern-Simons theory

Z =

∫
D[(aµ)IJ ]e−

∫
M2+1

m
4π

Tr(ada+ 2
3
a3)
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What is non-Abelian statistics?

Top. degeneracy even when all the quasiparticles are trapped.
• The ground state [χ2(zi )]2 = χ2(zi )χ2(zi ) is non-degenerate on S2.
• Degeneracy Ddeg of 4 trapped quasiparticles at x1, x2, x3, x4:

many different wave functions:
χx1x2

2 χx3x4
2 6= χx1x3

2 χx2x4
2

6=

• The above represent a topological degeneracy Ddeg = 2, since locally
the two wave functions χx1

2 χ2 and χ2χ
x1
2 are identical.

- However, for Laughlin state χ1χ1 → no non-Abelian statistics
χx1x2

1 χx3x4
1 = χx1x3

1 χx2x4
1

=
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What is non-Abelian statistics?

• Each particle carries a degree of freedom d = limN→∞[Ddeg(N)]N ,
where Ddeg(N) is the topological degeneracy for N trapped
quasiparticle. d is called the quantum dimension of the particle.

- For non-Abelian state (χ2)2, the quantum dimension d =
√

2.

- For non-Abelian state (χ2)3, the quantum dimension d = 1+
√

5
2 .

• The presence of the topological degeneracy → The braiding is described
by unitary matrix U(Ddeg) → non-Abelian statistics.
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Edge excitations of non-Abelain FQH states [χm(zi)]n

• Edge state: Independent partons

L = ψ†αI (∂t − v∂x)ψαI , α = 1, · · · ,m, I = 1, · · · , n

Excitations are generated by

0 2 31 ... ...

bulk excitation edge excitation

E

µ

l = kR

ωc

U(1) : J = ψ†αIψαI ,

SU(m) : Jb = ψ†αIS
b
αβψβI ,

SU(n) : ja = ψ†αIΓ
a
IJψαJ .

Glue partons back to electrons = remove the SU(n) excitations.
Edge excitations are generated by
U(1) : J = ψ†αIψαI ,

SU(m) : Jb = ψ†αIS
b
αβψβI

Edge CFT: U(1)× SUn(m) Kac-Moody algebra Wen PRL 70, 355 (1993)
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How to realize non-Abelain topological order,
ie non-Abelain Chern-Simons theories in experiments

• Electrons in first Landau level (LL): (χ1)3|ν= 1
3
→ U3(1)/SU(3)1 =

.

U(1) Chern-Simons theory = Abelian topological order.
• If first two LLs are degenerate, electrons form χ2

1χ2|ν= 2
5

→ U4(1)/(SU(2)1 × U(1)) = U2(1) Chern-Simons theory =
Abelian topological order.
• If first three LLs are degenerate, electrons form χ1χ

2
2|ν= 1

2
→

U5(1)/(SU(2)2 × U(1)) = U(1)× SU(2)2 Chern-Simons theory =
non-Abelian topological order.
• If first four LLs are degenerate, electrons form χ3

2|ν= 2
3
→

U6(1)/SU(3)2 = U(1)× SU(2)3 Chern-Simons theory = non-Abelian

.

topological order.
• Banerjee, Heiblum, etc arXiv:1710.00492 found the

central charge of the edge state: c = 2.56 18mK,
c = 2.64 15mK, c = 2.76 12mK, for the ν = 5/2
state in GaAs-AlGaAs hetero structure.
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Put Uκ(1) Maxwell-Chern-Simons theory on lattice

i

j
a

ij

.

• The quantum Uκ(1) Maxwell-Chern-Simons theory is defined
via a path integral (small g large M2+1 limit)

Z (M2+1) =

∫
D[aIµ(xµ)]e i2π

∫
M2+1 KIJaI daJ e−g

−1
∫
M2+1 daI ?daI

where KIJ is a symmetric integral matrix. K = even → bosonic
K = odd (ie some KII = odd) → fermionic (require M2+1 to be spin).
• But the path integeral

∫
D[(aIµ(xµ)] is not well defined. One way to

make it well defined is to put the theory on space-time lattice.

• Let a
R/Z
I be R/Z-valued (campact U(1)) 1-cochain on the space-time

splicial complex M3. On link 〈ij〉, the value of the 1-cochain a
R/Z
I is

given by (a
R/Z
I )ij . Now the path integral can be well defined∫

a
R/Z
I

≡
∏
〈ij〉,I

∫ +1/2

−1/2
d(a

R/Z
I )ij

Z (M2+1) =

∫
a
R/Z
I

e i2π
∫
M2+1 KIJa

R/Z
I ^da

R/Z
J e−g

−1
∫
M2+1 da

R/Z
I ^?da

R/Z
I
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Put Uκ(1) Maxwell-Chern-Simons theory on lattice

Z (M2+1) =

∫
a
R/Z
I

e i2π
∫
M2+1 KIJa

R/Z
I ^da

R/Z
J e−g

−1
∫
M2+1 da

R/Z
I ^?da

R/Z
I

• But such a well defined path integral does not behave like
quantum Chern-Simons theory. It has no Z-gauge invariance

a
R/Z
I → a

R/Z
I + nI , where nI are arbitary Z-valued 1-cochains.

• We find a lattice Maxwell-Chern-Simons quantum model that has the
Z-gauge invariance DeMarco Wen, arXiv:1906.08270

Z =

∫
a
R/Z
I

e i2π
∑

I≤J kIJ
∫
M3 a

R/Z
I (da

R/Z
J −bdaR/ZJ e)−bdaR/ZI eaR/ZJ

e
− i2π

∑
I≤J kIJ

∫
M3 a

R/Z
J ^

1
dbdaR/ZI e

e i2π
∑

I≤J kIJ
∫
M3 d

(
a
R/Z
I (a

R/Z
J −baR/ZJ e)

)
e
−

∫
M3

(da
R/Z
I
−bdaR/Z

I
e)?(da

R/Z
I
−bdaR/Z

I
e)

g , dropped ^

if kII = 1
2KII , kIJ = KIJ are integers. (bxe is the nearest integer of x .)

• The model also has the U(1)-gauge invariance a
R/Z
I → a

R/Z
I + dφI for

closed M3 and for da
R/Z
I ≈ int., as expected for Chern-Simons theory.
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Exact 1-symmetries in Uκ(1) Chern-Simons lattice model

Z =

∫
a
R/Z
I

e i2π
∑

I≤J kIJ
∫
M3 a

R/Z
I (da

R/Z
J −bdaR/ZJ e)−bdaR/ZI eaR/ZJ

e
− i2π

∑
I≤J kIJ

∫
M3 a

R/Z
J ^

1
dbdaR/ZI e

e i2π
∑

I≤J kIJ
∫
M3 d

(
a
R/Z
I (a

R/Z
J −baR/ZJ e)

)
e
−

∫
M3

(da
R/Z
I
−bdaR/Z

I
e)?(da

R/Z
I
−bdaR/Z

I
e)

g ,

• With the 1-cup-product term, the lattice model has exact 1-symmetries

a
R/Z
I → a

R/Z
I + β

R/Z
I , where β

R/Z
I are R/Z-valued 1-cocycles, which

satisfy the following quantization condition
κ∑

J=1

KIJβ
R/Z
J ∈ Z, ∀I .

• The part of the 1-symmetries that satisfy DeMarco Wen, arXiv:1906.08270

κ∑
J=I

kIJ(β
R/Z
J − bβR/ZJ e) = 0, ∀I

are anomaly-free. Others are believed to be anomalous.
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Dynamics of lattice Uκ(1) Maxwell-Chern-Simons model

Z =

∫
a
R/Z
I

e i2π
∑

I≤J kIJ
∫
M3 a

R/Z
I (da

R/Z
J −bdaR/ZJ e)−bdaR/ZI eaR/ZJ

e
− i2π

∑
I≤J kIJ

∫
M3 a

R/Z
J ^

1
dbdaR/ZI e

e i2π
∑

I≤J kIJ
∫
M3 d

(
a
R/Z
I (a

R/Z
J −baR/ZJ e)

)
e
−

∫
M3

(da
R/Z
I
−bdaR/Z

I
e)?(da

R/Z
I
−bdaR/Z

I
e)

g ,

The lattice Uκ(1) Maxwell-Chern-Simons model is actually a lattice
bosonic system.

• For small g , the bosonic system realizes a topological order, described
by the continuum Uκ(1) Chern-Simons field theory, characterized by the
even integral matrix K .

• For large g , due to the anomalous 1-symmetry, the bosonic system may
be gapless or have a topological order (spontaneous breaking of the
anomalous 1-symmetry).
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Framing anomaly in quantum Chern-Simons theory

• For small g , we believe the path integral of Chern-Simons theory to give
rise to a gravitational Chern-Simons term ωgrav

CS with framing
anomaly (ie path integral depends on the framing of the spacetime)

Z =

∫
a
R/Z
I

e i2π
∑

I≤J kIJ
∫
M3 a

R/Z
I (da

R/Z
J −bdaR/ZJ e)−bdaR/ZI eaR/ZJ

e
− i2π

∑
I≤J kIJ

∫
M3 a

R/Z
J ^

1
dbdaR/ZI e

e i2π
∑

I≤J kIJ
∫
M3 d

(
a
R/Z
I (a

R/Z
J −baR/ZJ e)

)
e
−

∫
M3

(da
R/Z
I
−bdaR/Z

I
e)?(da

R/Z
I
−bdaR/Z

I
e)

g = e−εVM3+1 e i2π
sgn(K)

24

∫
M2+1 ω

grav
CS .

1
g

0g
3
g

2
g

But how can a spacetime lattice know about the
framing and gravitational Chern-Simons term of
a 3d manifold M2+1?

• To define cup product, we need to asign a
branching structure to the spacetime trianglation.

Branching → Framing?.
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Chern-Simons theory is a very rich theory

From geometry to physics to quantum information (algebra)
and back
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