

Diagonal classes and the Birch and Swinnerton-Dyer conjecture

MSRI Workshop celebrating Shou-Wu Zhang's 60th Birthday

Massimo Bertolini
March 13, 2023

■ *E*/ℚ elliptic curve.

$$\varrho: G_{\mathbb{Q}} \longrightarrow \mathrm{SL}_4(\mathbb{Q}_{\varrho})$$

is the Artin representation equal to $\varrho_1 \otimes \varrho_2$ for *two-dimensional, odd, irreducible* Artin representations ϱ_1 and ϱ_2 such that $\det(\varrho_1) = \det(\varrho_2)^{-1}$. By definition ϱ factors through a number field $K_{\rho} = \overline{\mathbb{Q}}^{\ker(\varrho)}$.

• $E(K_{\varrho})^{\varrho} := \operatorname{Hom}_{G_{\mathbb{D}}}(V(\varrho), E(K_{\varrho}) \otimes \mathbb{Q}_{\varrho})$, the ϱ -component of the Mordell–Weil group of E.

Let $L(E, \varrho, s)$ be the *L*-function of *E* twisted by ϱ , i.e. the *L*-function attached to the system of 8-dimensional ℓ -adic representations $V_{\ell}(E) \otimes_{\mathbb{Q}_{\ell}} V_{\ell}(\varrho)$. It converges for $\Re(s) > 3/2$ and extends analytically at s = 1.

Conjecture ($BSD(E, \varrho)$)

One has the equality

$$r_{\mathrm{an}}(E,\varrho) := \mathrm{ord}_{s=1} L(E,\varrho,s) \stackrel{?}{=} \dim_{\mathbb{Q}_{\rho}} E(K_{\varrho})^{\varrho} =: r(E,\varrho)$$

between the algebraic rank $r(E, \varrho)$ and the analytic rank $r_{an}(E, \varrho)$ of E.

The *finiteness* of (the ρ -component of) the Shafarevich–Tate group $\underline{III}(E/K_{\rho})$ is also conjectured.

Theorem (Darmon-Rotger)

 $BSD(E, \varrho)$ holds in analytic rank zero.

I will comment about the proof of this theorem later.

The cases of ρ_i reducible are also very interesting.

Question

Suppose that $r_{an}(E, \varrho) > 0$, i.e. $L(E, \varrho, 1) = 0$. In light of $BSD(E, \varrho)$ one expects non-trivial points in the Mordell-Weil group $E(K_{\varrho})^{\varrho}$. How can one construct such points? On a less ambitious level, how can one construct non-trivial cohomology classes in a *p*-adic Selmer group $S_p(E, \varrho) = S_p(E/K_{\varrho})^{\varrho}$ containing $E(K_{\varrho})^{\varrho}$?

This question, as well as the case $r_{an}(E, \varrho) = 0$ case described above, can be addressed by *p*-adic methods. The analytic side of these methods involves *p*-adic *L*-functions.

Classical setting:

 $\mathcal{K} = \mathbb{Q}[\sqrt{D}], D < 0$ quadratic imaginary; $\eta_i : G_{\mathcal{K}} \longrightarrow \overline{\mathbb{Q}}^{\times}, i = 1, 2$ ray class characters; $\varrho_i := \operatorname{Ind}_{\mathcal{K}}^{\mathbb{Q}}(\eta_i) : G_{\mathbb{Q}} \longrightarrow \operatorname{GL}_2(\mathbb{Q}_{\varrho_i})$ satisfying our assumptions. One has

$$\varrho = \varrho_1 \otimes \varrho_2 = \operatorname{Ind}_{\mathcal{K}}^{\mathbb{Q}}(\phi) \oplus \operatorname{Ind}_{\mathcal{K}}^{\mathbb{Q}}(\psi), \ \phi = \eta_1 \eta_2, \ \psi = \eta_1 \eta_2^c$$

for ring class characters ϕ and ψ . It follows

 $L(E,\varrho,s) = L(E/K,\phi,s) \cdot L(E/K,\psi,s), \ E(K_{\varrho})^{\varrho} = E(K_{\phi})^{\phi} \oplus E(K_{\psi})^{\psi}.$

Consider the above "Question" in the classical setting. Since $L(E, \varrho, 1) = 0$, one has $L(E/K, \phi, 1) = 0$ or $L(E/K, \psi, 1) = 0$. Say $L(E/K, \phi, 1) = 0$. If in addition $L'(E/K, \phi, 1) \neq 0$, the *Gross–Zagier–Zhang* formula implies the existence of a non-trivial *Heegner point* in $E(K_{\phi})^{\phi}$, hence $E(K_{\varrho})^{\varrho} \neq 0$.

In general, if $L(E/K, \phi, 1) = 0$, one can construct a non-trivial Selmer class in $S_p(K_{\phi})^{\phi}$ and hence in $S_p(K_{\rho})^{\varrho}$, by using *Iwasawa theory* at an ordinary prime *p* for *E*.

We describe the analytic tool used to undertake the above mentioned results and questions.

By the modularity theorem of *Wiles, Taylor–Wiles, et al.*, L(E, s) = L(f, s) for a weight 2 cuspidal eigenform *f*.

By the solution of the Serre conjecture by *Khare–Wintenberger*, $L(\rho_1, s) = L(g, s)$ and $L(\rho_2, s) = L(h, s)$ for weight 1 cuspidal eigenforms *g* and *h*.

Choose an *ordinary* prime *p* for *E* (i.e. $p \nmid a_p(f)$) and assume that *g*, *h* are *p*-regular. By Hida theory, the triple (f, g, h) belongs to a triple of *p*-adic families of ordinary eigenforms $(\mathbf{f}, \mathbf{g}, \mathbf{h})$.

This means that

$$\mathbf{f} = \sum_{n \ge 1} \mathbf{a}_n(\mathbf{k}) q^n \in \mathcal{O}(U_f) \llbracket q \rrbracket,$$

where U_f is a *p*-adic disc centred at 2 and $\mathcal{O}(U_f)$ is a ring of bounded analytic functions on U_f . For a classical weight $k \in U_f \cap \mathbb{Z}_{\geq 2}$, the specialisation $\mathbf{f}(k)$ of \mathbf{f} at k is (the *p*-stabilisation of) a weight k cuspidal eigenform f_k .

Similarly for the definition of g and h.

Consider the *triple-product Garrett* complex *L*-function $L(f_k \otimes g_\ell \otimes h_m, s)$ with

 $(k, \ell, m) \in (U_f \times U_g \times U_h) \cap \mathbb{Z}^3_{\geq 1}$. It admits an analytic continuation to \mathbb{C} and a functional equation with sign $\varepsilon(k, \ell, m) = \pm 1$ for $s \longmapsto k + \ell + m - 2 - s$.

Note that $L(E, \varrho, s) = L(f \otimes g \otimes h, s)$, so that $L(E, \varrho, s)$ is defined at s = 1.

Assumption

Assume that $\varepsilon(k, \ell, m) = +1$ either

a) (**unbalanced case**) in the region Σ^{f} of weights $(k, \ell, m) \in (U_{f} \times U_{g} \times U_{h}) \cap \mathbb{Z}_{\geq 1}^{3}$ such that $k \geq \ell + m$, or

b) (balanced case) in the region Σ^{bal} of weights $(k, \ell, m) \in (U_f \times U_g \times U_h) \cap \mathbb{Z}^3_{\geq 1}$ such that $k < \ell + m$, $\ell < k + m$ and $m < k + \ell$.

Definition

The Garrett p-adic L-function $L_p(E, \varrho)$ is defined to be an element of $\mathcal{O}_{fgh} := \mathcal{O}(U_f \times U_g \times U_h)$, such that for $(k, \ell, m) \in \Sigma^f$ or Σ^{bal}

$$L_{p}(E,\varrho)(k,\ell,m) = C(k,\ell,m) \cdot L(f_{k} \otimes g_{\ell} \otimes h_{m},(k+\ell+m-2)/2),$$

where $C(k, \ell, m)$ is a generically non-zero explicit constant.

1) The construction of the above *p*-adic *L*-functions in the explicit version necessary here is due to *Hsieh*. It builds on the work of several people, including *Gross–Kudla, Harris–Kudla, Ichino, Hida, Harris–Tilouine, Darmon–Rotger, Greenberg–Seveso.*

2) In the unbalanced case the point (2, 1, 1) belongs to the region of classical interpolation Σ^{f} . In particular, the sign of the functional equation of $L(E, \varrho, s)$ is +1. If $L(E, \varrho, 1) = 0$, then $L(E, \varrho, s)$ vanishes to *even* order at s = 1 and $BSD(E, \varrho)$ leads to expect that the rank of $E(K_{\varrho})^{\varrho}$ is even. In this case the behaviour of $L_{\rho}(E, \varrho)$ at (2, 1, 1) should reflect the arithmetic of $E(K_{\varrho})^{\varrho}$ and may lead to a *p*-adic analogue $BSD_{\rho}(E, \varrho)$ of $BSD(E, \varrho)$.

3) In the balanced case $L(E, \varrho, s)$ vanishes to *odd* order at s = 1, so that the rank of $E(K_{\varrho})^{\varrho}$ is conjecturally odd. In this setting the point (2, 1, 1) lies outside the region of *p*-adic interpolation. The value of $L_p(E, \varrho)$ at (2, 1, 1) may be seen as a *p*-adic avatar of the leading term of $L(E, \varrho, s)$ at s = 1.

We first focus on the unbalanced case, with the formulation of a p-adic BSD conjecture.

Conjecture (BSD_{ρ}(*E*, ρ), B.–Seveso–Venerucci)

Assume for simplicity that *E* has good reduction at *p*.

Then L_ρ(E, ρ) belongs to *I^{r(E,ρ)}* where *I* is the ideal in *O_{tgh}* of functions vanishing at (2, 1, 1), i.e.
 L_ρ(E, ρ) vanishes to order ≥ r(E, ρ) at (2, 1, 1).
 Let L_ρ(E, ρ)* be the image of L_ρ(E, ρ) in *I^{r(E,ρ)}/I^{r(E,ρ)+1*}. Then

$$L_{\rho}(E,\varrho)^* = R_{\rho}(E,\varrho) \quad (\text{up to } (\mathbb{Q}_{\varrho}^{\times})^2),$$

where $R_{\rho}(E, \varrho)$ is the discriminant of a *p*-adic weight height pairing à la Nekovàř

$$\langle\!\langle \ , \ \rangle\!\rangle : E(K_{\varrho})^{\varrho} \otimes E(K_{\varrho})^{\varrho} \longrightarrow \mathcal{I}/\mathcal{I}^2$$

attached to our Hida *p*-adic deformation.

1) $BSD_p(E, \varrho)$ can be formulated also at *p* multiplicative for *E*, where $E(K_\varrho)^\varrho$ must be replaced by an extended Mordell–Weil group.

2) We have verified $BSD_p(E, \varrho)$ for p multiplicative in low rank cases.

3) Both these cases of $BSD_{\rho}(E, \varrho)$, as well as the theorem of Darmon–Rotger mentioned at the beginning of this talk, and partly also the previous "Question" can be addressed via an *Explicit reciprocity law* for $L_{\rho}(E, \varrho)$ which I now briefly describe.

The explicit reciprocity law (unbalanced case)

One can define a 3-variable diagonal class

$$\kappa(E,\varrho)\in S_{\rho}(V(\mathbf{f},\mathbf{g},\mathbf{h}))\subset H^1(G_{\mathbb{O}},V(\mathbf{f},\mathbf{g},\mathbf{h})),$$

where $V(\mathbf{f}, \mathbf{g}, \mathbf{h})$ is the "big" Galois representation attached to the triple $(\mathbf{f}, \mathbf{g}, \mathbf{h})$ and $S_{\rho}(V(\mathbf{f}, \mathbf{g}, \mathbf{h}))$ is a so-called balanced *p*-adic Selmer group. The class $\kappa(E, \varrho)$ arises from the diagonal embedding $X_1(N) \longrightarrow X_1(N)^3$ of the modular curve $X_1(N)$ in its triple product.

Moreover, there is a "big" Perrin-Riou logarithm

 $\operatorname{Log}: S_{\rho}(V(\mathbf{f}, \mathbf{g}, \mathbf{h})) \longrightarrow \mathcal{O}_{fgh},$

which interpolates the relevant branch of Bloch-Kato logarithms.

The explicit reciprocity law (ERL) states that

 $L_{\rho}(E,\varrho) = \operatorname{Log}(\kappa(E,\varrho))^2.$

These diagonal cycles play a prominent role in the work by *S-W. Zhang* with *X. Yuan* and *W. Zhang* on the study of the derivative of the complex triple product *L*-function for forms in the balanced domain.

Applications of the ERL

I) When $r_{an}(E, \varrho) = 0$ the specialisation $\kappa(E, \varrho)(2, 1, 1)$ of $\kappa(E, \varrho)$ at (2, 1, 1) gives rise to *p*-ramified classes in $H^1(G_{\mathbb{Q}}, V_p(f) \otimes_{\mathbb{Q}_p} V_p(g) \otimes_{\mathbb{Q}_p} V_p(h))$. This can be used to bound $E(K_{\varrho})^{\varrho}$. (Cf. the result of Darmon–Rotger mentioned above.)

II) When $r_{an}(E, \varrho) > 0$, $\kappa(E, \varrho)(2, 1, 1)$ is a Selmer class. In the *classical setting* with *p* multiplicative and inert in *K*, this class can be related to Heegner points in $E(K_{\varrho})^{\varrho}$. In the analogous setting with *K* real quadratic one obtains a relation to Stark–Heegner points. (Cf. the recent Astérisque volume by B.–Seveso–Venerucci and Darmon–Rotger.)

The *p*-adic BSD conjecture in rank 2

Assume that the $\mathbb{Q}(\varrho)$ -vector space $E(K_{\varrho})^{\varrho}$ has dimension 2 with basis (P, Q) and that $\underline{III}(E, K_{\varrho})^{\varrho}$ is finite.

Theorem (B.-Seveso-Venerucci)

 $BSD_{p}(E, \varrho)$ implies the identity

$$\kappa(E,\varrho)(2,1,1) = \log(P) \cdot Q - \log(Q) \cdot P$$

in $S_{\rho}(E, \varrho)$ up to $\mathbb{Q}(\varrho)^{\times}$.

Remark

The above identity has been conjectured by *Darmon–Lauder–Rotger*, based on experimental evidence and an analysis of some instances of the *classical setting*.

Let $\log : S_{\rho}(E, \varrho) \to \mathbb{C}_{\rho}$ be a suitable branch of the Bloch–Kato logarithm.

A proof of this identity is obtained from the following formula for the Nekovàř height extended to $S_{\rho}(E, \varrho)$ (up to explicit Euler factors):

Theorem (B.-Seveso-Venerucci)

For all $s \in S_{\rho}(E, \varrho)$ one has

 $\langle\!\langle \kappa(E,\varrho)(2,1,1),s \rangle\!\rangle \approx \log(s) \cdot L_{\rho}(E,\varrho)^{\frac{1}{2}} \pmod{\mathcal{I}^2}.$

Assume we are in the balanced setting, so that $L(E, \varrho, s)$ vanishes to *odd* order at s = 1 and by the equivariant BSD-conjecture one expects that $E(K_{\varrho})^{\varrho}$ has odd rank. Note that the point (2, 1, 1) does not belong to the region Σ^{bal} of classical interpolation for the definite *p*-adic *L*-function $L_{\rho}(E, \varrho)$.

Theorem (Andreatta-B.-Seveso-Venerucci)

If $L_p(E, \varrho) \neq 0$, then $S_p(E, \varrho)$ is non-zero.

Remark

1) The regulator $R_p(E, \varrho)$ considered in the above $BSD_p(E, \varrho)$ must vanish in the definite setting, since the Nekovàř pairing $\langle \langle , \rangle \rangle$ on $E(K_{\varrho})^{\varrho}$ is skew-symmetric. We can consider here a regulator of the form $\log(P)^2 \cdot R'_p(E, \varrho)$, where *P* is a point in the radical of the above pairing and $R'_p(E, \varrho)$ is the discriminant for a complement of *P*.

2) In rank 1 one deduces the formula $L_p(E, \varrho)(2, 1, 1) \approx \log(P)^2$, which we have verified in the classical setting building on a result of B.–Darmon–Prasanna.

3) The proof of the above theorem is based on an ERL in the balanced setting (see below).

4) Assuming $L(E, \varrho, 1) = 0$ in the *unbalanced* setting, the ERL implies that the diagonal class $\kappa(E, \varrho)(2, 1, 1)$ is crystalline. Although one expects that $S_{\rho}(E, \varrho)$ is non-zero, the analogue of the above theorem does not seem to be within reach without imposing a non-vanishing condition on $\kappa(E, \varrho)(2, 1, 1)$.

For classical weights (k, ℓ, m) let $V(f_k, g_\ell, h_m)$ be the specialisation of $V(\mathbf{f}, \mathbf{g}, \mathbf{h})$ at (k, ℓ, m) . Let

 $\mathcal{X}^{\text{geom}} := \{ (k, k', \ell, m) \in (U_f \times U_f \times U_g \times U_h) \cap \mathbb{Z}_{\geq 2}^4 : (k, \ell, m) \in \Sigma^f, \ (k', \ell, m) \in \Sigma^{\text{bal}}, \ k \geq k' \}.$ The theorem is a consequence of the following ERL.

Theorem ((ERL) Andreatta-B.-Seveso-Venerucci)

For $(k, k', \ell, m) \in \mathcal{X}^{\text{geom}}$ there is a class $\kappa_{k'}(f_k, g_\ell, h_m) \in S_p(V(f_k, g_\ell, h_m))$ such that

$$\log^2 \left(\kappa_{k'}(f_k, g_\ell, h_m) \right) = L_p(E, \varrho)(k', \ell, m) \cdot L_p(E, \varrho)(k, \ell, m),$$

where log is a branch of the Bloch-Kato logarithm.

Strategy of proof

To construct $\kappa_{k'}(f_k, g_\ell, h_m)$, one considers the holomorphic genus 2 Siegel eigenform $F_{k,k'} = Y(f_k, f_{k'})$ defined as a Yoshida lift of the Jacquet–Langlands lift of the pair $(f_k, f_{k'})$ associated with the definite quaternion algebra dictated by sign $(E, \varrho) = -1$. Recall that $L(F_{k,k'}, s) = L(f_k, s) \cdot L(f_{k'}, s + (k - k')/2)$.

By a theorem of Weissauer one has $H^3_{et}(X_{\overline{\mathbb{Q}}}, S_{k,k'})[F_{k,k'}] = V(f_k)$, where X is a Siegel 3-fold and $S_{k,k'}$ is a suitable étale sheaf.

One has a natural embedding $Y^2 \longrightarrow X$, where Y is a modular curve, which gives rise to a diagonal embedding $Y^2 \longrightarrow Y^2 \times X$.

The Abel-Jacobi formalism combined with Weissauer's theorem defines the class $\kappa_{k'}(f_k, g_\ell, h_m)$ in $H^1(\mathbb{Q}, V(f_k, g_\ell, h_m))$, which is Selmer by a theorem of *Nekovàř-Nizioł* (and also follows as a byproduct of our work).

Finally, the ERL follows from the *p*-adic interpolation (and geometric interpretation) of a formula of *Böcherer–Furusawa–Shulze-Pillot* extended by *Gan–Ichino* when (k, ℓ, m) and (k', ℓ, m) both belong to Σ^{bal} :

$$L(f_k \otimes g_\ell \otimes h_m, \frac{k+\ell+m-2}{2}) \cdot L(f_{k'} \otimes g_\ell \otimes h_m, \frac{k'+\ell+m-2}{2}) = \langle \delta F_{k,k'} |_{\mathcal{H} \times \mathcal{H}}, g_\ell \otimes h_m \rangle,$$

where δ is a certain Shimura–Maaß differential operator and \langle , \rangle denotes the Petersson inner product on the product $\mathcal{H} \times \mathcal{H}$ of two copies of the upper half plane.