Zeta morphisms for rank two universal deformations

Kentaro Nakamura

Saga University

March 22, 2023

Notation

- p: a prime number.
- $\iota_\infty \colon \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}, \quad \iota_p \colon \overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_p \colon$ fixed embeddings.
- L/\mathbb{Q}_p : a (sufficiently large) finite extension in $\overline{\mathbb{Q}}_p$, $\mathcal{O}=\mathcal{O}_L$, $\varpi\in\mathcal{O}$: a uniformizer, $\mathbb{F}=\mathcal{O}/(\varpi)$.
- $\Gamma = \operatorname{Gal}(\mathbb{Q}(\zeta_{p^{\infty}})/\mathbb{Q})$, $\Lambda = \mathcal{O}[[\Gamma]]$: the Iwasawa algebra of Γ .
- For a field F, we set $G_F = \operatorname{Gal}(F^{\operatorname{sep}}/F)$.

Kato's zeta morphisms

- $f = \sum_{n=1}^{\infty} a_n q^n \in S_k^{\mathrm{new}}(\Gamma_1(N))$: a normalized Hecke eigen cusp newform of level $N \geq 1$, weight $k \geq 2$ with a neben type character $\chi_f : (\mathbb{Z}/N)^\times \to \mathbb{C}^\times$.
- $ho_f\colon G_\mathbb{Q} o \mathrm{GL}_2(\mathcal{O})\colon$ a Galois representation associated to f, i.e. odd and unramified outside $\Sigma_f=\mathrm{prime}(N)\cup\{p\}$ satisfying

$$\operatorname{tr}(\rho_f(\operatorname{Frob}_{\ell})) = a_l$$

for all $\ell \not\in \Sigma_f$.

- $\bullet \ \mathrm{H}^i_{\mathrm{Iw}}(\mathbb{Z}[1/Np], \rho_f^*(1)) := \varprojlim_{m \geq 0} H^i(\mathbb{Z}[1/Np, \zeta_{p^m}], \rho_f^*(1)).$
- $\bullet \ \mathbf{H}^1(\rho_f^*(1)) := \mathrm{H}^1_{\mathrm{Iw}}(\mathbb{Z}[1/Np], \rho_f^*(1)),$

$$\mathbf{H}^2(\rho_f^*(1)) := \mathrm{Ker}(\mathrm{H}^2_{\mathrm{Iw}}(\mathbb{Z}[1/Np], \rho_f^*(1)) \to \oplus_{\ell \in \Sigma_f \setminus \{p\}} \mathrm{H}^2_{\mathrm{Iw}}(\mathbb{Q}_\ell, \rho_f^*(1))).$$

These are Λ -modules.

Kato defined a non zero Euler system, i.e.

$${z_{np^m} \in H^1(\mathbb{Q}(\zeta_{np^m}), \rho_f^*(1))}_{m \ge 0, n \ge 1, (n, Np) = 1}$$

satisfying the norm relation.

Theorem (12.4 of Kato (04))

- $\mathbf{H}^2(\rho_f^*(1))$ is a torsion Λ -module.
- $\mathbf{H}^1(\rho_f^*(1)) \otimes \mathbb{Q}$ (resp. $\mathbf{H}^1(\rho_f^*(1))$) is free of rank one over $\Lambda \otimes \mathbb{Q}$ (resp. free over Λ if $\overline{\rho}_f$ is absolutely irreducible).

We can define

$$\{z_{p^m}\}_{m\geq 1}\in \mathbf{H}^1(\rho_f^*(1)),$$

but it is **not canonical**, $\{z_{np^m}\}_{n,m}$ depends on many choices $c,d \geq 2$ s.t. (cd,6pN)=1, $1\leq j\leq k-1$ and $\alpha\in\mathrm{SL}_2(\mathbb{Z})$, etc (cf. Kato(04)).

Dividing its dependent factors (and the L-factors at the bad primes $\ell \in \Sigma_f \setminus \{p\}$), Kato obtained the following :

Theorem (12.5 of Kato (04))

(1) \exists a canonical \mathcal{O} -linear map (zeta morphism for f)

$$\mathbf{z}(f) \colon \rho_f^* \to \mathbf{H}^1(\rho_f^*(1)) \otimes \mathbb{Q}$$

interpolating, via Bloch-Kato's dual exponentials and period maps, all the critical values of

$$L_{\{p\}}(f,\chi,s) = \sum_{n=1,(n,p)=1}^{\infty} \frac{a_n \chi(n)}{n^s}$$

for all the finite characters $\chi \colon \Gamma(\overset{\sim}{ o} \mathbb{Z}_p^\times) \to \mathbb{C}^\times$.

(2) If p is odd and $\overline{\rho}_f = \rho_f \pmod{\varpi}$ is absolutely irreducible,

$$\operatorname{Char}_{\Lambda}(\mathbf{H}^{1}(\rho_{f}^{*}(1))/\Lambda \cdot \operatorname{Im}(\mathbf{z}(f))) \subseteq \operatorname{Char}_{\Lambda}(\mathbf{H}^{2}(\rho_{f}^{*}(1)))$$

Conjecture (12.10 of Kato (04), Kato (93))

(1) (Kato main conjecture, KMC)

$$\operatorname{Char}_{\Lambda}(\mathbf{H}^{1}(\rho_{f}^{*}(1))/\Lambda \cdot \operatorname{Im}(\mathbf{z}(f))) = \operatorname{Char}_{\Lambda}(\mathbf{H}^{2}(\rho_{f}^{*}(1)))$$

- (2) Such zeta morphisms exist for all the families of p-adic representations of $G_{\mathbb{Q}}$ which are unramified outside a finite set of primes.
 - When $\pi_p(f)$ is non supercuspidal, KMC is equivalent to the usual lwasawa main conjecture (IMC), i.e. the equality

$$(p\text{-adic }L\text{-function}) = \operatorname{Char}_{\Lambda}((\operatorname{cyclotomic Selmer group})^{\vee}),$$

- formulated by Mazur (72), Greenberg (89), Pollack (03)-Kobayashi (03), Lei-Loeffler-Zerbes (10), etc.
- KMC is formulated for arbitrary f, e.g. for f s.t. $\pi_p(f)$ is supercuspidal.

Zeta morphisms for rank two universal deformations

- Σ : a finite set of primes containing p.
- $\overline{\rho} \colon G_{\mathbb{Q}} \to \mathrm{GL}_2(\mathbb{F}) \colon \mathsf{odd}$, absolutely irreducible, unramified outside Σ .
- ullet Comp(\mathcal{O}): the category of commutative local Noetherian complete \mathcal{O} -algebras with finite residue field.
- $\rho_{\Sigma} \colon G_{\mathbb{Q}} \to \mathrm{GL}_2(R_{\Sigma}) \colon$ the universal deformation for the deformations $\rho \colon G_{\mathbb{Q}} \to \mathrm{GL}_2(A)$ $(A \in \mathrm{Comp}(\mathcal{O}))$ s.t. $\rho(\mathrm{mod}\,\mathfrak{m}_A) \overset{\sim}{\to} \overline{\rho} \otimes_{\mathbb{F}} A/\mathfrak{m}_A$, unramified outside Σ (no condition at the primes in Σ).
- $X_{\Sigma}(\overline{\rho}) = \operatorname{Hom}_{\mathcal{O}-\operatorname{alg}}^{\operatorname{cont}}(R_{\Sigma}, \overline{\mathbb{Z}}_p).$
- $X_{\Sigma}^{\mathrm{mod}}(\overline{\rho})$: the subset of modular points.
- For $\ell \not\in \Sigma$, we set

$$P_{\ell}(T) = \det(1 - \operatorname{Frob}_{\ell} \cdot T \mid \rho_{\Sigma}) \in R_{\Sigma}[T].$$

• For $f \in S_k^{\text{new}}(\Gamma_1(N))$ and $\ell \neq p$, we set

$$P_{f,\ell}(T) = \det(1 - \operatorname{Frob}_{\ell} \cdot T \mid \rho_f^{I_{\ell}}) \in \mathcal{O}[T].$$

Theorem (Main Theorem, Nakamura (20))

Assume the following:

- (i) $\overline{\rho}|_{G_{\mathbb{Q}(\zeta_p)}}$ is absolutely irreducible, (ii) $p \geq 5$, (iii) $\mathrm{End}_{\mathbb{F}[G_{\mathbb{Q}_p}]}(\overline{\rho}) = \mathbb{F}$,
- $(\text{iv}) \ \ \overline{\rho}|_{G_{\mathbb{Q}_p}} \ \text{is not of the form} \ \begin{pmatrix} \overline{\chi}_p^{\pm 1} & * \\ 0 & 1 \end{pmatrix} \otimes \eta \quad (\eta:G_{\mathbb{Q}_p} \to \mathbb{F}^\times).$

Then, $\exists R_{\Sigma}$ -linear map

$$Z_{\Sigma,n} \colon \rho_{\Sigma}^* \to \mathrm{H}^1_{\mathrm{Iw}}(\mathbb{Z}[1/\Sigma_n, \zeta_n], \rho_{\Sigma}^*(1))$$

for each $n \ge 1$ s.t. $(n, \Sigma) = 1$ $(\Sigma_n = \Sigma \cup \text{prime}(n))$, satisfying :

- (1) $\operatorname{Cor} \circ Z_{\Sigma,n\ell} = \begin{cases} Z_{\Sigma,n} & \text{if } \ell | n \\ P_{\ell}(\operatorname{Frob}_{\ell}) \cdot Z_{\Sigma,n} & \text{otherwise} \end{cases}$
- (2) $x_f^*(Z_{\Sigma,1}) = \prod_{\ell \in \Sigma \setminus \{p\}} P_{f,\ell}(\operatorname{Frob}_{\ell}) \cdot \mathbf{z}(f)$ for arbitrary $x_f \in X_{\Sigma}^{\operatorname{mod}}(\overline{\rho})$ (this is an equality as a map $\rho_f^* \to \mathbf{H}^1(\rho_f^*(1))$).

Zeta morphisms

Namely, $Z_{\Sigma,1}$ interpolates zeta elements which are related with

$$L_{\Sigma}(f,\chi,s) = \sum_{n=1,(n,\Sigma)=1}^{\infty} \frac{a_n \chi(n)}{n^s}.$$

8/21

Some works on zeta morphisms (or Euler systems) for families.

- Ochiai (06), Fukaya-Kato (12): Hida families (of ordinary p-adic modular forms).
- Hansen (15), Ochiai (17), Wang (13), Benois-Buyukboduk (21)
 : Coleman-Mazur eigencurves (families of overconvergent of p-finite slope modular forms).
- Fouquet, Wang: for universal deformations.
- **Colmez-Wang** (21) : similar results (essentially same (?), but different proof).

Application to KMC

For $f_i=\sum_{n=1}^\infty a_n(f_i)q^n\in S_{k_i}^{\rm new}(N_i)$ (i=1,2), we say that f_1 and f_2 are congruent if

$$a_{\ell}(f_1) \equiv a_{\ell}(f_2) \pmod{\varpi}$$

for all but finitely many primes ℓ ($\iff \overline{\rho}_{f_1} \stackrel{\sim}{\to} \overline{\rho}_{f_2}$ if $\overline{\rho}_{f_1}$ is abs irr).

Corollary

Assume that $\overline{\rho}_{f_1}$ satisfies all the assumptions in Main Theorem. For $\Sigma := \operatorname{prime}(N_1) \cup \operatorname{prime}(N_2) \cup \{p\}$, one has

$$\prod_{\ell \in \Sigma \setminus \{p\}} P_{f_1,\ell}(\operatorname{Frob}_{\ell}) \cdot \mathbf{z}(f_1) \equiv \prod_{\ell \in \Sigma \setminus \{p\}} P_{f_2,\ell}(\operatorname{Frob}_{\ell}) \cdot \mathbf{z}(f_2) \, (\operatorname{mod} \varpi).$$

(equality as a map $\overline{\rho}_{f_1}^* \to \mathbf{H}^1(\overline{\rho}_{f_1}^*(1)))$

Remark Kim-Lee-Ponsinet (19) (essentially) proved that such a congruence between zeta morphisms implies the equivalence of KMC.

Corollary

Assume f_1 and f_2 are congruent, $\overline{\rho}_{f_1}$ satisfies all the assumptions in Main theorem, and

$$\mathbf{z}(f_1) \pmod{\varpi} \neq 0.$$

Then one also has

$$\mathbf{z}(f_2) \pmod{\varpi} \neq 0,$$

and one has the following equivalence

KMC for
$$f_1$$
 holds \iff KMC for f_2 holds.

• I expect that the assumption $\mathbf{z}(f_1) \pmod{\varpi} \neq 0$ always holds.

- Known results (Assume that $\overline{\rho}_{f_1}$ is absolutely irreducible and $\mu(f_1)=0$)
 - Greenberg-Vatsal (00): congruent elliptic curves E_1 and E_2 with good ordinary reduction at p (i.e. of weight two).
 - Emerton-Pollack-Weston (06): congruent eigenforms which are ordinary at p (of arbitrary weights).
 - many related results in many related settings · · ·
 - Kim-Lee-Ponsinet (19): congruent eigenforms which are of finite slope (not ordinary in general) but with a fixed weight $2 \le k \le p-1$.
 - (Na): all the congruent eigenforms with arbitrary levels and weights.

Therefore, we can compare (under the assumption that $\mathbf{z}(f_1) \bmod \varpi \neq 0$)

with

unknown KMC, e.g. for supercuspidal case.

The proof of the main theorem

We mainly explain how to construct our zeta morphism (for n=1)

$$Z_{\Sigma} := Z_{\Sigma,1} \colon \rho_{\Sigma}^* \to \mathbf{H}^1(\rho_{\Sigma}^*(1)).$$

 $\frac{\mathsf{Idea} \ \mathsf{of} \ \mathsf{the} \ \mathsf{proof}}{\mathsf{Combine}}$

Fukaya-Kato's method

with

the p-adic Langlands correspondence for $\mathrm{GL}_{2/F}$ for $F=\mathbb{Q},\mathbb{Q}_p,\mathbb{Q}_\ell$

(Colmez (10), Emerton (11), Paskunas (13), (16), Emerton-Helm (14)).

Fukaya-Kato's construction for Hida families

Set $H^1(Y_1(N)) = H^1(Y_1(N)(\mathbb{C}), \mathcal{O})$, etc.

Theorem (Fukaya-Kato (12))

There exists a canonical Hecke equivariant \mathcal{O} -linear map

$$\mathbf{z}_{1,N} \colon H^1(Y_1(N)) \to \mathbf{H}^1(H^1(Y_1(N))(1)) \otimes_{\Lambda} \operatorname{Frac}(\Lambda)$$

interpolating the operator valued L-functions $\sum_{n\geq 1,(n,p)=1} \frac{T_n\cdot\chi(n)}{n^s}$ acting on $H^1(Y_1(N)(\mathbb{C}),\mathbb{C})$.

We can take, for $N \ge 1$ such that $p \not| N$, the limit

$$\mathbf{z}_{1,Np^{\infty}}: \varprojlim_{m \geq 1} H^{1}(Y_{1}(Np^{m})) \to \mathbf{H}^{1}(\varprojlim_{m \geq 1} H^{1}(Y_{1}(Np^{m}))(1)) \otimes_{\Lambda} \Lambda[1/\lambda]$$

for some $\lambda \in \Lambda$. Applying Hida's ordinary projection defined using U_p -operator, we can obtain the zeta morphisms for Hida families.

A refined local-global compatibility (Emerton)

For each $N_0 \ge 1$ such that $prime(N_0) = \Sigma \setminus \{p\} =: \Sigma_0$, we set

$$\widetilde{H}_1^{BM}(K_{\Sigma_0}(N_0)) := \varprojlim_{m \ge 0} H^1(Y(N_0 p^m))(1)$$

w.r.t. the corestrictions $H^1(Y(N_0p^{m+1}))(1) \to H^1(Y(N_0p^m))(1)$ $(k\geqq 1)$, and

$$\widetilde{H}_{1,\Sigma}^{BM} := \varinjlim_{N_0} \widetilde{H}_1^{BM}(K_{\Sigma_0}(N_0))$$

w.r.t. the restrictions $\widetilde{H}_1^{BM}(K_{\Sigma_0}(N_0)) \to \widetilde{H}_1^{BM}(K_{\Sigma_0}(N_0'))$ for $N_0|N_0'$. We set $G_\ell = \mathrm{GL}_2(\mathbb{Q}_\ell)$, $G_\Sigma = \prod_{\ell \in \Sigma} G_\ell$, $G_{\Sigma_0} = \prod_{\ell \in \Sigma_0} G_\ell$.

 $\widetilde{H}_{1,\Sigma}^{BM}$ is equipped with actions of $G_{\mathbb{Q}}$ and G_{Σ} , and (homological) Hecke actions at the primes $\ell \not\in \Sigma$. Using its Hecke actions, one can define its $\overline{\rho}$ -part

$$\widetilde{H}_{1,\Sigma,\overline{
ho}}^{BM}$$

which is a topological $R_{\Sigma}[G_{\mathbb{Q}} \times G_{\Sigma}]$ -module.

The following is the dual version of Emerton's theorem.

Theorem (A refined local-global compatibility, Emerton (11))

There exists a topological $R_{\Sigma}[G_{\mathbb{Q}} \times G_{\Sigma}]$ -linear isomorphism

$$\widetilde{H}_{1,\Sigma,\overline{\rho}}^{BM} \stackrel{\sim}{\to} \Pi_p^* \otimes_{R_{\Sigma}} \rho_{\Sigma}^* \otimes_{R_{\Sigma}} \widetilde{\pi}_{\Sigma_0},$$

where

- ullet Π_p is the representation of G_p corresponding to $ho_\Sigma|_{G_{\mathbb{Q}_p}}$,
- π_{Σ_0} is the representation of G_{Σ_0} corresponding to $\{\rho_\Sigma|_{G_{\mathbb{Q}_\ell}}\}_{\ell\in\Sigma_0}$

by the family version of p-adic local Langlands correspondence defined by Colmez (10) (+many people) for Π_p and Emerton-Helm (14) for π_{Σ_0} .

G_{Σ} -equivariant zeta morphisms

Proposition (Na)

For each $N_0 \ge 1$ and $m \ge 1$ as before, there exists a canonical Hecke equivariant \mathcal{O} -linear map

$$\mathbf{z}_{N_0p^m,\overline{\rho}} \colon H^1(Y(N_0p^m))_{\overline{\rho}}(1) \to \mathbf{H}^1(H^1(Y(N_0p^m))_{\overline{\rho}}(2))$$

characterized by a similar interpolation property using the L-functions removing its Euler factors at all $\ell \in \Sigma$, which is compatible with corestrictions for $m \ge 1$ and restrictions for N_0 .

• (A subtle point) We can define the map $\mathbf{z}_{N_0p^m,\overline{\rho}}$ over Λ (not over $\operatorname{Frac}(\Lambda)$) after taking the $\overline{\rho}$ -part.

By this integrality and the compatibilities, we can define the following maps.

We set

$$\mathbf{z}_{N_0p^{\infty},\overline{\rho}} := \varprojlim_{m \geq 1} \mathbf{z}_{N_0p^m,\overline{\rho}} \colon \widetilde{H}_1^{BM}(K_{\Sigma_0}(N_0))_{\overline{\rho}} \to \mathbf{H}^1(\widetilde{H}_1^{BM}(K_{\Sigma_0}(N_0))_{\overline{\rho}}(1))$$

and

$$\mathbf{z}_{\Sigma,\overline{\rho}} := \varinjlim_{N_0} \mathbf{z}_{N_0 p^\infty,\overline{\rho}} \colon \widetilde{H}^{BM}_{1,\Sigma,\overline{\rho}} \to \mathbf{H}^1(\widetilde{H}^{BM}_{1,\Sigma,\overline{\rho}}(1)).$$

Proposition (Na)

The map $\mathbf{z}_{\Sigma,\overline{\rho}}$ is continuous and $R_{\Sigma}[G_{\Sigma}]$ -linear.

• All the equivariances for Fukaya-Kato's and our maps follow from the interpolation property, which follows from Kato's very deep result, i.e. **the explicit reciprocity law**.

Factoring out the ho_{Σ}^* -part from $\widetilde{H}_{1,\Sigma,\overline{ ho}}^{BM}$

Since one has an isomorphism

$$\psi_1 \colon \widetilde{H}^{BM}_{1,\Sigma,\overline{\rho}} \stackrel{\sim}{\to} \Pi_p^* \otimes_{R_\Sigma} \rho_\Sigma^* \otimes_{R_\Sigma} \widetilde{\pi}_{\Sigma_0},$$

it suffices to remove Π_p^* -and $\widetilde{\pi}_{\Sigma_0}$ -parts.

Removing $\widetilde{\pi}_{\Sigma_0}$ -part: For π a smooth admissible representation of G_ℓ $(\ell \neq p)$ defined over $\overline{\mathbb{Q}}_p$, we set $\Psi_\ell(\pi)$ the largest quotient on which

$$U_\ell = \begin{pmatrix} 1 & \mathbb{Q}_\ell \\ 0 & 1 \end{pmatrix}$$
 acts by a fixed non-trivial additive character $U_\ell o \overline{\mathbb{Q}}_p$.

Emerton-Helm extended this exact functor for smooth admissible representations of G_ℓ defined over more general \mathbb{Z}_p -algebras, e.g. for $\widetilde{\pi}_{\Sigma_0}$. We set

$$\Psi_{\Sigma_0}(\widetilde{\pi}_{\Sigma_0}) := \Psi_{\ell_1} \circ \cdots \circ \Psi_{\ell_d}(\widetilde{\pi}_{\Sigma_0})$$

for $\Sigma_0=\{\ell_1,\cdots,\ell_d\}$. By the characterization property of their correspondence, one has a R_Σ -linear map

$$\psi_2 \colon \Psi_{\Sigma_0}(\widetilde{\pi}_{\Sigma_0}) \overset{\sim}{\to} R_{\Sigma} \quad \text{(genericity of } \widetilde{\pi}_{\Sigma_0}\text{)},$$

which follows from mod p multiplicity one and Ihara's lemma.

Removing Π_p^* -part:

- $\mathfrak{C}(\mathcal{O})$: the category which is the Pontryagin dual of the category of locally admissible G_p -representations on torsion \mathcal{O} -modules (Emerton).
- $\rho_p \colon G_{\mathbb{Q}_p} \to \mathrm{GL}_2(R_p)$: the universal deformation of $\overline{\rho}|_{G_{\mathbb{Q}_p}}$.
- Π_p^{univ} : the representation of G_p over R_p corresponding to ρ_p .

Theorem (Paskunas (13), a very rough form)

- $P := (\Pi_p^{\mathrm{univ}})^*$ is a projective object in $\mathfrak{C}(\mathcal{O})$.
- $R_p = \operatorname{End}_{\mathfrak{C}(\mathcal{O})}(P)$.

By the universality for ρ_p , one has $R_p \to R_\Sigma$ and

$$\Pi_p^* \stackrel{\sim}{\to} P \widehat{\otimes}_{R_p} R_{\Sigma}.$$

Hence, one also has

$$\psi_1 \colon \widetilde{H}_{1,\Sigma,\overline{\rho}}^{BM} \stackrel{\sim}{\to} P \widehat{\otimes}_{R_p} \rho_{\Sigma}^* \otimes_{R_{\Sigma}} \widetilde{\pi}_{\Sigma_0}.$$

Definition of Z_{Σ}

The isomorphisms ψ_1 and ψ_2 induce the following isomorphisms.

Corollary

ullet One has $\Psi_{\Sigma_0}(\widetilde{H}^{BM}_{1,\Sigma,\overline{
ho}})\in\mathfrak{C}(\mathcal{O})$, and

$$\operatorname{Hom}_{\mathfrak{C}(\mathcal{O})}(P, \Psi_{\Sigma_0}(\widetilde{H}_{1,\Sigma,\overline{\rho}}^{BM})) \stackrel{\sim}{\to} \rho_{\Sigma}^*.$$

• One has $\Psi_{\Sigma_0}(\mathbf{H}^1(\widetilde{H}^{BM}_{1,\Sigma,\overline{
ho}}(1)))\in\mathfrak{C}(\mathcal{O})$, and

$$\operatorname{Hom}_{\mathfrak{C}(\mathcal{O})}(P, \Psi_{\Sigma_0}(\mathbf{H}^1(\widetilde{H}^{BM}_{1,\Sigma,\overline{\rho}}(1)))) \overset{\sim}{\to} \mathbf{H}^1(\rho_{\Sigma}^*(1)).$$

Applying $\operatorname{Hom}_{\mathfrak{C}(\mathcal{O})}(P,\Psi_{\Sigma_0}(-))$ to the continuous $R_{\Sigma}[G_{\Sigma}]$ -linear map

$$\mathbf{z}_{\Sigma,\overline{\rho}} \colon \widetilde{H}^{BM}_{1,\Sigma,\overline{\rho}} \to \mathbf{H}^1(\widetilde{H}^{BM}_{1,\Sigma,\overline{\rho}}(1)),$$

we can finally define

$$Z_{\Sigma} := \operatorname{Hom}_{\mathfrak{C}(\mathcal{O})}(P, \Psi_{\Sigma_0}(\mathbf{z}_{\Sigma,\overline{\rho}})) \colon \rho_{\Sigma}^* \to \mathbf{H}^1(\rho_{\Sigma}^*(1)).$$