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Setting (triple product)

E/Q elliptic curve.

% : GQ −→ SL4(Q%)

is the Artin representation equal to %1 ⊗ %2 for two-dimensional, odd, irreducible Artin

representations %1 and %2 such that det(%1) = det(%2)−1.

By definition % factors through a number field K% = Q̄ker(%).

E(K%)% := HomGQ (V (%),E(K%)⊗ Q%), the %-component of the Mordell–Weil group of E .

Let L(E , %, s) be the L-function of E twisted by %, i.e. the L-function attached to the system of

8-dimensional `-adic representations V`(E)⊗Q`
V`(%). It converges for <(s) > 3/2 and extends

analytically at s = 1.



The equivariant Birch and Swinnerton-Dyer conjecture

Conjecture (BSD(E , %))

One has the equality

ran(E , %) := ords=1L(E , %, s)
?
= dimQ% E(K%)% =: r(E , %)

between the algebraic rank r(E , %) and the analytic rank ran(E , %) of E .

The finiteness of (the %-component of) the Shafarevich–Tate group III(E/K%) is also conjectured.

Theorem (Darmon–Rotger)

BSD(E , %) holds in analytic rank zero.

I will comment about the proof of this theorem later.

The cases of %i reducible are also very interesting.



What if ran(E , %) > 0?

Question

Suppose that ran(E , %) > 0, i.e. L(E , %, 1) = 0. In light of BSD(E , %) one expects non-trivial points in

the Mordell-Weil group E(K%)%. How can one construct such points? On a less ambitious level, how

can one construct non-trivial cohomology classes in a p-adic Selmer group Sp(E , %) = Sp(E/K%)%

containing E(K%)%?

This question, as well as the case ran(E , %) = 0 case described above, can be addressed by p-adic

methods. The analytic side of these methods involves p-adic L-functions.



Testing ground

Classical setting:

K = Q[
√

D], D < 0 quadratic imaginary; ηi : GK −→ Q̄×, i = 1, 2 ray class characters;

%i := IndQ
K (ηi ) : GQ −→ GL2(Q%i ) satisfying our assumptions. One has

% = %1 ⊗ %2 = IndQ
K (φ)⊕ IndQ

K (ψ), φ = η1η2, ψ = η1η
c
2

for ring class characters φ and ψ. It follows

L(E , %, s) = L(E/K , φ, s) · L(E/K , ψ, s), E(K%)% = E(Kφ)φ ⊕ E(Kψ)ψ .



Testing ground

Consider the above “Question” in the classical setting. Since L(E , %, 1) = 0, one has L(E/K , φ, 1) = 0

or L(E/K , ψ, 1) = 0. Say L(E/K , φ, 1) = 0. If in addition L′(E/K , φ, 1) 6= 0, the Gross–Zagier–Zhang

formula implies the existence of a non-trivial Heegner point in E(Kφ)φ, hence E(K%)% 6= 0.

In general, if L(E/K , φ, 1) = 0, one can construct a non-trivial Selmer class in Sp(Kφ)φ and hence in

Sp(K%)%, by using Iwasawa theory at an ordinary prime p for E .



Garrett p-adic L-functions

We describe the analytic tool used to undertake the above mentioned results and questions.

By the modularity theorem of Wiles, Taylor–Wiles, et al., L(E , s) = L(f , s) for a weight 2 cuspidal

eigenform f .

By the solution of the Serre conjecture by Khare–Wintenberger, L(%1, s) = L(g, s) and

L(%2, s) = L(h, s) for weight 1 cuspidal eigenforms g and h.

Choose an ordinary prime p for E (i.e. p - ap(f )) and assume that g, h are p-regular. By Hida theory,

the triple (f , g, h) belongs to a triple of p-adic families of ordinary eigenforms (f, g, h).



Garrett p-adic L-functions

This means that

f =
∑
n>1

an(k)qn ∈ O(Uf )[[q]],

where Uf is a p-adic disc centred at 2 and O(Uf ) is a ring of bounded analytic functions on Uf . For a

classical weight k ∈ Uf ∩ Z>2, the specialisation f(k) of f at k is (the p-stabilisation of) a weight k

cuspidal eigenform fk .

Similarly for the definition of g and h.

Consider the triple-product Garrett complex L-function L(fk ⊗ g` ⊗ hm, s) with

(k , `,m) ∈ (Uf × Ug × Uh) ∩ Z3
>1. It admits an analytic continuation to C and a functional equation

with sign ε(k , `,m) = ±1 for s 7−→ k + `+ m − 2− s.

Note that L(E , %, s) = L(f ⊗ g ⊗ h, s), so that L(E , %, s) is defined at s = 1.



Garrett p-adic L-functions

Assumption

Assume that ε(k , `,m) = +1 either

a) (unbalanced case) in the region Σf of weights (k , `,m) ∈ (Uf × Ug × Uh) ∩ Z3
>1 such that

k > `+ m, or

b) (balanced case) in the region Σbal of weights (k , `,m) ∈ (Uf × Ug × Uh) ∩ Z3
>1 such that

k < `+ m, ` < k + m and m < k + `.

Definition
The Garrett p-adic L-function Lp(E , %) is defined to be an element of Ofgh := O(Uf × Ug × Uh), such

that for (k , `,m) ∈ Σf or Σbal

Lp(E , %)(k , `,m) = C(k , `,m) · L(fk ⊗ g` ⊗ hm, (k + `+ m − 2)/2),

where C(k , `,m) is a generically non-zero explicit constant.



p-adic BSD conjecture

Remark
1) The construction of the above p-adic L-functions in the explicit version necessary here is due to

Hsieh. It builds on the work of several people, including Gross–Kudla, Harris–Kudla, Ichino, Hida,

Harris–Tilouine, Darmon–Rotger, Greenberg–Seveso.

2) In the unbalanced case the point (2, 1, 1) belongs to the region of classical interpolation Σf . In

particular, the sign of the functional equation of L(E , %, s) is +1. If L(E , %, 1) = 0, then L(E , %, s)

vanishes to even order at s = 1 and BSD(E , %) leads to expect that the rank of E(K%)% is even.

In this case the behaviour of Lp(E , %) at (2, 1, 1) should reflect the arithmetic of E(K%)% and may lead

to a p-adic analogue BSDp(E , %) of BSD(E , %).



p-adic BSD conjecture

Remark
3) In the balanced case L(E , %, s) vanishes to odd order at s = 1, so that the rank of E(K%)% is

conjecturally odd. In this setting the point (2, 1, 1) lies outside the region of p-adic interpolation. The

value of Lp(E , %) at (2, 1, 1) may be seen as a p-adic avatar of the leading term of L(E , %, s) at s = 1.

We first focus on the unbalanced case, with the formulation of a p-adic BSD conjecture.



p-adic BSD conjecture (unbalanced case)

Conjecture (BSDp(E , %), B.–Seveso–Venerucci)

Assume for simplicity that E has good reduction at p.

1) Then Lp(E , %) belongs to Ir(E,%) where I is the ideal in Ofgh of functions vanishing at (2, 1, 1), i.e.

Lp(E , %) vanishes to order > r(E , %) at (2, 1, 1).

2) Let Lp(E , %)∗ be the image of Lp(E , %) in Ir(E,%)/Ir(E,%)+1. Then

Lp(E , %)∗ = Rp(E , %) (up to (Q×% )2),

where Rp(E , %) is the discriminant of a p-adic weight height pairing à la Nekovàř

〈〈 , 〉〉 : E(K%)% ⊗ E(K%)% −→ I/I2

attached to our Hida p-adic deformation.



p-adic BSD conjecture (unbalanced case)

Remark
1) BSDp(E , %) can be formulated also at p multiplicative for E , where E(K%)% must be replaced by an

extended Mordell–Weil group.

2) We have verified BSDp(E , %) for p multiplicative in low rank cases.

3) Both these cases of BSDp(E , %), as well as the theorem of Darmon–Rotger mentioned at the

beginning of this talk, and partly also the previous “Question” can be addressed via an Explicit

reciprocity law for Lp(E , %) which I now briefly describe.



The explicit reciprocity law (unbalanced case)

One can define a 3-variable diagonal class

κ(E , %) ∈ Sp(V (f, g, h)) ⊂ H1(GQ,V (f, g, h)),

where V (f, g, h) is the “big” Galois representation attached to the triple (f, g, h) and Sp(V (f, g, h)) is a

so-called balanced p-adic Selmer group. The class κ(E , %) arises from the diagonal embedding

X1(N) −→ X1(N)3 of the modular curve X1(N) in its triple product.

Moreover, there is a “big” Perrin-Riou logarithm

Log : Sp(V (f, g, h)) −→ Ofgh,

which interpolates the relevant branch of Bloch–Kato logarithms.

The explicit reciprocity law (ERL) states that

Lp(E , %) = Log(κ(E , %))2.



The explicit reciprocity law (unbalanced case)

Remark
These diagonal cycles play a prominent role in the work by S-W. Zhang with X. Yuan and W. Zhang on

the study of the derivative of the complex triple product L-function for forms in the balanced domain.

Applications of the ERL

I) When ran(E , %) = 0 the specialisation κ(E , %)(2, 1, 1) of κ(E , %) at (2, 1, 1) gives rise to p-ramified

classes in H1(GQ,Vp(f )⊗Qp Vp(g)⊗Qp Vp(h)). This can be used to bound E(K%)%. (Cf. the result of

Darmon–Rotger mentioned above.)

II) When ran(E , %) > 0, κ(E , %)(2, 1, 1) is a Selmer class. In the classical setting with p multiplicative

and inert in K , this class can be related to Heegner points in E(K%)%. In the analogous setting with K

real quadratic one obtains a relation to Stark–Heegner points. (Cf. the recent Astérisque volume by

B.–Seveso–Venerucci and Darmon–Rotger.)



The p-adic BSD conjecture in rank 2

Assume that the Q(%)-vector space E(K%)% has dimension 2 with basis (P,Q) and that III(E ,K%)% is

finite.

Theorem (B.–Seveso–Venerucci)

BSDp(E , %) implies the identity

κ(E , %)(2, 1, 1) = log(P) · Q − log(Q) · P

in Sp(E , %) up to Q(%)×.

Remark
The above identity has been conjectured by Darmon–Lauder–Rotger, based on experimental evidence

and an analysis of some instances of the classical setting.



The p-adic BSD conjecture in rank 2

Let log : Sp(E , %)→ Cp be a suitable branch of the Bloch–Kato logarithm.

A proof of this identity is obtained from the following formula for the Nekovàř height extended to

Sp(E , %) (up to explicit Euler factors):

Theorem (B.–Seveso–Venerucci)

For all s ∈ Sp(E , %) one has

〈〈κ(E , %)(2, 1, 1), s 〉〉 ≈ log(s) · Lp(E , %)
1
2 (mod I2).



The balanced setting

Assume we are in the balanced setting, so that L(E , %, s) vanishes to odd order at s = 1 and by the

equivariant BSD-conjecture one expects that E(K%)% has odd rank. Note that the point (2, 1, 1) does

not belong to the region Σbal of classical interpolation for the definite p-adic L-function Lp(E , %).

Theorem (Andreatta–B.–Seveso–Venerucci)

If Lp(E , %) 6≡ 0, then Sp(E , %) is non-zero.

Remark
1) The regulator Rp(E , %) considered in the above BSDp(E , %) must vanish in the definite setting,

since the Nekovàř pairing 〈〈 , 〉〉 on E(K%)% is skew-symmetric. We can consider here a regulator of

the form log(P)2 · R′p(E , %), where P is a point in the radical of the above pairing and R′p(E , %) is the

discriminant for a complement of P.



The balanced setting

Remark
2) In rank 1 one deduces the formula Lp(E , %)(2, 1, 1) ≈ log(P)2, which we have verified in the

classical setting building on a result of B.–Darmon–Prasanna.

3) The proof of the above theorem is based on an ERL in the balanced setting (see below).

4) Assuming L(E , %, 1) = 0 in the unbalanced setting, the ERL implies that the diagonal class

κ(E , %)(2, 1, 1) is crystalline. Although one expects that Sp(E , %) is non-zero, the analogue of the

above theorem does not seem to be within reach without imposing a non-vanishing condition on

κ(E , %)(2, 1, 1).



Strategy of proof

For classical weights (k , `,m) let V (fk , g`, hm) be the specialisation of V (f, g, h) at (k , `,m).

Let

X geom := {(k , k ′, `,m) ∈ (Uf × Uf × Ug × Uh) ∩ Z4
>2 : (k , `,m) ∈ Σf , (k ′, `,m) ∈ Σbal, k > k ′}.

The theorem is a consequence of the following ERL.

Theorem ((ERL) Andreatta–B.–Seveso–Venerucci)

For (k , k ′, `,m) ∈ X geom there is a class κk′ (fk , g`, hm) ∈ Sp(V (fk , g`, hm)) such that

log2 (κk′ (fk , g`, hm)
)

= Lp(E , %)(k ′, `,m) · Lp(E , %)(k , `,m),

where log is a branch of the Bloch–Kato logarithm.



Strategy of proof

To construct κk′ (fk , g`, hm), one considers the holomorphic genus 2 Siegel eigenform

Fk,k′ = Y ( fk , fk′ ) defined as a Yoshida lift of the Jacquet–Langlands lift of the pair (fk , fk′ ) associated

with the definite quaternion algebra dictated by sign(E , %) = −1. Recall that

L(Fk,k′ , s) = L(fk , s) · L(fk′ , s + (k − k ′)/2).

By a theorem of Weissauer one has H3
et (XQ̄,Sk,k′ )[Fk,k′ ] = V (fk ), where X is a Siegel 3-fold and

Sk,k′ is a suitable étale sheaf.

One has a natural embedding Y 2 −→ X , where Y is a modular curve, which gives rise to a diagonal

embedding Y 2 −→ Y 2 × X .

The Abel-Jacobi formalism combined with Weissauer’s theorem defines the class κk′ (fk , g`, hm) in

H1(Q,V ( fk , g`, hm)), which is Selmer by a theorem of Nekovàř-Nizioł (and also follows as a

byproduct of our work).



Strategy of proof

Finally, the ERL follows from the p-adic interpolation (and geometric interpretation) of a formula of

Böcherer–Furusawa–Shulze-Pillot extended by Gan–Ichino when (k , `,m) and (k ′, `,m) both belong

to Σbal:

L(fk ⊗ g` ⊗ hm,
k + `+ m − 2

2
) · L(fk′ ⊗ g` ⊗ hm,

k ′ + `+ m − 2
2

) =

〈δFk,k′ |H×H, g` ⊗ hm〉,

where δ is a certain Shimura–Maaß differential operator and 〈 , 〉 denotes the Petersson inner

product on the productH×H of two copies of the upper half plane.


