

Diagonal classes and the Birch and Swinnerton-Dyer conjecture

MSRI Workshop celebrating Shou-Wu Zhang's 60th Birthday

Massimo Bertolini ■ March 13, 2023

 E/\mathbb{O} elliptic curve.

П

$$
\varrho:G_{\mathbb{Q}}\longrightarrow \mathrm{SL}_{4}(\mathbb{Q}_{\varrho})
$$

is the Artin representation equal to $\rho_1 \otimes \rho_2$ for *two-dimensional, odd, irreducible* Artin representations ϱ_1 and ϱ_2 such that $\det(\varrho_1)=\det(\varrho_2)^{-1}.$ By definition ϱ factors through a number field $\mathcal{K}_\varrho = \bar{\mathbb{Q}}^{\mathsf{ker}(\varrho)}.$

 $E(K_{\varrho})^{\varrho} := \text{Hom}_{G_{\mathbb{O}}}(V(\varrho), E(K_{\varrho}) \otimes \mathbb{Q}_{\varrho})$, the ϱ -component of the Mordell–Weil group of *E*.

Let $L(E, \varrho, s)$ be the *L*-function of *E* twisted by ϱ , i.e. the *L*-function attached to the system of 8-dimensional ℓ -adic representations $\mathsf{V}_\ell(E) \otimes_{\mathbb{Q}_\ell} \mathsf{V}_\ell(\varrho).$ It converges for $\Re(s) > 3/2$ and extends analytically at $s = 1$.

Conjecture ($BSD(E, \rho)$)

One has the equality

$$
r_{\rm an}(E,\varrho):={\rm ord}_{s=1}L(E,\varrho,s)\stackrel{?}{=}\dim_{\mathbb{Q}_{\varrho}}E(K_{\varrho})^{\varrho}=:r(E,\varrho)
$$

between the *algebraic rank r*(E, ϱ) and the *analytic rank r*_{an}(E, ϱ) of E .

The *finiteness* of (the ϱ -component of) the Shafarevich–Tate group *III*(E/K_{ϱ}) is also conjectured.

Theorem (Darmon–Rotger)

BSD(E , ρ) *holds in analytic rank zero.*

I will comment about the proof of this theorem later.

The cases of ϱ_i reducible are also very interesting.

Question

Suppose that $r_{\rm an}(E, \varrho) > 0$, i.e. $L(E, \varrho, 1) = 0$. In light of $BSD(E, \varrho)$ one expects non-trivial points in the Mordell-Weil group $E(K_{\varrho})^{\varrho}.$ How can one construct such points? On a less ambitious level, how can one construct non-trivial cohomology classes in a *p*-adic Selmer group $\mathcal{S}_\rho(E,\varrho)=\mathcal{S}_\rho(E/K_\varrho)^\varrho$ $\mathsf{containing}\,E(K_{\varrho})^\varrho$?

This question, as well as the case $r_{an}(E, \varrho) = 0$ case described above, can be addressed by *p*-adic methods. The analytic side of these methods involves *p*-adic *L*-functions.

Classical setting:

 $\mathcal{K} = \mathbb{Q}[\sqrt{D}],$ $D < 0$ quadratic imaginary; $\eta_i: G_K \longrightarrow \bar{\mathbb{Q}}^\times$, $i=1,2$ ray class characters; $\varrho_i := \operatorname{Ind}_K^{\mathbb Q}(\eta_i) : G_{\mathbb Q} \longrightarrow \operatorname{GL}_2({\mathbb Q}_{\varrho_i})$ satisfying our assumptions. One has

$$
\varrho=\varrho_1\otimes\varrho_2=\mathrm{Ind}_{\mathsf{K}}^{\mathbb{Q}}(\phi)\oplus\mathrm{Ind}_{\mathsf{K}}^{\mathbb{Q}}(\psi),\ \ \phi=\eta_1\eta_2,\ \ \psi=\eta_1\eta_2^c
$$

for ring class characters ϕ and ψ . It follows

 $\mathcal{L}(E, \varrho, s) = \mathcal{L}(E/K, \phi, s) \cdot \mathcal{L}(E/K, \psi, s), \ \ E(K_{\varrho})^{\varrho} = E(K_{\phi})^{\phi} \oplus E(K_{\psi})^{\psi}.$

Consider the above "Question" in the classical setting. Since $L(E, \varrho, 1) = 0$, one has $L(E/K, \varphi, 1) = 0$ or $L(E/K, \psi, 1) = 0$. Say $L(E/K, \phi, 1) = 0$. If in addition $L'(E/K, \phi, 1) \neq 0$, the *Gross–Zagier–Zhang* formula implies the existence of a non-trivial *Heegner point* in $E(K_\phi)^\phi$, hence $E(K_\varrho)^\varrho\neq 0$.

In general, if $\mathsf{L}(E/K,\phi,1)=0,$ one can construct a non-trivial Selmer class in $\mathcal{S}_\rho(K_\phi)^\phi$ and hence in $S_p(K_p)^e$, by using *Iwasawa theory* at an ordinary prime *p* for *E*.

We describe the analytic tool used to undertake the above mentioned results and questions.

By the modularity theorem of *Wiles, Taylor–Wiles, et al.,* $L(E, s) = L(f, s)$ *for a weight 2 cuspidal* eigenform *f*.

By the solution of the Serre conjecture by *Khare–Wintenberger*, $L(\varrho_1, s) = L(g, s)$ and $L(\varrho_2, s) = L(h, s)$ for weight 1 cuspidal eigenforms *g* and *h*.

Choose an *ordinary* prime *p* for *E* (i.e. $p \nmid a_p(f)$) and assume that *g*, *h* are *p*-*regular*. By Hida theory, the triple (*f*, *g*, *h*) belongs to a triple of *p*-adic families of ordinary eigenforms (**f**, **g**, **h**).

This means that

$$
\mathbf{f}=\sum_{n\geqslant 1}\mathbf{a}_n(\mathbf{k})q^n\in\mathcal{O}(U_f)[\![q]\!],
$$

where U_f is a p -adic disc centred at 2 and $\mathcal{O}(U_f)$ is a ring of bounded analytic functions on $U_f.$ For a classical weight $k \in U_f \cap \mathbb{Z}_{\geq 2}$, the specialisation $f(k)$ of f at *k* is (the *p*-stabilisation of) a weight *k* cuspidal eigenform *f^k* .

Similarly for the definition of **g** and **h**.

Consider the *triple-product Garrett* complex *L*-function $L(f_k \otimes g_\ell \otimes h_m, s)$ with

 $(k, \ell, m) \in (U_f \times U_g \times U_h) \cap \mathbb{Z}_{\geqslant 1}^3.$ It admits an analytic continuation to $\mathbb C$ and a functional equation with sign ε (k, l, m) = \pm 1 for $s \mapsto k + l + m - 2 - s$.

Note that $L(E, \rho, s) = L(f \otimes g \otimes h, s)$, so that $L(E, \rho, s)$ is defined at $s = 1$.

Assumption

Assume that $\varepsilon(k, \ell, m) = +1$ either a) (**unbalanced case**) in the region Σ^f of weights $(k, \ell, m) \in (U_f \times U_g \times U_h) \cap \mathbb{Z}_{\geqslant 1}^3$ such that $k \geqslant \ell + m$, or b) (**balanced case**) in the region $\Sigma^{\rm bal}$ of weights $(k, \ell, m) \in (U_f \times U_g \times U_h) \cap \mathbb{Z}_{\geqslant 1}^3$ such that $k < \ell + m, \ell < k + m$ and $m < k + \ell$.

Definition

The *Garrett p-adic L-function* $L_p(E, \varrho)$ is defined to be an element of $\mathcal{O}_{fgh} := \mathcal{O}(U_f \times U_g \times U_h)$, such that for $(k, \ell, m) \in \Sigma^f$ or $\Sigma^{\rm bal}$

$$
L_p(E,\varrho)(k,\ell,m)=C(k,\ell,m)\cdot L(f_k\otimes g_\ell\otimes h_m,(k+\ell+m-2)/2),
$$

where $C(k, \ell, m)$ is a generically non-zero explicit constant.

1) The construction of the above *p*-adic *L*-functions in the explicit version necessary here is due to *Hsieh*. It builds on the work of several people, including *Gross–Kudla, Harris–Kudla, Ichino, Hida, Harris–Tilouine, Darmon–Rotger, Greenberg–Seveso*.

2) In the unbalanced case the point $(2,1,1)$ belongs to the region of classical interpolation Σ^f . In particular, the sign of the functional equation of $L(E, \rho, s)$ is $+1$. If $L(E, \rho, 1) = 0$, then $L(E, \rho, s)$ vanishes to *even* order at $s = 1$ and $BSD(E, \varrho)$ leads to expect that the rank of $E(K_{\varrho})^{\varrho}$ is even. In this case the behaviour of $L_p(E, \varrho)$ at $(2, 1, 1)$ should reflect the arithmetic of $E(K_\varrho)^\varrho$ and may lead to a *p-adic analogue* $BSD_{p}(E, \varrho)$ of $BSD(E, \varrho)$.

3) In the balanced case $\mathcal{L}(E,\varrho, s)$ vanishes to *odd* order at $s=$ 1, so that the rank of $E(\mathcal{K}_\varrho)^{\varrho}$ is conjecturally odd. In this setting the point (2, 1, 1) lies outside the region of *p*-adic interpolation. The value of $L_p(E, \rho)$ at (2, 1, 1) may be seen as a *p*-adic avatar of the leading term of $L(E, \rho, s)$ at $s = 1$.

We first focus on the *unbalanced* case, with the formulation of a *p*-adic BSD conjecture.

Conjecture (BSD_p(*E*, *p*), B.–Seveso–Venerucci)

Assume for simplicity that *E* has good reduction at *p*.

1) Then $L_p(E, \varrho)$ belongs to $\mathcal{I}^{r(E,\varrho)}$ where $\mathcal I$ is the ideal in $\mathcal O_{fgh}$ of functions vanishing at $(2,1,1),$ i.e. $L_p(E, \rho)$ vanishes to order $\geq r(E, \rho)$ at (2, 1, 1). 2) Let $L_p(E,\varrho)^*$ be the image of $L_p(E,\varrho)$ in $\mathcal{I}^{r(E,\varrho)}/\mathcal{I}^{r(E,\varrho)+1}.$ Then

$$
L_p(E,\varrho)^* = R_p(E,\varrho) \quad (\text{up to } (\mathbb{Q}_\varrho^\times)^2),
$$

where $R_p(E, \rho)$ is the discriminant of a *p*-adic weight height pairing *à la Nekovàř*

$$
\langle\langle \ ,\ \rangle\rangle : E(K_{\varrho})^{\varrho} \otimes E(K_{\varrho})^{\varrho} \longrightarrow \mathcal{I}/\mathcal{I}^2
$$

attached to our Hida *p*-adic deformation.

1) $BSD_p(E, \varrho)$ can be formulated also at p multiplicative for E , where $E(K_{\varrho})^{\varrho}$ must be replaced by an *extended Mordell–Weil group*.

2) We have verified $BSD_{p}(E, \varrho)$ for p multiplicative in low rank cases.

3) Both these cases of $BSD_p(E, \varrho)$, as well as the theorem of Darmon–Rotger mentioned at the beginning of this talk, and partly also the previous "Question" can be addressed via an *Explicit reciprocity law* for $L_p(E, \varrho)$ which I now briefly describe.

The explicit reciprocity law (unbalanced case)

One can define a 3-variable *diagonal class*

$$
\kappa(E,\varrho)\in S_{\rho}(V(\mathbf{f},\mathbf{g},\mathbf{h}))\subset H^1(G_{\mathbb{Q}},V(\mathbf{f},\mathbf{g},\mathbf{h})),
$$

where $V(f, g, h)$ is the "big" Galois representation attached to the triple (f, g, h) and $S_p(V(f, g, h))$ is a so-called balanced *p*-adic Selmer group. The class $\kappa(E, \rho)$ arises from the diagonal embedding $X_1(N) \longrightarrow X_1(N)^3$ of the modular curve $X_1(N)$ in its triple product.

Moreover, there is a "big" *Perrin-Riou logarithm*

$$
\mathrm{Log}: S_p(V(\mathbf{f}, \mathbf{g}, \mathbf{h})) \longrightarrow \mathcal{O}_{\text{fgh}},
$$

which interpolates the relevant branch of Bloch–Kato logarithms.

The *explicit reciprocity law (ERL)* states that

$$
L_p(E,\varrho)=\mathrm{Log}(\kappa(E,\varrho))^2.
$$

These diagonal cycles play a prominent role in the work by *S-W. Zhang* with *X. Yuan* and *W. Zhang* on the study of the derivative of the complex triple product *L*-function for forms in the balanced domain.

Applications of the ERL

I) When $r_{\rm an}(E, \rho) = 0$ the specialisation $\kappa(E, \rho)(2, 1, 1)$ of $\kappa(E, \rho)$ at $(2, 1, 1)$ gives rise to *p-ramified* classes in $H^1(G_{\mathbb Q},V_\rho(f)\otimes_{{\mathbb Q}_p}V_\rho(g)\otimes_{{\mathbb Q}_p}V_\rho(h)).$ This can be used to bound $E(K_{\varrho})^\varrho.$ (Cf. the result of Darmon–Rotger mentioned above.)

II) When $r_{\rm an}(E, \varrho) > 0$, $\kappa(E, \varrho)(2, 1, 1)$ is a Selmer class. In the *classical setting* with p multiplicative and inert in K , this class can be related to Heegner points in $E(K_{\varrho})^{\varrho}.$ In the analogous setting with K real quadratic one obtains a relation to Stark–Heegner points. (Cf. the recent Astérisque volume by B.–Seveso–Venerucci and Darmon–Rotger.)

The *p***-adic BSD conjecture in rank** 2

Assume that the $\mathbb{Q}(\varrho)$ -vector space $E(K_\varrho)^{\varrho}$ has dimension 2 with basis (P,Q) and that $\underline{\mathit{III}}(E,K_\varrho)^{\varrho}$ is finite.

Theorem (B.–Seveso–Venerucci)

 $BSD_p(E, \rho)$ *implies the identity*

$$
\kappa(E,\varrho)(2,1,1)=\log(P)\cdot Q-\log(Q)\cdot P
$$

in $S_p(E, \rho)$ *up to* $\mathbb{Q}(\rho)^{\times}$ *.*

Remark

The above identity has been conjectured by *Darmon–Lauder–Rotger*, based on experimental evidence and an analysis of some instances of the *classical setting*.

Let $log : S_p(E, \varrho) \to \mathbb{C}_p$ be a suitable branch of the Bloch–Kato logarithm.

A proof of this identity is obtained from the following formula for the Nekovàř height extended to $S_p(E, \rho)$ (up to explicit Euler factors):

Theorem (B.–Seveso–Venerucci)

For all $s \in S_p(E, \rho)$ *one has*

 $\langle\!\langle\kappa(E,\varrho)(2,1,1),\mathfrak{s}~\rangle\!\rangle \approx \log(s)\cdot\mathfrak{L}_{\rho}(E,\varrho)^{\frac{1}{2}} \pmod{\mathcal{I}^{2}}.$

Assume we are in the balanced setting, so that $L(E, \varrho, s)$ vanishes to *odd* order at $s = 1$ and by the equivariant BSD-conjecture one expects that $E(K_{\varrho})^{\varrho}$ has odd rank. Note that the point $(2,1,1)$ does not belong to the region Σ^{bal} of classical interpolation for the definite *p*-adic *L*-function $L_p(E, \rho)$.

Theorem (Andreatta–B.–Seveso–Venerucci)

If $L_p(E, \rho) \neq 0$, then $S_p(E, \rho)$ *is non-zero.*

Remark

1) The regulator $R_p(E, \varrho)$ considered in the above $BSD_p(E, \varrho)$ must vanish in the definite setting, since the Nekovàř pairing $\langle\!\langle \;\; , \;\; \rangle\!\rangle$ on $E(K_{\varrho})^{\varrho}$ is skew-symmetric. We can consider here a regulator of the form log $(P)^2\cdot R'_\rho (E,\varrho),$ where P is a point in the radical of the above pairing and $R'_\rho (E,\varrho)$ is the discriminant for a complement of *P*.

2) In rank 1 one deduces the formula $L_p(E,\varrho)(2,1,1)\approx \log(P)^2,$ which we have verified in the classical setting building on a result of B.–Darmon–Prasanna.

3) The proof of the above theorem is based on an ERL in the balanced setting (see below).

4) Assuming $L(E, \rho, 1) = 0$ in the *unbalanced* setting, the ERL implies that the diagonal class $\kappa(E, \rho)(2, 1, 1)$ is crystalline. Although one expects that $S_\rho(E, \rho)$ is non-zero, the analogue of the above theorem does not seem to be within reach without imposing a non-vanishing condition on $\kappa(E, \rho)(2, 1, 1).$

For classical weights (k, ℓ, m) let $V(f_k, g_\ell, h_m)$ be the specialisation of $V(f, g, h)$ at (k, ℓ, m) . Let

 $\mathcal{X}^{\text{geom}}:=\{(k,k',\ell,m)\in (U_f\times U_f\times U_g\times U_h)\cap \mathbb{Z}_{\geqslant 2}^4:(k,\ell,m)\in \Sigma^f,\ (k',\ell,m)\in \Sigma^{\text{bal}},\ k\geqslant k'\}.$ The theorem is a consequence of the following ERL.

Theorem ((ERL) Andreatta–B.–Seveso–Venerucci)

For $(k,k',\ell,m)\in\mathcal{X}^{\mathrm{geom}}$ there is a class $\kappa_{k'}(f_k,g_\ell,h_m)\in S_p(\mathit{V}(f_k,g_\ell,h_m))$ such that

$$
\log^2 (\kappa_{k'}(f_k,g_\ell,h_m)) = L_p(E,\varrho)(k',\ell,m) \cdot L_p(E,\varrho)(k,\ell,m),
$$

where log *is a branch of the Bloch–Kato logarithm.*

Strategy of proof

To construct $\kappa_{\bm k'}(f_{\bm k},g_{\ell},h_m)$, one considers the holomorphic genus 2 Siegel eigenform $F_{k,k'} = Y(\ f_k,\ f_{k'})$ defined as a Yoshida lift of the Jacquet–Langlands lift of the pair $(f_k,f_{k'})$ associated with the definite quaternion algebra dictated by sign(E, ϱ) = -1. Recall that $L(F_{k,k'}, s) = L(f_k, s) \cdot L(f_{k'}, s + (k - k')/2).$

By a theorem of Weissauer one has $H^3_{\rm \acute{e}t}(X_{\bar{\mathbb Q}},S_{k,k'})[F_{k,k'}]=V(t_k),$ where X is a Siegel 3-fold and $\mathcal{S}_{k, k'}$ is a suitable étale sheaf.

One has a natural embedding $Y^2\longrightarrow X$, where Y is a modular curve, which gives rise to a diagonal embedding $Y^2\longrightarrow Y^2\times X.$

The Abel-Jacobi formalism combined with Weissauer's theorem defines the class $\kappa_{k'}(f_k,g_\ell,h_m)$ in *H*¹ (Q, *V*(*f_k* , *g*_c, *h_m*)), which is Selmer by a theorem of *Nekovàř-Nizioł* (and also follows as a byproduct of our work).

Finally, the ERL follows from the *p*-adic interpolation (and geometric interpretation) of a formula of *Böcherer–Furusawa–Shulze-Pillot* extended by *Gan–Ichino* when (k, ℓ, m) and (k', ℓ, m) both belong to $\Sigma^{\rm bal}$:

$$
L(f_k \otimes g_\ell \otimes h_m, \frac{k+\ell+m-2}{2}) \cdot L(f_{k'} \otimes g_\ell \otimes h_m, \frac{k'+\ell+m-2}{2}) =
$$

$$
\langle \delta F_{k,k'} |_{\mathcal{H} \times \mathcal{H}}, g_\ell \otimes h_m \rangle,
$$

where δ is a certain Shimura–Maaß differential operator and \langle , \rangle denotes the Petersson inner product on the product $\mathcal{H} \times \mathcal{H}$ of two copies of the upper half plane.