Kudla-Rapoport conjecture for Krämer models

Chao Li

Department of Mathematics Columbia University

Joint work with Qiao He, Yousheng Shi and Tonghai Yang (University of Wisconsin Madison) 3/13/2023

Chao Li (Columbia)

Kudla-Rapoport conjecture for Krämer models

Theorem (Fermat, Dec 25, 1640)

A prime $p \neq 2$ is of the form $p = x^2 + y^2$ if and only if $p \equiv 1 \pmod{4}$.

Theorem (Fermat, Dec 25, 1640)

A prime $p \neq 2$ is of the form $p = x^2 + y^2$ if and only if $p \equiv 1 \pmod{4}$. Remark

• "only if": obvious.

Theorem (Fermat, Dec 25, 1640)

A prime $p \neq 2$ is of the form $p = x^2 + y^2$ if and only if $p \equiv 1 \pmod{4}$. Remark

- "only if": obvious.
- "if": Fermat claimed an "irrefutable proof" by the method of infinite descent. But the margin seems never big enough for him.

Theorem (Fermat, Dec 25, 1640)

A prime $p \neq 2$ is of the form $p = x^2 + y^2$ if and only if $p \equiv 1 \pmod{4}$. Remark

- "only if": obvious.
- "if": Fermat claimed an "irrefutable proof" by the method of infinite descent. But the margin seems never big enough for him.
- Euler (1740s) completed the proof.

Theorem (Fermat, Dec 25, 1640)

A prime $p \neq 2$ is of the form $p = x^2 + y^2$ if and only if $p \equiv 1 \pmod{4}$. Remark

- "only if": obvious.
- "if": Fermat claimed an "irrefutable proof" by the method of infinite descent. But the margin seems never big enough for him.
- Euler (1740s) completed the proof.

Theorem (Jacobi, 1820s)

Define representation number $r(n) := \#\{(x, y) \in \mathbb{Z}^2 : n = x^2 + y^2\}$. Then

$$r(n) = 4 \left(\sum_{\substack{d \mid n \\ d \equiv 1 \mod 4}} 1 - \sum_{\substack{d \mid n \\ d \equiv 3 \mod 4}} 1 \right)$$

Theorem (Fermat, Dec 25, 1640)

A prime $p \neq 2$ is of the form $p = x^2 + y^2$ if and only if $p \equiv 1 \pmod{4}$. Remark

- "only if": obvious.
- "if": Fermat claimed an "irrefutable proof" by the method of infinite descent. But the margin seems never big enough for him.
- Euler (1740s) completed the proof.

Theorem (Jacobi, 1820s)

Define representation number $r(n) := \#\{(x, y) \in \mathbb{Z}^2 : n = x^2 + y^2\}$. Then

$$r(n) = 4 \left(\sum_{\substack{d \mid n \\ d \equiv 1 \mod 4}} 1 - \sum_{\substack{d \mid n \\ d \equiv 3 \mod 4}} 1 \right)$$

Example (Reprove Fermat)

- If $p \equiv 1 \pmod{4}$, then r(p) = 4(2 0) = 8.
- If $p \equiv 3 \pmod{4}$, then r(p) = 4(1-1) = 0.

Theorem (Fermat, Dec 25, 1640)

A prime $p \neq 2$ is of the form $p = x^2 + y^2$ if and only if $p \equiv 1 \pmod{4}$. Remark

- "only if": obvious.
- "if": Fermat claimed an "irrefutable proof" by the method of infinite descent. But the margin seems never big enough for him.
- Euler (1740s) completed the proof.

Theorem (Jacobi, 1820s)

Define representation number $r(n) := \#\{(x, y) \in \mathbb{Z}^2 : n = x^2 + y^2\}$. Then

$$r(n) = 4 \left(\sum_{\substack{d \mid n \\ d \equiv 1 \mod 4}} 1 - \sum_{\substack{d \mid n \\ d \equiv 3 \mod 4}} 1 \right)$$

Example (Reprove Fermat)

- If $p \equiv 1 \pmod{4}$, then r(p) = 4(2 0) = 8.
- If $p \equiv 3 \pmod{4}$, then r(p) = 4(1-1) = 0.

Exercise: What is $r(n^2)$ for $n = 3 \cdot 13 \cdot 2023$?

Chao Li (Columbia)

• Jacobi's theta series for the quadratic form $x^2 + y^2$,

$$heta(au) = \sum_{x,y\in\mathbb{Z}} q^{x^2+y^2} = \sum_{n\geq 0} r(n)q^n, \quad q = e^{2\pi i \tau}, \ \tau \in \mathcal{H}.$$

• Jacobi's theta series for the quadratic form $x^2 + y^2$,

$$heta(au) = \sum_{x,y\in\mathbb{Z}} q^{x^2+y^2} = \sum_{n\geq 0} r(n)q^n, \quad q = e^{2\pi i \tau}, \ \tau \in \mathcal{H}.$$

• $\theta(\tau)$ is a modular form in $M_1(4, \chi)$, where $\chi : (\mathbb{Z}/4\mathbb{Z})^{\times} \xrightarrow{\sim} \{\pm 1\}$.

• Jacobi's theta series for the quadratic form $x^2 + y^2$,

$$heta(au) = \sum_{x,y\in\mathbb{Z}} q^{x^2+y^2} = \sum_{n\geq 0} r(n)q^n, \quad q = e^{2\pi i \tau}, \ \tau \in \mathcal{H}.$$

- $\theta(\tau)$ is a modular form in $M_1(4, \chi)$, where $\chi : (\mathbb{Z}/4\mathbb{Z})^{\times} \xrightarrow{\sim} \{\pm 1\}$.
- dim $M_1(4, \chi) = 1$, spanned by an Eisenstein series *E* of weight 1,

$$E(\tau) = 1 + 4 \sum_{n \ge 1} \left(\sum_{d \mid n} \chi(d) \right) q^n.$$

• Jacobi's theta series for the quadratic form $x^2 + y^2$,

$$\theta(\tau) = \sum_{x,y\in\mathbb{Z}} q^{x^2+y^2} = \sum_{n\geq 0} r(n)q^n, \quad q = e^{2\pi i\tau}, \ \tau \in \mathcal{H}.$$

- $\theta(\tau)$ is a modular form in $M_1(4, \chi)$, where $\chi : (\mathbb{Z}/4\mathbb{Z})^{\times} \xrightarrow{\sim} \{\pm 1\}$.
- dim $M_1(4, \chi) = 1$, spanned by an Eisenstein series *E* of weight 1,

$$E(\tau) = 1 + 4 \sum_{n \ge 1} \left(\sum_{d \mid n} \chi(d) \right) q^n.$$

• So $\theta(\tau) = E(\tau)$ and comparing the coefficients of q^n proves Jacobi's theorem,

$$r(n) = 4 \sum_{d|n} \chi(d).$$

• Jacobi's theta series for the quadratic form $x^2 + y^2$,

$$\theta(\tau) = \sum_{x,y\in\mathbb{Z}} q^{x^2+y^2} = \sum_{n\geq 0} r(n)q^n, \quad q = e^{2\pi i\tau}, \ \tau \in \mathcal{H}.$$

- $\theta(\tau)$ is a modular form in $M_1(4, \chi)$, where $\chi : (\mathbb{Z}/4\mathbb{Z})^{\times} \xrightarrow{\sim} \{\pm 1\}$.
- dim $M_1(4, \chi) = 1$, spanned by an Eisenstein series *E* of weight 1,

$$E(\tau) = 1 + 4 \sum_{n \ge 1} \left(\sum_{d \mid n} \chi(d) \right) q^n.$$

• So $\theta(\tau) = E(\tau)$ and comparing the coefficients of q^n proves Jacobi's theorem,

$$r(n) = 4 \sum_{d|n} \chi(d).$$

- Summary of the proof: relate theta series and Eisenstein series.
- A simplest instance of the more general Siegel-Weil formula.

- Weil (1960s): Weil representations ω for dual pairs of classical groups (G, H).
- F/F_0 : quadratic extension of number fields. $\mathbb{A} = \mathbb{A}_{F_0}$: the ring of adeles of F_0 .
- V: hermitian space over F of dimension m. (G, H) = (U(n, n), U(V)).

- Weil (1960s): Weil representations ω for dual pairs of classical groups (G, H).
- F/F_0 : quadratic extension of number fields. $\mathbb{A} = \mathbb{A}_{F_0}$: the ring of adeles of F_0 .
- V: hermitian space over F of dimension m. (G, H) = (U(n, n), U(V)).
- ω : representation of $G(\mathbb{A}) \times H(\mathbb{A})$ on $\mathscr{S}(V(\mathbb{A})^n)$ (space of Schwartz functions).

- Weil (1960s): Weil representations ω for dual pairs of classical groups (G, H).
- F/F_0 : quadratic extension of number fields. $\mathbb{A} = \mathbb{A}_{F_0}$: the ring of adeles of F_0 .
- V: hermitian space over F of dimension m. (G, H) = (U(n, n), U(V)).
- ω : representation of $G(\mathbb{A}) \times H(\mathbb{A})$ on $\mathscr{S}(V(\mathbb{A})^n)$ (space of Schwartz functions).
- Associated to $\varphi \in \mathscr{S}(V(\mathbb{A})^n)$, define theta series

$$heta({m g},{m h},arphi)=:\sum_{{m x}\in V^n}\omega({m g},{m h})arphi({m x}),\quad {m g}\in {m G}({\mathbb A}),{m h}\in {m H}({\mathbb A}).$$

- Weil (1960s): Weil representations ω for dual pairs of classical groups (G, H).
- *F*/*F*₀: quadratic extension of number fields. $\mathbb{A} = \mathbb{A}_{F_0}$: the ring of adeles of *F*₀.
- V: hermitian space over F of dimension m. (G, H) = (U(n, n), U(V)).
- ω : representation of $G(\mathbb{A}) \times H(\mathbb{A})$ on $\mathscr{S}(V(\mathbb{A})^n)$ (space of Schwartz functions).
- Associated to $\varphi \in \mathscr{S}(V(\mathbb{A})^n)$, define theta series

$$heta(g,h,arphi)=:\sum_{x\in V^n}\omega(g,h)arphi(x),\quad g\in G(\mathbb{A}), h\in H(\mathbb{A}).$$

Define Siegel Eisenstein series

$${\it E}({\it g},{\it s},arphi):=\sum_{\gamma\in {\it P}ackslash G} \Phi_arphi(\gamma{\it g},{\it s}), \quad {\it g}\in {\it G}(\mathbb{A}), {\it s}\in\mathbb{C},$$

 $\text{ where } \hspace{0.1 in} \mathscr{S}({V(\mathbb{A})}^n) \to {\mathrm{Ind}}_{{\mathcal{P}}(\mathbb{A})}^{G(\mathbb{A})}(\chi_{V}, s), \hspace{0.1 in} \varphi \mapsto \Phi_{\varphi}(g, s) := \omega(g) \varphi(0) \cdot |a(g)|^s.$

- Weil (1960s): Weil representations ω for dual pairs of classical groups (G, H).
- *F*/*F*₀: quadratic extension of number fields. A = A_{F0}: the ring of adeles of *F*₀.
- V: hermitian space over F of dimension m. (G, H) = (U(n, n), U(V)).
- ω : representation of $G(\mathbb{A}) \times H(\mathbb{A})$ on $\mathscr{S}(V(\mathbb{A})^n)$ (space of Schwartz functions).
- Associated to $\varphi \in \mathscr{S}(V(\mathbb{A})^n)$, define theta series

$$heta({m g},{m h},arphi)=:\sum_{{m x}\in V^n}\omega({m g},{m h})arphi({m x}),\quad {m g}\in {m G}({\mathbb A}),{m h}\in {m H}({\mathbb A}).$$

Define Siegel Eisenstein series

$${\it E}({\it g},{\it s},arphi):=\sum_{\gamma\in {\it P}ackslash {G}} \Phi_arphi(\gamma {\it g},{\it s}), \quad {\it g}\in {\it G}({\mathbb A}), {\it s}\in {\mathbb C},$$

 $\text{ where } \hspace{0.1 in} \mathscr{S}({V(\mathbb{A})}^n) \to {\mathrm{Ind}}_{{\mathcal{P}}(\mathbb{A})}^{G(\mathbb{A})}(\chi_{V}, s), \hspace{0.1 in} \varphi \mapsto \Phi_{\varphi}(g, s) := \omega(g) \varphi(0) \cdot |a(g)|^s.$

Theorem (Siegel–Weil formula (*V* anisotropic or $n \ll m$), 1960s)

$$\int_{H(\mathbb{Q})\setminus H(\mathbb{A})} \theta(g,h,\varphi) \, \mathrm{d}h = E(g,s_0,\varphi), \quad s_0 = \frac{m-n}{2}.$$

Chao Li (Columbia)

Kudla-Rapoport conjecture for Krämer models

- Weil (1960s): Weil representations ω for dual pairs of classical groups (G, H).
- *F*/*F*₀: quadratic extension of number fields. $\mathbb{A} = \mathbb{A}_{F_0}$: the ring of adeles of *F*₀.
- V: hermitian space over F of dimension m. (G, H) = (U(n, n), U(V)).
- ω : representation of $G(\mathbb{A}) \times H(\mathbb{A})$ on $\mathscr{S}(V(\mathbb{A})^n)$ (space of Schwartz functions).
- Associated to $\varphi \in \mathscr{S}(V(\mathbb{A})^n)$, define theta series

$$heta({m g},{m h},arphi)=:\sum_{{m x}\in V^n}\omega({m g},{m h})arphi({m x}),\quad {m g}\in {m G}({\mathbb A}),{m h}\in {m H}({\mathbb A}).$$

Define Siegel Eisenstein series

$${\it E}({\it g},{\it s},arphi):=\sum_{\gamma\in {\it P}ackslash {G}} \Phi_arphi(\gamma {\it g},{\it s}), \quad {\it g}\in {\it G}({\mathbb A}), {\it s}\in {\mathbb C},$$

 $\text{ where } \hspace{0.1 in} \mathscr{S}({V(\mathbb{A})}^n) \to {\mathrm{Ind}}_{{\mathcal{P}}(\mathbb{A})}^{G(\mathbb{A})}(\chi_{V}, s), \hspace{0.1 in} \varphi \mapsto \Phi_{\varphi}(g, s) := \omega(g) \varphi(0) \cdot |a(g)|^s.$

Theorem (Siegel–Weil formula (V anisotropic or $n \ll m$), 1960s)

$$\int_{H(\mathbb{Q})\setminus H(\mathbb{A})} \theta(g,h,\varphi) \, \mathrm{d} h = E(g,s_0,\varphi), \quad s_0 = \frac{m-n}{2}.$$

Remark

- Recover Jacobi's formula for (G, H) = (Sp(2), O(2))
- Extended to complete generality: [Kudla–Rallis, Ikeda, Ichino, Yamana, Gan–Qiu–Takeda, ...] Chao Li (Columbia) Kudla–Rapoport conjecture for Krämer models

• Kudla (1990s): a geometric Siegel–Weil formula by realizing the theta integral as a geometric intersection number on the associated Shimura variety.

- Kudla (1990s): a geometric Siegel–Weil formula by realizing the theta integral as a geometric intersection number on the associated Shimura variety.
- Assume F/F_0 is a CM extension of a totally real field. Fix $\sigma : F \hookrightarrow \mathbb{C}$.
- Assume V is standard indefinite: V has signature (m − 1, 1) at the real place of F₀ induced by σ, and signature (m, 0) at all other real places.

- Kudla (1990s): a geometric Siegel–Weil formula by realizing the theta integral as a geometric intersection number on the associated Shimura variety.
- Assume F/F_0 is a CM extension of a totally real field. Fix $\sigma : F \hookrightarrow \mathbb{C}$.
- Assume V is standard indefinite: V has signature (m − 1, 1) at the real place of F₀ induced by σ, and signature (m, 0) at all other real places.
- $K \subseteq H(\mathbb{A}_f)$: open compact subgroup.
- X: unitary Shimura variety of dimension *m* − 1 over *F* ⊆ C with complex uniformization

$$X(\mathbb{C}) = H(F_0) \setminus [\mathbb{D} \times H(\mathbb{A}_f)/K],$$

 $\mathbb{D} = \{ \text{negative } \mathbb{C} \text{-lines in } V \otimes_F \mathbb{C} \} \simeq \{ z \in \mathbb{C}^{m-1} : |z| < 1 \} \simeq \frac{\mathsf{U}(m-1,1)}{\mathsf{U}(m-1) \times \mathsf{U}(1)}.$

- Kudla (1990s): a geometric Siegel–Weil formula by realizing the theta integral as a geometric intersection number on the associated Shimura variety.
- Assume F/F_0 is a CM extension of a totally real field. Fix $\sigma : F \hookrightarrow \mathbb{C}$.
- Assume V is standard indefinite: V has signature (m − 1, 1) at the real place of F₀ induced by σ, and signature (m, 0) at all other real places.
- $K \subseteq H(\mathbb{A}_f)$: open compact subgroup.
- X: unitary Shimura variety of dimension *m* − 1 over *F* ⊆ C with complex uniformization

$$X(\mathbb{C}) = H(F_0) \setminus [\mathbb{D} \times H(\mathbb{A}_f)/K],$$

$$\mathbb{D} = \{ \text{negative } \mathbb{C} \text{-lines in } V \otimes_F \mathbb{C} \} \simeq \{ z \in \mathbb{C}^{m-1} : |z| < 1 \} \simeq \frac{\mathsf{U}(m-1,1)}{\mathsf{U}(m-1) \times \mathsf{U}(1)}.$$

Remark

• Motivic *L*-function of *X* should be factorized into a product of automorphic *L*-functions for $H(\mathbb{A})$ [Langlands, Kottwitz]. When *V* is standard indefinite, the *L*-function appearing should be the standard *L*-functions.

- Kudla (1990s): a geometric Siegel–Weil formula by realizing the theta integral as a geometric intersection number on the associated Shimura variety.
- Assume F/F_0 is a CM extension of a totally real field. Fix $\sigma : F \hookrightarrow \mathbb{C}$.
- Assume V is standard indefinite: V has signature (m − 1, 1) at the real place of F₀ induced by σ, and signature (m, 0) at all other real places.
- $K \subseteq H(\mathbb{A}_f)$: open compact subgroup.
- X: unitary Shimura variety of dimension *m* − 1 over *F* ⊆ C with complex uniformization

$$X(\mathbb{C}) = H(F_0) \setminus [\mathbb{D} \times H(\mathbb{A}_f)/K],$$

$$\mathbb{D} = \{\text{negative } \mathbb{C}\text{-lines in } V \otimes_F \mathbb{C}\} \simeq \{z \in \mathbb{C}^{m-1} : |z| < 1\} \simeq \frac{\mathsf{U}(m-1,1)}{\mathsf{U}(m-1) \times \mathsf{U}(1)}.$$

Remark

- Motivic *L*-function of *X* should be factorized into a product of automorphic *L*-functions for $H(\mathbb{A})$ [Langlands, Kottwitz]. When *V* is standard indefinite, the *L*-function appearing should be the standard *L*-functions.
- X is a Shimura variety of abelian type. Its étale cohomology and *L*-function are computed in forthcoming [Kisin–Shin–Zhu], under the help of the endoscopic classification for unitary groups [Mok, Kaletha–Minguez–Shin–White].

For any *y* ∈ *V* with (*y*, *y*) > 0. Its orthogonal complement *V_y* ⊆ *V* is standard indefinite of rank *m* − 1. The embedding *H_y* = U(*V_y*) → *H* = U(*V*) defines a Shimura subvariety of codimension 1

$$Z(y) \rightarrow X.$$

For any *y* ∈ *V* with (*y*, *y*) > 0. Its orthogonal complement *V_y* ⊆ *V* is standard indefinite of rank *m* − 1. The embedding *H_y* = U(*V_y*) → *H* = U(*V*) defines a Shimura subvariety of codimension 1

$$Z(y) \rightarrow X$$
.

For any x ∈ V(A_f) with (x, x) ∈ (F₀)_{>0}, there exists y ∈ V and g ∈ H(A_f) such that y = gx. Define the special divisor

$$Z(x) \rightarrow X$$

to be the *g*-translate of Z(y).

For any *y* ∈ *V* with (*y*, *y*) > 0. Its orthogonal complement *V_y* ⊆ *V* is standard indefinite of rank *m* − 1. The embedding *H_y* = U(*V_y*) → *H* = U(*V*) defines a Shimura subvariety of codimension 1

$$Z(y) \rightarrow X$$
.

For any x ∈ V(A_t) with (x, x) ∈ (F₀)_{>0}, there exists y ∈ V and g ∈ H(A_t) such that y = gx. Define the special divisor

$$Z(x) \rightarrow X$$

to be the *g*-translate of Z(y).

For any **x** = (x₁,..., x_n) ∈ V(A_f)ⁿ with T(**x**) = ((x_i, x_j)) ∈ Herm_n(F₀)_{>0}, define the special cycle (of codimension n)

$$Z(\mathbf{x}) = Z(x_1) \cap \cdots \cap Z(x_n) \to X.$$

More generally, for φ ∈ 𝒴(V(𝔄_f)ⁿ)^K and T ∈ Herm_n(F₀)_{>0}, define the weighted special cycle

$$Z(T,\varphi) = \sum_{\substack{\mathbf{x} \in K \setminus V(\mathbb{A}_f)^n \\ T(\mathbf{x}) = T}} \varphi(\mathbf{x}) Z(\mathbf{x}) \in CH^n(X)_{\mathbb{C}}.$$

More generally, for φ ∈ 𝒴(V(𝔄_f)ⁿ)^K and T ∈ Herm_n(F₀)_{>0}, define the weighted special cycle

$$Z(T,\varphi) = \sum_{\substack{\mathbf{x} \in K \setminus V(\mathbb{A}_f)^n \\ T(\mathbf{x}) = T}} \varphi(\mathbf{x}) Z(\mathbf{x}) \in CH^n(X)_{\mathbb{C}}.$$

- With extra care, one can also define Z(T, φ) ∈ CH^m(X)_C for any T ∈ Herm_n(F₀)_{≥0}.
- Define Kudla's arithmetic theta series

$$Z(\tau,\varphi) = \sum_{T \in \operatorname{Herm}_n(F)_{>0}} Z(T,\varphi) \cdot q^T,$$

 $\tau \in \mathcal{H}_n = \{ x + iy : x \in \text{Herm}_n(F_{0,\infty}), \ y \in \text{Herm}_n(F_{0,\infty})_{>0} \}$ lies in the hermitian half space and $q^T := \prod_{\nu \mid \infty} e^{2\pi i \operatorname{tr} T_{\tau_{\nu}}}.$

More generally, for φ ∈ 𝒴(V(𝔄_f)ⁿ)^K and T ∈ Herm_n(F₀)_{>0}, define the weighted special cycle

$$Z(T,\varphi) = \sum_{\substack{\mathbf{x} \in K \setminus V(\mathbb{A}_f)^n \\ T(\mathbf{x}) = T}} \varphi(\mathbf{x}) Z(\mathbf{x}) \in CH^n(X)_{\mathbb{C}}.$$

- With extra care, one can also define Z(T, φ) ∈ CH^m(X)_C for any T ∈ Herm_n(F₀)_{≥0}.
- · Define Kudla's arithmetic theta series

$$Z(\tau,\varphi) = \sum_{T \in \operatorname{Herm}_n(F)_{>0}} Z(T,\varphi) \cdot q^T,$$

 $\tau \in \mathcal{H}_{\textit{n}} = \{ x + \textit{i}y : x \in \textit{Herm}_{\textit{n}}(\textit{F}_{0,\infty}), \; y \in \textit{Herm}_{\textit{n}}(\textit{F}_{0,\infty})_{>0} \}$

lies in the hermitian half space and $q^T := \prod_{\nu \mid \infty} e^{2\pi i \operatorname{tr} T_{\tau_{\nu}}}$.

- Take n = m 1, then $Z(T, \varphi)$ has dimension 0.
- Its degree deg $Z(T, \varphi)$ = geometric intersection number of *n* special divisors.

Theorem (Kudla, 1990s, Geometric Siegel–Weil formula)

Take n = m - 1. Assume that X is compact. Then

$$\sum_{T \in \operatorname{Herm}_n(F_0)_{\geq 0}} \deg Z(T,\varphi) \cdot q^T \doteq E(\tau, 1/2, \varphi).$$

Chao Li (Columbia)

Kudla-Rapoport conjecture for Krämer models
- For suitable levels K, one can construct a regular integral model X of (a PEL variant) of X, and also integral models of special cycles [Kudla–Rapoport].
- $Z(x) \rightarrow X$ extends to a special divisor $\mathcal{Z}(x) \rightarrow \mathcal{X}$.

- For suitable levels K, one can construct a regular integral model X of (a PEL variant) of X, and also integral models of special cycles [Kudla–Rapoport].
- $Z(x) \rightarrow X$ extends to a special divisor $\mathcal{Z}(x) \rightarrow \mathcal{X}$.
- \mathcal{X} is an arithmetic variety of dimension m.

- For suitable levels K, one can construct a regular integral model X of (a PEL variant) of X, and also integral models of special cycles [Kudla–Rapoport].
- $Z(x) \rightarrow X$ extends to a special divisor $\mathcal{Z}(x) \rightarrow \mathcal{X}$.
- X is an arithmetic variety of dimension m.
- Take n = m so that $\mathcal{Z}(T, \varphi)$ $(T \in \text{Herm}_n(F_0)_{>0})$ has "expected dimension" 0.
- Its arithmetic degree encodes arithmetic intersection numbers at all places

$$\widehat{\operatorname{deg}} \ \mathcal{Z}(T, \varphi) \quad " = " \quad \sum_{v} \operatorname{Int}_{T,v}(\varphi).$$

- For suitable levels K, one can construct a regular integral model X of (a PEL variant) of X, and also integral models of special cycles [Kudla–Rapoport].
- $Z(x) \rightarrow X$ extends to a special divisor $\mathcal{Z}(x) \rightarrow \mathcal{X}$.
- X is an arithmetic variety of dimension m.
- Take n = m so that $\mathcal{Z}(T, \varphi)$ $(T \in \text{Herm}_n(F_0)_{>0})$ has "expected dimension" 0.
- Its arithmetic degree encodes arithmetic intersection numbers at all places

$$\widehat{\operatorname{deg}} \ \mathcal{Z}(T,\varphi) \quad "=" \sum_{v} \operatorname{Int}_{T,v}(\varphi).$$

Kudla envisioned arithmetic Siegel–Weil formula

$$\widehat{\operatorname{deg}} \ \mathcal{Z}(T,\varphi) q^T \quad " \stackrel{?}{=} " \quad E_T \ (\tau,0,\varphi).$$

- For suitable levels K, one can construct a regular integral model X of (a PEL variant) of X, and also integral models of special cycles [Kudla–Rapoport].
- $Z(x) \rightarrow X$ extends to a special divisor $\mathcal{Z}(x) \rightarrow \mathcal{X}$.
- X is an arithmetic variety of dimension m.
- Take n = m so that $\mathcal{Z}(T, \varphi)$ $(T \in \text{Herm}_n(F_0)_{>0})$ has "expected dimension" 0.
- Its arithmetic degree encodes arithmetic intersection numbers at all places

$$\widehat{\operatorname{deg}} \ \mathcal{Z}(T,\varphi) \quad "=" \sum_{\nu} \operatorname{Int}_{T,\nu}(\varphi).$$

• Kudla envisioned arithmetic Siegel-Weil formula

$$\widehat{\operatorname{deg}} \ \mathcal{Z}(T,\varphi)q^T \quad "\stackrel{?}{=} " \quad E_{T}'(\tau,0,\varphi).$$

- For suitable levels K, one can construct a regular integral model X of (a PEL variant) of X, and also integral models of special cycles [Kudla–Rapoport].
- $Z(x) \rightarrow X$ extends to a special divisor $\mathcal{Z}(x) \rightarrow \mathcal{X}$.
- X is an arithmetic variety of dimension m.
- Take n = m so that $\mathcal{Z}(T, \varphi)$ $(T \in \text{Herm}_n(F_0)_{>0})$ has "expected dimension" 0.
- · Its arithmetic degree encodes arithmetic intersection numbers at all places

$$\widehat{\operatorname{deg}} \ \mathcal{Z}(T,\varphi) \quad "=" \sum_{v} \operatorname{Int}_{T,v}(\varphi).$$

Kudla envisioned arithmetic Siegel–Weil formula

$$\widehat{\operatorname{deg}} \ \mathcal{Z}(T,\varphi) q^T \quad " \stackrel{?}{=} " \quad E_T'(\tau,0,\varphi).$$

• The nonsingular Fourier coefficient decomposes as

$$E_T'(au, \mathbf{0}, arphi) = \sum_{v} E_{T,v}'(au, \mathbf{0}, arphi).$$

Chao Li (Columbia)

- For suitable levels *K*, one can construct a regular integral model *X* of (a PEL variant) of *X*, and also integral models of special cycles [Kudla–Rapoport].
- $Z(x) \rightarrow X$ extends to a special divisor $\mathcal{Z}(x) \rightarrow \mathcal{X}$.
- X is an arithmetic variety of dimension m.
- Take n = m so that $\mathcal{Z}(T, \varphi)$ $(T \in \text{Herm}_n(F_0)_{>0})$ has "expected dimension" 0.
- Its arithmetic degree encodes arithmetic intersection numbers at all places

$$\widehat{\operatorname{deg}} \ \mathcal{Z}(T,\varphi) \quad "=" \sum_{v} \operatorname{Int}_{T,v}(\varphi).$$

• Kudla envisioned arithmetic Siegel-Weil formula

$$\widehat{\operatorname{deg}} \ \mathcal{Z}(T,\varphi) q^T \quad " \stackrel{?}{=} " \quad E_T'(\tau,0,\varphi).$$

• The nonsingular Fourier coefficient decomposes as

$$E_T'(au,\mathbf{0},arphi)=\sum_{
u}E_{T,
u}'(au,\mathbf{0},arphi).$$

- At $v \mid \infty$, proved by [Liu 2011] and [Garcia–Sankaran 2018] independently.
- At $v \nmid \infty$, the identity is the content of the Kudla–Rapoport conjecture.

Chao Li (Columbia)

- $v \mid p \neq 2$ a finite place of F_0 .
- $\Lambda_{v} \subseteq V_{v}$ a self-dual lattice with respect to the hermitian form.
- $K_v = U(\Lambda_v)$.

- $v \mid p \neq 2$ a finite place of F_0 .
- $\Lambda_{v} \subseteq V_{v}$ a self-dual lattice with respect to the hermitian form.
- $K_v = U(\Lambda_v)$.
 - *v* unramified in *F*: K_v is hyperspecial; get smooth integral model \mathcal{X} at *v*.

- $v \mid p \neq 2$ a finite place of F_0 .
- $\Lambda_{v} \subseteq V_{v}$ a self-dual lattice with respect to the hermitian form.
- $K_v = U(\Lambda_v)$.
 - *v* unramified in *F*: K_v is hyperspecial; get smooth integral model \mathcal{X} at *v*.
 - v ramified in F: K_v is parahoric; get semistable integral model \mathcal{X} at v (Krämer model).

- $v \mid p \neq 2$ a finite place of F_0 .
- $\Lambda_{v} \subseteq V_{v}$ a self-dual lattice with respect to the hermitian form.
- $K_v = U(\Lambda_v)$.
 - v unramified in F: K_v is hyperspecial; get smooth integral model \mathcal{X} at v.
 - v ramified in F: K_v is parahoric; get semistable integral model \mathcal{X} at v (Krämer model).
- Take n = m, $\varphi = \varphi_1 \otimes \cdots \otimes \varphi_n \in \mathscr{S}(V(\mathbb{A}_f)^n)^K$ such that $\varphi_{i,v} = \mathbf{1}_{\Lambda_v}$.
- $T \in \text{Herm}_n(F_0)_{>0}$ with diagonal entries t_1, \ldots, t_n .

- $v \mid p \neq 2$ a finite place of F_0 .
- $\Lambda_{v} \subseteq V_{v}$ a self-dual lattice with respect to the hermitian form.
- $K_v = U(\Lambda_v)$.
 - *v* unramified in *F*: K_v is hyperspecial; get smooth integral model \mathcal{X} at *v*.
 - v ramified in F: K_v is parahoric; get semistable integral model \mathcal{X} at v (Krämer model).
- Take n = m, $\varphi = \varphi_1 \otimes \cdots \otimes \varphi_n \in \mathscr{S}(V(\mathbb{A}_f)^n)^K$ such that $\varphi_{i,v} = \mathbf{1}_{\Lambda_v}$.
- $T \in \text{Herm}_n(F_0)_{>0}$ with diagonal entries t_1, \ldots, t_n .
- Define arithmetic intersection number at v

$$\mathsf{Int}_{\mathcal{T}, \mathsf{v}}(\varphi) := \chi(\mathcal{Z}(\mathcal{T}, \varphi)_{\mathsf{v}}, \mathcal{O}_{\mathcal{Z}(t_{1}, \varphi_{1})} \otimes_{\mathcal{O}_{\mathcal{X}}}^{\mathbb{L}} \cdots \otimes_{\mathcal{O}_{\mathcal{X}}}^{\mathbb{L}} \mathcal{O}_{\mathcal{Z}(t_{n}, \varphi_{n})}) \cdot \log q_{\mathsf{v}}$$

Theorem ([L.-Zhang 2019], Kudla-Rapoport Conjecture)

Assume that v is unramified in F. Take n = m. Then for any $T \in \text{Herm}_n(F_0)_{>0}$,

$$\operatorname{Int}_{T,v}(\varphi)q^{T} \stackrel{\cdot}{=} E'_{T,v}(\tau,0,\varphi).$$

• When v is ramified, however, for easy reasons (explained soon) analogous identity

$$\operatorname{Int}_{T,v}(\varphi)q^T \stackrel{\cdot}{=} E'_{T,v}(\tau,0,\varphi)$$

does not hold.

• When v is ramified, however, for easy reasons (explained soon) analogous identity

$$\operatorname{Int}_{T,v}(\varphi)q^T \stackrel{\cdot}{=} E'_{T,v}(\tau,0,\varphi)$$

does not hold.

Theorem ([He–L.–Shi–Yang 2022], KR for Krämer models, impressionist version) Assume that *v* is ramified in *F*. Take n = m. Then for any $T \in \text{Herm}_n(F_0)_{>0}$,

$$\operatorname{Int}_{\mathcal{T},\nu}(\varphi)\boldsymbol{q}^{\mathcal{T}} \stackrel{\cdot}{=} \boldsymbol{E}_{\mathcal{T},\nu}'(\tau,0,\varphi) + \boldsymbol{E}_{\mathcal{T}}(\tau,0,\varphi^{\nu}\otimes\Phi_{\nu}).$$

• When v is ramified, however, for easy reasons (explained soon) analogous identity

$$\operatorname{Int}_{T,v}(\varphi)q^T \stackrel{\cdot}{=} E'_{T,v}(\tau,0,\varphi)$$

does not hold.

Theorem ([He–L.–Shi–Yang 2022], KR for Krämer models, impressionist version) Assume that *v* is ramified in *F*. Take n = m. Then for any $T \in \text{Herm}_n(F_0)_{>0}$,

$$\operatorname{Int}_{T,\nu}(\varphi)q^{T} \stackrel{\cdot}{=} E_{T,\nu}'(\tau,0,\varphi) + E_{T}(\tau,0,\varphi^{\nu}\otimes\Phi_{\nu}).$$

Here

- $\Phi_v \in \mathscr{S}(\mathbb{V}_v^n)$ is an explicit function independent of *T*, and
- \mathbb{V}_{v} is the unique local hermitian space of dimension *m* and $\chi(\mathbb{V}_{v}) = -\chi(V_{v})$.
- $\chi(\mathbb{V}_{\nu}) := \chi_{F/F_0}((-1)^{\frac{m(m-1)}{2}} \det(\mathbb{V}_{\nu})) \in \{\pm 1\}.$

• When v is ramified, however, for easy reasons (explained soon) analogous identity

$$\operatorname{Int}_{T,v}(\varphi)q^{T} \stackrel{.}{=} E'_{T,v}(\tau, 0, \varphi)$$

does not hold.

Theorem ([He–L.–Shi–Yang 2022], KR for Krämer models, impressionist version) Assume that v is ramified in F. Take n = m. Then for any $T \in \text{Herm}_n(F_0)_{>0}$,

$$\operatorname{Int}_{T,\nu}(\varphi)\boldsymbol{q}^{T} \stackrel{\cdot}{=} \boldsymbol{E}_{T,\nu}'(\tau,0,\varphi) + \boldsymbol{E}_{T}(\tau,0,\varphi^{\nu}\otimes\Phi_{\nu}).$$

Here

- $\Phi_v \in \mathscr{S}(\mathbb{V}_v^n)$ is an explicit function independent of *T*, and
- \mathbb{V}_{v} is the unique local hermitian space of dimension *m* and $\chi(\mathbb{V}_{v}) = -\chi(V_{v})$.

•
$$\chi(\mathbb{V}_{\nu}) := \chi_{F/F_0}((-1)^{\frac{m(m-1)}{2}} \det(\mathbb{V}_{\nu})) \in \{\pm 1\}.$$

Remark

• The necessity of such modification in the presence of bad reduction was first discovered by [Kudla–Rapoport] via explicit computation in the context of Shimura curves uniformized by the Drinfeld *p*-adic half plane.

• When v is ramified, however, for easy reasons (explained soon) analogous identity

$$\operatorname{Int}_{T,v}(\varphi)q^{T} \stackrel{.}{=} E'_{T,v}(\tau, 0, \varphi)$$

does not hold.

Theorem ([He–L.–Shi–Yang 2022], KR for Krämer models, impressionist version) Assume that v is ramified in F. Take n = m. Then for any $T \in \text{Herm}_n(F_0)_{>0}$,

$$\operatorname{Int}_{T,\nu}(\varphi)\boldsymbol{q}^{T} \stackrel{\cdot}{=} \boldsymbol{E}_{T,\nu}'(\tau,0,\varphi) + \boldsymbol{E}_{T}(\tau,0,\varphi^{\nu}\otimes\Phi_{\nu}).$$

Here

- $\Phi_{v} \in \mathscr{S}(\mathbb{V}_{v}^{n})$ is an explicit function independent of *T*, and
- \mathbb{V}_{ν} is the unique local hermitian space of dimension *m* and $\chi(\mathbb{V}_{\nu}) = -\chi(V_{\nu})$.

•
$$\chi(\mathbb{V}_{\nu}) := \chi_{F/F_0}((-1)^{\frac{m(m-1)}{2}} \det(\mathbb{V}_{\nu})) \in \{\pm 1\}.$$

Remark

- The necessity of such modification in the presence of bad reduction was first discovered by [Kudla–Rapoport] via explicit computation in the context of Shimura curves uniformized by the Drinfeld *p*-adic half plane.
- The conceptual recipe of the correction term (i.e. the choice of Φ_ν) was conjectured by [He–Shi–Yang 2021], who also proved the special case n = 2, 3. The proof of the theorem is new even for n = 2, 3.

Chao Li (Columbia)

• [L.-Liu 2020, 2021] proved an arithmetic inner product formula, when *m* is even:

$$\langle Z_{\pi}, Z_{\pi} \rangle_X \doteq L'(1/2, \pi).$$

- π : cuspidal automorphic representations on U(*m*).
- Z_{π} : cycles on X constructed by arithmetic theta lifting.

• [L.-Liu 2020, 2021] proved an arithmetic inner product formula, when *m* is even:

$$\langle Z_{\pi}, Z_{\pi} \rangle_X \stackrel{\cdot}{=} L'(1/2, \pi).$$

- π : cuspidal automorphic representations on U(*m*).
- Z_{π} : cycles on X constructed by arithmetic theta lifting.

This generalizes Gross–Zagier formula to Shimura varieties of higher dimension.

• [L.-Liu 2020, 2021] proved an arithmetic inner product formula, when *m* is even:

$$\langle Z_{\pi}, Z_{\pi} \rangle_X \doteq L'(1/2, \pi).$$

- π : cuspidal automorphic representations on U(*m*).
- Z_{π} : cycles on X constructed by arithmetic theta lifting.

This generalizes Gross–Zagier formula to Shimura varieties of higher dimension.

• It implies the following application to the Beilinson-Bloch conjecture

$$\operatorname{ord}_{s=1/2} L(s,\pi) = 1 \Longrightarrow \operatorname{rank} \operatorname{CH}^{m/2}(X)^0_{\pi} \ge 1$$

• [L.-Liu 2020, 2021] proved an arithmetic inner product formula, when m is even:

 $\langle Z_{\pi}, Z_{\pi} \rangle_X \stackrel{\cdot}{=} L'(1/2, \pi).$

- π : cuspidal automorphic representations on U(*m*).
- Z_{π} : cycles on X constructed by arithmetic theta lifting.

This generalizes Gross–Zagier formula to Shimura varieties of higher dimension.

It implies the following application to the Beilinson–Bloch conjecture

$$\operatorname{ord}_{s=1/2} L(s,\pi) = 1 \Longrightarrow \operatorname{rank} \operatorname{CH}^{m/2}(X)^0_{\pi} \ge 1$$

• [Disegni–Liu 2022] proved a *p*-adic arithmetic inner product formula, *p*-adic height pairing of Z_{π} = derivative of cyclotomic *p*-adic *L*-function $L_{p}(\pi)$

• [L.-Liu 2020, 2021] proved an arithmetic inner product formula, when m is even:

 $\langle Z_{\pi}, Z_{\pi} \rangle_X \stackrel{\cdot}{=} L'(1/2, \pi).$

- π : cuspidal automorphic representations on U(*m*).
- Z_{π} : cycles on X constructed by arithmetic theta lifting.

This generalizes Gross–Zagier formula to Shimura varieties of higher dimension.

It implies the following application to the Beilinson–Bloch conjecture

$$\operatorname{ord}_{s=1/2} L(s,\pi) = 1 \Longrightarrow \operatorname{rank} \operatorname{CH}^{m/2}(X)^0_{\pi} \ge 1$$

- [Disegni–Liu 2022] proved a *p*-adic arithmetic inner product formula, *p*-adic height pairing of Z_{π} = derivative of cyclotomic *p*-adic *L*-function $L_p(\pi)$
- It implies the following application to the *p*-adic Bloch–Kato conjecture central order of vanishing of $L_p(\pi)$ is $1 \implies \operatorname{rank} \operatorname{H}^1_t(F, V_{\pi}) \ge 1$.
- The Kudla-Rapoport conjecture is a key local ingredient in all these applications.

$\operatorname{Int}_{\mathcal{T},v}(\varphi) \qquad \stackrel{?}{=} \quad E_{\mathcal{T},v}'(\tau,0,\varphi) + E_{\mathcal{T}}(\tau,0,\varphi^{v}\otimes\Phi_{v})$

$$\stackrel{?}{=} \quad E'_{T,v}(\tau,0,\varphi) + E_T(\tau,0,\varphi^v \otimes \Phi_v)$$

Int
$$_{T,v}(\varphi)$$

p-adic uniformization
Int(*L*)
arithmetic intersection number
of *n* special divisors on RZ space \mathcal{N}

$$\stackrel{?}{=} E'_{T,v}(\tau,0,\varphi) + E_T(\tau,0,\varphi^v \otimes \Phi_v)$$

Next: define Int(L) and $\partial Den(L)$.

Krämer model of unitary Rapoport–Zink space $\mathcal{N} = \mathcal{N}_n$

Krämer model of unitary Rapoport–Zink space $\mathcal{N} = \mathcal{N}_n$

- F_0 : finite extension of \mathbb{Q}_p with residue field $k = \mathbb{F}_q$.
- F/F_0 : ramified quadratic extension.
- π : uniformizer of *F* such that $\operatorname{tr}_{F/F_0}(\pi) = 0$.
- $O_{\check{F}}$: the completion of the maximal unramified extension of O_F .
Krämer model of unitary Rapoport–Zink space $\mathcal{N} = \mathcal{N}_n$

- F_0 : finite extension of \mathbb{Q}_p with residue field $k = \mathbb{F}_q$.
- F/F_0 : ramified quadratic extension.
- π : uniformizer of *F* such that $\operatorname{tr}_{F/F_0}(\pi) = 0$.
- $O_{\check{F}}$: the completion of the maximal unramified extension of O_F .
- \mathbb{X}/\bar{k} : principally polarized supersingular hermitian O_F -module of sig. (1, n 1).
- *N* = *N_n*: the Krämer model of the unitary Rapoport–Zink space parameterizing hermitian *O_F*-modules of signature (1, *n* − 1) within the quasi-isogeny class of X, together with a rank 1 filtration *F* ⊆ Lie *X* satisfying the Krämer condition.

Krämer model of unitary Rapoport–Zink space $\mathcal{N} = \mathcal{N}_n$

- F_0 : finite extension of \mathbb{Q}_p with residue field $k = \mathbb{F}_q$.
- F/F_0 : ramified quadratic extension.
- π : uniformizer of *F* such that $\operatorname{tr}_{F/F_0}(\pi) = 0$.
- $O_{\check{F}}$: the completion of the maximal unramified extension of O_F .
- \mathbb{X}/\bar{k} : principally polarized supersingular hermitian O_F -module of sig. (1, n 1).
- *N* = *N_n*: the Krämer model of the unitary Rapoport–Zink space parameterizing hermitian *O_F*-modules of signature (1, *n* − 1) within the quasi-isogeny class of X, together with a rank 1 filtration *F* ⊆ Lie *X* satisfying the Krämer condition.
- More precisely, ${\mathcal N}$ is the formal scheme over Spf ${\mathcal O}_{\not \vdash}$ representing the functor

$$S \mapsto \mathcal{N}(S) = \{(X, \iota, \lambda, \mathcal{F}, \rho)\}/\text{isom}.$$

- (X, ι, λ) : hermitian O_F -module of signature (1, n 1) over S,
- *F*: local direct summand of Lie X of rank 1 as an O_S-module such that O_F acts on F
 (resp. Lie X/F) through the embedding O_F → O_F (resp. the conjugate embedding),
- $\rho: X \times_S \overline{S} \to \mathbb{X} \times_{\operatorname{Spec} \overline{k}} \overline{S}$ is a framing.

Krämer model of unitary Rapoport–Zink space $\mathcal{N} = \mathcal{N}_n$

- F_0 : finite extension of \mathbb{Q}_p with residue field $k = \mathbb{F}_q$.
- F/F_0 : ramified quadratic extension.
- π : uniformizer of *F* such that $\operatorname{tr}_{F/F_0}(\pi) = 0$.
- $O_{\check{F}}$: the completion of the maximal unramified extension of O_F .
- \mathbb{X}/\bar{k} : principally polarized supersingular hermitian O_F -module of sig. (1, n 1).
- *N* = *N_n*: the Krämer model of the unitary Rapoport–Zink space parameterizing hermitian *O_F*-modules of signature (1, *n* − 1) within the quasi-isogeny class of X, together with a rank 1 filtration *F* ⊆ Lie *X* satisfying the Krämer condition.
- More precisely, ${\mathcal N}$ is the formal scheme over Spf ${\mathcal O}_{\not \vdash}$ representing the functor

$$S \mapsto \mathcal{N}(S) = \{(X, \iota, \lambda, \mathcal{F}, \rho)\}/\text{isom}.$$

- (X, ι, λ) : hermitian O_F -module of signature (1, n 1) over S,
- *F*: local direct summand of Lie X of rank 1 as an O_S-module such that O_F acts on F
 (resp. Lie X/F) through the embedding O_F → O_F (resp. the conjugate embedding),
- $\rho: X \times_S \overline{S} \to \mathbb{X} \times_{\operatorname{Spec} \overline{k}} \overline{S}$ is a framing.
- \mathcal{N} provides a *p*-adic uniformization of $\widehat{\mathcal{X}}_{/\mathcal{X}_{r}^{ss}}$ at a ramified place.
- Two choices of the local hermitian space V (up to isometry) in local Shimura data:
 - *n* even: two non-isomorphic U(V), giving rise to two non-isomorphic \mathcal{N} ,
 - *n* odd: two isomorphic U(V), giving rise to only one \mathcal{N} .

Geometry of $\ensuremath{\mathcal{N}}$

Geometry of $\ensuremath{\mathcal{N}}$

• \mathcal{N} is locally of finite type, and semistable of relative dimension n-1 over Spf $O_{\not F}$.

- N is locally of finite type, and semistable of relative dimension n-1 over Spf $O_{\not F}$.
- There is another integral model \mathcal{M} (Pappas model), which is flat but not regular. The Krämer model \mathcal{N} provides a resolution of singularities

$$\mathcal{N} \to \mathcal{M},$$

- \mathcal{N} is locally of finite type, and semistable of relative dimension n-1 over Spf $O_{\not F}$.
- There is another integral model \mathcal{M} (Pappas model), which is flat but not regular. The Krämer model \mathcal{N} provides a resolution of singularities

$$\mathcal{N} \to \mathcal{M},$$

with fiber of each singular point isomorphic to $\mathbb{P}^{n-1}_{/\bar{k}}$ ("exceptional divisor").

• \mathcal{M}^{red} has a Bruhat–Tits stratification [Rapoport–Terstiege–Wilson] into generalized Deligne–Lusztig varieties DL_i of dimension *i*, associated to a parabolic subgroup of Sp(2*i*)_{/ \bar{k}} (normal with isolated singularities when *i* > 1).

- \mathcal{N} is locally of finite type, and semistable of relative dimension n-1 over Spf $O_{\not F}$.
- There is another integral model \mathcal{M} (Pappas model), which is flat but not regular. The Krämer model \mathcal{N} provides a resolution of singularities

$$\mathcal{N} \to \mathcal{M},$$

- \mathcal{M}^{red} has a Bruhat–Tits stratification [Rapoport–Terstiege–Wilson] into generalized Deligne–Lusztig varieties DL_i of dimension *i*, associated to a parabolic subgroup of Sp(2*i*)_{/ \bar{k}} (normal with isolated singularities when *i* > 1).
- We prove a similar Bruhat–Tits stratification for \mathcal{N}^{red} by smooth projective varieties.

- \mathcal{N} is locally of finite type, and semistable of relative dimension n-1 over Spf $O_{\not F}$.
- There is another integral model \mathcal{M} (Pappas model), which is flat but not regular. The Krämer model \mathcal{N} provides a resolution of singularities

$$\mathcal{N} \to \mathcal{M},$$

- \mathcal{M}^{red} has a Bruhat–Tits stratification [Rapoport–Terstiege–Wilson] into generalized Deligne–Lusztig varieties DL_i of dimension *i*, associated to a parabolic subgroup of Sp(2*i*)_{/k} (normal with isolated singularities when *i* > 1).
- We prove a similar Bruhat–Tits stratification for \mathcal{N}^{red} by smooth projective varieties. Example
 - n = 2: $\chi(V) = +1$, $\mathcal{M} \simeq \operatorname{Spf} O_{\check{F}}[[x, y]]/(xy \pi^2)$, $\mathcal{M}^{\operatorname{red}} = \{\operatorname{pt}\},$

Geometry of $\mathcal N$

- \mathcal{N} is locally of finite type, and semistable of relative dimension n-1 over Spf $O_{\not F}$.
- There is another integral model \mathcal{M} (Pappas model), which is flat but not regular. The Krämer model \mathcal{N} provides a resolution of singularities

$$\mathcal{N} \to \mathcal{M},$$

- \mathcal{M}^{red} has a Bruhat–Tits stratification [Rapoport–Terstiege–Wilson] into generalized Deligne–Lusztig varieties DL_i of dimension *i*, associated to a parabolic subgroup of Sp(2*i*)_{/k} (normal with isolated singularities when *i* > 1).
- We prove a similar Bruhat–Tits stratification for \mathcal{N}^{red} by smooth projective varieties. Example
 - n = 2: $\chi(V) = +1$, $\mathcal{M} \simeq \operatorname{Spf} O_{\check{F}}[[x, y]]/(xy \pi^2)$, $\mathcal{M}^{\operatorname{red}} = \{\operatorname{pt}\},$
 - n = 2: $\chi(V) = -1$, $\mathcal{M} \simeq \widehat{\Omega}_{F_0} \times_{\text{Spf } O_{F_0}} \text{Spf } O_{\check{F}}$, dim $\mathcal{M}^{\text{red}} = 1$.

- \mathcal{N} is locally of finite type, and semistable of relative dimension n-1 over Spf $O_{\not F}$.
- There is another integral model \mathcal{M} (Pappas model), which is flat but not regular. The Krämer model \mathcal{N} provides a resolution of singularities

$$\mathcal{N} \to \mathcal{M},$$

- \mathcal{M}^{red} has a Bruhat–Tits stratification [Rapoport–Terstiege–Wilson] into generalized Deligne–Lusztig varieties DL_i of dimension *i*, associated to a parabolic subgroup of Sp(2*i*)_{/k} (normal with isolated singularities when *i* > 1).
- We prove a similar Bruhat–Tits stratification for \mathcal{N}^{red} by smooth projective varieties. Example
 - n = 2: $\chi(V) = +1$, $\mathcal{M} \simeq \operatorname{Spf} O_{\check{F}}[[x, y]]/(xy \pi^2)$, $\mathcal{M}^{\operatorname{red}} = \{\operatorname{pt}\},$
 - n = 2: $\chi(V) = -1$, $\mathcal{M} \simeq \widehat{\Omega}_{F_0} \times_{\text{Spf } O_{F_0}} \text{Spf } O_{\not{F}}$, dim $\mathcal{M}^{\text{red}} = 1$.
 - n = 3, \mathcal{M} complicated, dim $\mathcal{M}^{red} = 1$.

- \mathcal{N} is locally of finite type, and semistable of relative dimension n-1 over Spf $O_{\not F}$.
- There is another integral model \mathcal{M} (Pappas model), which is flat but not regular. The Krämer model \mathcal{N} provides a resolution of singularities

$$\mathcal{N} \to \mathcal{M},$$

- \mathcal{M}^{red} has a Bruhat–Tits stratification [Rapoport–Terstiege–Wilson] into generalized Deligne–Lusztig varieties DL_i of dimension *i*, associated to a parabolic subgroup of Sp(2*i*)_{/ \bar{k}} (normal with isolated singularities when *i* > 1).
- We prove a similar Bruhat–Tits stratification for \mathcal{N}^{red} by smooth projective varieties. Example
 - n = 2: $\chi(V) = +1$, $\mathcal{M} \simeq \operatorname{Spf} O_{\check{F}}[[x, y]]/(xy \pi^2)$, $\mathcal{M}^{\operatorname{red}} = \{\operatorname{pt}\},$
 - n = 2: $\chi(V) = -1$, $\mathcal{M} \simeq \widehat{\Omega}_{F_0} \times_{\text{Spf } O_{F_0}} \text{Spf } O_{\not{F}}$, dim $\mathcal{M}^{\text{red}} = 1$.
 - n = 3, \mathcal{M} complicated, dim $\mathcal{M}^{red} = 1$.

- \mathcal{N} is locally of finite type, and semistable of relative dimension n-1 over Spf $O_{\not F}$.
- There is another integral model \mathcal{M} (Pappas model), which is flat but not regular. The Krämer model \mathcal{N} provides a resolution of singularities

$$\mathcal{N} \to \mathcal{M},$$

- \mathcal{M}^{red} has a Bruhat–Tits stratification [Rapoport–Terstiege–Wilson] into generalized Deligne–Lusztig varieties DL_i of dimension *i*, associated to a parabolic subgroup of Sp(2*i*)_{/ \bar{k}} (normal with isolated singularities when *i* > 1).
- We prove a similar Bruhat–Tits stratification for \mathcal{N}^{red} by smooth projective varieties. Example
 - n = 2: $\chi(V) = +1$, $\mathcal{M} \simeq \operatorname{Spf} O_{\check{F}}[[x, y]]/(xy \pi^2)$, $\mathcal{M}^{\operatorname{red}} = \{\operatorname{pt}\},$
 - n = 2: $\chi(V) = -1$, $\mathcal{M} \simeq \widehat{\Omega}_{F_0} \times_{\text{Spf } O_{F_0}} \text{Spf } O_{\not{F}}$, dim $\mathcal{M}^{\text{red}} = 1$.
 - n = 3, \mathcal{M} complicated, $\dim \mathcal{M}^{red} = 1$.

- \mathcal{N} is locally of finite type, and semistable of relative dimension n-1 over Spf $O_{\not F}$.
- There is another integral model \mathcal{M} (Pappas model), which is flat but not regular. The Krämer model \mathcal{N} provides a resolution of singularities

$$\mathcal{N} \to \mathcal{M},$$

with fiber of each singular point isomorphic to $\mathbb{P}^{n-1}_{/\bar{k}}$ ("exceptional divisor").

- \mathcal{M}^{red} has a Bruhat–Tits stratification [Rapoport–Terstiege–Wilson] into generalized Deligne–Lusztig varieties DL_i of dimension *i*, associated to a parabolic subgroup of Sp(2*i*)_{/k} (normal with isolated singularities when *i* > 1).
- We prove a similar Bruhat–Tits stratification for \mathcal{N}^{red} by smooth projective varieties. Example
 - n = 2: $\chi(V) = +1$, $\mathcal{M} \simeq \operatorname{Spf} O_{\check{F}}[[x, y]]/(xy \pi^2)$, $\mathcal{M}^{\operatorname{red}} = \{\operatorname{pt}\},$
 - n = 2: $\chi(V) = -1$, $\mathcal{M} \simeq \widehat{\Omega}_{F_0} \times_{\text{Spf } O_{F_0}} \text{Spf } O_{\not{F}}$, dim $\mathcal{M}^{\text{red}} = 1$.
 - n = 3, \mathcal{M} complicated, $\dim_{DT} \mathcal{M}^{red} = 1$.

Chao Li (Columbia)

$$\begin{split} \mathsf{DL}_0 &= \{\mathsf{pt}\}, \text{ a single point.} \\ \mathsf{DL}_1 &\simeq \mathbb{P}^1. \\ &\#\{\mathsf{DL}_1 \supseteq \text{ a given } \mathsf{DL}_0\} = q+1. \\ &\#\{\mathsf{DL}_0 \subseteq \text{ a given } \mathsf{DL}_1\} = q+1. \end{split}$$

Kudla-Rapoport conjecture for Krämer models

• V: hermitian space over F of same dimension n, but

 $\chi(\mathbb{V}) = -\chi(V).$

• V can be identified with the space of special quasi-homomorphisms:

$$\mathbb{V} = \operatorname{Hom}_{O_F}(\overline{\mathbb{E}}, \mathbb{X}) \otimes_{O_F} F.$$

Here $\overline{\mathbb{E}}$ is the standard framing object of signature (0, 1).

• V: hermitian space over F of same dimension n, but

 $\chi(\mathbb{V}) = -\chi(V).$

• V can be identified with the space of special quasi-homomorphisms:

$$\mathbb{V} = \operatorname{Hom}_{O_{\mathcal{F}}}(\overline{\mathbb{E}}, \mathbb{X}) \otimes_{O_{\mathcal{F}}} \mathcal{F}.$$

Here $\overline{\mathbb{E}}$ is the standard framing object of signature (0, 1).

- Each $x \in \mathbb{V}$ gives a special divisor $\mathcal{Z}(x) \subseteq \mathcal{N}$, the locus where x deforms.
- $\mathcal{Z}(x)$ is non-empty only when x is integral, i.e., $(x, x) \in O_F$.

• \mathbb{V} : hermitian space over *F* of same dimension *n*, but

 $\chi(\mathbb{V}) = -\chi(V).$

• $\ensuremath{\mathbb{V}}$ can be identified with the space of special quasi-homomorphisms:

$$\mathbb{V} = \operatorname{Hom}_{O_{\mathcal{F}}}(\overline{\mathbb{E}}, \mathbb{X}) \otimes_{O_{\mathcal{F}}} \mathcal{F}.$$

Here $\overline{\mathbb{E}}$ is the standard framing object of signature (0, 1).

- Each $x \in \mathbb{V}$ gives a special divisor $\mathcal{Z}(x) \subseteq \mathcal{N}$, the locus where x deforms.
- $\mathcal{Z}(x)$ is non-empty only when x is integral, i.e., $(x, x) \in O_F$.
- $L = \langle x_1, \dots, x_n \rangle \subseteq \mathbb{V}$: O_F -lattice of rank n. Define the special cycle

$$\mathcal{Z}(L) := \mathcal{Z}(x_1) \cap \cdots \cap \mathcal{Z}(x_n) \subseteq \mathcal{N}.$$

· Define the arithmetic intersection number

$$\mathsf{Int}(\mathcal{L}) := \chi(\mathcal{N}, \mathcal{O}_{\mathcal{Z}(x_1)} \otimes^{\mathbb{L}} \cdots \otimes^{\mathbb{L}} \mathcal{O}_{\mathcal{Z}(x_n)}) \in \mathbb{Z}.$$

Int(L) depends only on L [Howard]; it is nonzero only when L is integral, i.e. L ⊆ L[♯].

- L, M: two hermitian O_F-lattices of rank n, m.
- Herm_{*L*,*M*}: the O_{F_0} -scheme of hermitian O_F -module homomorphisms from *L* to *M*.
- Define the local density of representations to be

$$\mathsf{Den}(M,L) := \lim_{N o +\infty} rac{|\mathsf{Herm}_{L,M}(O_{F_0}/\pi^{2N})|}{q^{N \cdot d_{L,M}}}$$

where $d_{L,M}$ is the dimension of Herm_{L,M} $\otimes_{O_{F_0}} F_0$.

- L, M: two hermitian O_F-lattices of rank n, m.
- Herm_{L,M}: the O_{F_0} -scheme of hermitian O_F -module homomorphisms from L to M.
- Define the local density of representations to be

$$\mathsf{Den}(M,L):=\lim_{N
ightarrow+\infty}rac{|\mathsf{Herm}_{L,M}(\mathcal{O}_{\mathcal{F}_0}/\pi^{2N})|}{q^{N\cdot d_{L,M}}},$$

where $d_{L,M}$ is the dimension of Herm_{L,M} $\otimes_{O_{F_0}} F_0$.

- *H*: standard hyperbolic hermitian O_F -lattice of rank 2 (with matrix $\begin{pmatrix} 0 & \pi^{-1} \\ -\pi^{-1} & 0 \end{pmatrix}$).
- There is a local density polynomial $Den(M, L, X) \in \mathbb{Q}[X]$ such that for any $k \ge 0$,

$$Den(M, L, q^{-2k}) = Den(H^k \oplus M, L).$$

- *L*, *M*: two hermitian *O_F*-lattices of rank *n*, *m*.
- Herm_{L,M}: the O_{F_0} -scheme of hermitian O_F -module homomorphisms from L to M.
- Define the local density of representations to be

$$\mathsf{Den}(M,L):=\lim_{N
ightarrow+\infty}rac{|\mathsf{Herm}_{L,M}(\mathcal{O}_{\mathcal{F}_0}/\pi^{2N})|}{q^{N\cdot d_{L,M}}},$$

where $d_{L,M}$ is the dimension of Herm_{L,M} $\otimes_{O_{F_0}} F_0$.

- *H*: standard hyperbolic hermitian O_F -lattice of rank 2 (with matrix $\begin{pmatrix} 0 & \pi^{-1} \\ -\pi^{-1} & 0 \end{pmatrix}$).
- There is a local density polynomial $Den(M, L, X) \in \mathbb{Q}[X]$ such that for any $k \geq 0$,

$$Den(M, L, q^{-2k}) = Den(H^k \oplus M, L).$$

 Den(M, L, X) appears in the local factor for the *T*-coefficient of E(τ, s, φ) (Dictionary: locally φ is 1_{Mⁿ}; *T* is the moment matrix of L).

- L, M: two hermitian O_F-lattices of rank n, m.
- Herm_{L,M}: the O_{F_0} -scheme of hermitian O_F -module homomorphisms from L to M.
- Define the local density of representations to be

$$\mathsf{Den}(M,L):=\lim_{N
ightarrow+\infty}rac{|\mathsf{Herm}_{L,M}(\mathcal{O}_{\mathcal{F}_0}/\pi^{2N})|}{q^{N\cdot d_{L,M}}},$$

where $d_{L,M}$ is the dimension of Herm_{L,M} $\otimes_{O_{F_0}} F_0$.

- *H*: standard hyperbolic hermitian O_F -lattice of rank 2 (with matrix $\begin{pmatrix} 0 & \pi^{-1} \\ -\pi^{-1} & 0 \end{pmatrix}$).
- There is a local density polynomial $Den(M, L, X) \in \mathbb{Q}[X]$ such that for any $k \geq 0$,

$$Den(M, L, q^{-2k}) = Den(H^k \oplus M, L).$$

- Den(M, L, X) appears in the local factor for the *T*-coefficient of E(τ, s, φ) (Dictionary: locally φ is 1_{Mⁿ}; *T* is the moment matrix of *L*).
- For us, take n = m, $M = I_n \subseteq V$ self dual and $L \subseteq V$.

- L, M: two hermitian O_F-lattices of rank n, m.
- Herm_{L,M}: the O_{F_0} -scheme of hermitian O_F -module homomorphisms from L to M.
- Define the local density of representations to be

$$\mathsf{Den}(M,L):=\lim_{N
ightarrow+\infty}rac{|\mathsf{Herm}_{L,M}(\mathcal{O}_{\mathcal{F}_0}/\pi^{2N})|}{q^{N\cdot d_{L,M}}},$$

where $d_{L,M}$ is the dimension of Herm_{L,M} $\otimes_{O_{F_0}} F_0$.

- *H*: standard hyperbolic hermitian O_F -lattice of rank 2 (with matrix $\begin{pmatrix} 0 & \pi^{-1} \\ -\pi^{-1} & 0 \end{pmatrix}$).
- There is a local density polynomial $Den(M, L, X) \in \mathbb{Q}[X]$ such that for any $k \geq 0$,

$$Den(M, L, q^{-2k}) = Den(H^k \oplus M, L).$$

- Den(M, L, X) appears in the local factor for the *T*-coefficient of E(τ, s, φ) (Dictionary: locally φ is 1_{Mⁿ}; *T* is the moment matrix of L).
- For us, take n = m, $M = I_n \subseteq V$ self dual and $L \subseteq V$.
- Since $\chi(M) \neq \chi(L)$, we have $\text{Den}(I_n, L) = 0$ and consider the derivative

$$\operatorname{Den}'(I_n,L) := -2 \cdot \frac{\mathsf{d}}{\mathsf{d}X} \bigg|_{X=1} \operatorname{Den}(I_n,L,X).$$

• Define the (normalized) derived local density

$$\mathsf{Den}'(L) := rac{\mathsf{Den}'(I_n, L)}{\mathsf{Den}(I_n, I_n)} \in \mathbb{Q}.$$

Chao Li (Columbia)

Kudla-Rapoport conjecture for Krämer models

• Naive analogue of the KR conjecture for Krämer models states

· Naive analogue of the KR conjecture for Krämer models states

 $\operatorname{Int}(L) \stackrel{?}{=} \operatorname{Den}'(L).$

• However, this identity does not hold for easy reasons:

• Naive analogue of the KR conjecture for Krämer models states

- However, this identity does not hold for easy reasons:
 - Int(*L*) vanishes when *L* is non-integral.

• Naive analogue of the KR conjecture for Krämer models states

- However, this identity does not hold for easy reasons:
 - Int(L) vanishes when L is non-integral.
 - Den'(L) may not vanish when L is non-integral.

· Naive analogue of the KR conjecture for Krämer models states

- However, this identity does not hold for easy reasons:
 - Int(L) vanishes when L is non-integral.
 - Den'(L) may not vanish when L is non-integral.
- Why this discrepancy? There are two notions of dual lattices for hermitian forms:

$$L^{\sharp} := \{ x \in \mathbb{V} : (x, L) \subseteq O_F \}, \quad L^{\vee} := \{ x \in \mathbb{V} : \operatorname{tr}_{F/F_0}(x, L) \subseteq O_{F_0} \}.$$

• Naive analogue of the KR conjecture for Krämer models states

 $\operatorname{Int}(L) \stackrel{?}{=} \operatorname{Den}'(L).$

- However, this identity does not hold for easy reasons:
 - Int(L) vanishes when L is non-integral.
 - Den'(L) may not vanish when L is non-integral.
- Why this discrepancy? There are two notions of dual lattices for hermitian forms:

$$L^{\sharp} := \{ x \in \mathbb{V} : (x, L) \subseteq O_F \}, \quad L^{\vee} := \{ x \in \mathbb{V} : \operatorname{tr}_{F/F_0}(x, L) \subseteq O_{F_0} \}.$$

When F/F_0 is unramified, $L^{\sharp} = L^{\vee}$. But when F/F_0 is ramified, $\pi^{-1}L^{\sharp} = L^{\vee}$.

· Naive analogue of the KR conjecture for Krämer models states

 $\operatorname{Int}(L) \stackrel{?}{=} \operatorname{Den}'(L).$

- However, this identity does not hold for easy reasons:
 - Int(L) vanishes when L is non-integral.
 - Den'(L) may not vanish when L is non-integral.
- Why this discrepancy? There are two notions of dual lattices for hermitian forms:

$$L^{\sharp} := \{ x \in \mathbb{V} : (x, L) \subseteq O_F \}, \quad L^{\vee} := \{ x \in \mathbb{V} : \operatorname{tr}_{F/F_0}(x, L) \subseteq O_{F_0} \}.$$

When F/F_0 is unramified, $L^{\sharp} = L^{\vee}$. But when F/F_0 is ramified, $\pi^{-1}L^{\sharp} = L^{\vee}$.

• $H = H^{\vee}$: Den'(L) = 0 unless $L \subseteq L^{\vee} = \pi^{-1}L^{\sharp}$.

• Naive analogue of the KR conjecture for Krämer models states

 $\operatorname{Int}(L) \stackrel{?}{=} \operatorname{Den}'(L).$

- However, this identity does not hold for easy reasons:
 - Int(L) vanishes when L is non-integral.
 - Den'(L) may not vanish when L is non-integral.
- Why this discrepancy? There are two notions of dual lattices for hermitian forms:

$$L^{\sharp} := \{ x \in \mathbb{V} : (x, L) \subseteq O_F \}, \quad L^{\vee} := \{ x \in \mathbb{V} : \operatorname{tr}_{F/F_0}(x, L) \subseteq O_{F_0} \}.$$

When F/F_0 is unramified, $L^{\sharp} = L^{\vee}$. But when F/F_0 is ramified, $\pi^{-1}L^{\sharp} = L^{\vee}$.

• $H = H^{\vee}$: Den'(L) = 0 unless $L \subseteq L^{\vee} = \pi^{-1}L^{\sharp}$.

Example

An integral O_F -lattice $\Lambda \subseteq \mathbb{V}$ is called a vertex lattice (of type *t*) if Λ^{\sharp}/Λ is a *k*-vector space (of dimension *t*), equivalently

$$\Lambda \subseteq^t \Lambda^{\sharp} \subseteq \pi^{-1} \Lambda.$$

· Naive analogue of the KR conjecture for Krämer models states

 $Int(L) \stackrel{?}{=} Den'(L).$

- However, this identity does not hold for easy reasons:
 - Int(*L*) vanishes when *L* is non-integral.
 - Den'(L) may not vanish when L is non-integral.
- Why this discrepancy? There are two notions of dual lattices for hermitian forms:

$$L^{\sharp} := \{ x \in \mathbb{V} : (x, L) \subseteq O_F \}, \quad L^{\vee} := \{ x \in \mathbb{V} : \operatorname{tr}_{F/F_0}(x, L) \subseteq O_{F_0} \}.$$

When F/F_0 is unramified, $L^{\sharp} = L^{\vee}$. But when F/F_0 is ramified, $\pi^{-1}L^{\sharp} = L^{\vee}$.

• $H = H^{\vee}$: Den'(L) = 0 unless $L \subseteq L^{\vee} = \pi^{-1}L^{\sharp}$.

Example

An integral O_F -lattice $\Lambda \subseteq \mathbb{V}$ is called a vertex lattice (of type *t*) if Λ^{\sharp}/Λ is a *k*-vector space (of dimension *t*), equivalently

$$\Lambda \subseteq^t \Lambda^{\sharp} \subseteq \pi^{-1} \Lambda.$$

Let Λ_t be a vertex lattice of type t > 0. Then $L = \Lambda_t^{\sharp}$ satisfies $L \not\subseteq L^{\sharp}$, while $L \subseteq L^{\vee}$, so: $Int(\Lambda_t^{\sharp}) = 0$, while $Den'(\Lambda_t^{\sharp}) \neq 0$.

Modified Kudla-Rapoport conjecture for Krämer models

Modified Kudla-Rapoport conjecture for Krämer models

 Idea [He–Shi–Yang 2021]: modify Den'(L) with a linear combination of local densities

$$\mathsf{Den}_t(L) := rac{\mathsf{Den}(\Lambda^{\sharp}_t,L)}{\mathsf{Den}(\Lambda^{\sharp}_t,\Lambda^{\sharp}_t)} \in \mathbb{Z}.$$
Modified Kudla-Rapoport conjecture for Krämer models

 Idea [He–Shi–Yang 2021]: modify Den'(L) with a linear combination of local densities

$$\mathsf{Den}_t(L) := rac{\mathsf{Den}(\Lambda_t^\sharp, L)}{\mathsf{Den}(\Lambda_t^\sharp, \Lambda_t^\sharp)} \in \mathbb{Z}.$$

• Possible vertex type *t* is given by any even integer such that $0 \le t \le t_{max}$, where

$$t_{\max} = \begin{cases} n, & \text{if } n \text{ even}, \chi(\mathbb{V}) = +1, \\ n-1, & \text{if } n \text{ odd}, \\ n-2, & \text{if } n \text{ even}, \chi(\mathbb{V}) = -1. \end{cases}$$

Modified Kudla-Rapoport conjecture for Krämer models

 Idea [He–Shi–Yang 2021]: modify Den'(L) with a linear combination of local densities

$$\mathsf{Den}_t(L) := rac{\mathsf{Den}(\Lambda^\sharp_t, L)}{\mathsf{Den}(\Lambda^\sharp_t, \Lambda^\sharp_t)} \in \mathbb{Z}.$$

• Possible vertex type *t* is given by any even integer such that $0 \le t \le t_{max}$, where

$$t_{\max} = \begin{cases} n, & \text{if } n \text{ even, } \chi(\mathbb{V}) = +1, \\ n-1, & \text{if } n \text{ odd,} \\ n-2, & \text{if } n \text{ even, } \chi(\mathbb{V}) = -1. \end{cases}$$

• Define the modified derived local density

$$\partial \mathsf{Den}(\mathcal{L}) := \mathsf{Den}'(\mathcal{L}) + \sum_{j=1}^{t_{\max}/2} c_{2j} \cdot \mathsf{Den}_{2j}(\mathcal{L}) \in \mathbb{Z}.$$

Here the coefficients $c_{2i} \in \mathbb{Q}$ are chosen to satisfy

$$\partial \mathsf{Den}(\Lambda^{\sharp}_{2i}) = 0, \quad 1 \leq i \leq t_{\max}/2,$$

which is a linear system in $(c_2, c_4, \ldots, c_{t_{max}})$ with a unique solution.

Chao Li (Columbia)

Modified Kudla-Rapoport conjecture for Krämer models

 Idea [He–Shi–Yang 2021]: modify Den'(L) with a linear combination of local densities

$$\mathsf{Den}_t(L) := rac{\mathsf{Den}(\Lambda^\sharp_t, L)}{\mathsf{Den}(\Lambda^\sharp_t, \Lambda^\sharp_t)} \in \mathbb{Z}.$$

• Possible vertex type *t* is given by any even integer such that $0 \le t \le t_{max}$, where

$$t_{\max} = \begin{cases} n, & \text{if } n \text{ even, } \chi(\mathbb{V}) = +1, \\ n-1, & \text{if } n \text{ odd,} \\ n-2, & \text{if } n \text{ even, } \chi(\mathbb{V}) = -1. \end{cases}$$

• Define the modified derived local density

$$\partial \mathsf{Den}(L) := \mathsf{Den}'(L) + \sum_{j=1}^{t_{\max}/2} c_{2j} \cdot \mathsf{Den}_{2j}(L) \in \mathbb{Z}.$$

Here the coefficients $c_{2j} \in \mathbb{Q}$ are chosen to satisfy

$$\partial {
m Den}(\Lambda^{\sharp}_{2i}) = 0, \quad 1 \leq i \leq t_{
m max}/2,$$

which is a linear system in $(c_2, c_4, \ldots, c_{t_{max}})$ with a unique solution.

Theorem (He–L.–Shi–Yang 2022, Local KR for Krämer models) Let $L \subseteq \mathbb{V}$ be an O_F -lattice of rank n. Then

$$Int(L) = \partial Den(L).$$

Chao Li (Columbia)

Kudla-Rapoport conjecture for Krämer models

Theorem ([He-L.-Shi-Yang 2022], Local KR for Krämer models) Let $L \subseteq \mathbb{V}$ be an O_F -lattice of rank n. Then

$$\mathsf{Int}(\mathcal{L}) = \partial \mathsf{Den}(\mathcal{L}).$$

ere $\partial \mathsf{Den}(\mathcal{L}) := \mathsf{Den}'(\mathcal{L}) + \sum_{j=1}^{t_{\max}/2} c_{2j} \cdot \mathsf{Den}_{2j}(\mathcal{L}) \in \mathbb{Z}.$

He

Theorem ([He–L.–Shi–Yang 2022], Local KR for Krämer models) Let $L \subseteq \mathbb{V}$ be an O_F -lattice of rank n. Then

$$\operatorname{Int}(L) = \partial \operatorname{Den}(L). \ \partial \operatorname{Den}(L) := \operatorname{Den}'(L) + \sum_{j=1}^{t_{\max}/2} c_{2j} \cdot \operatorname{Den}_{2j}(L) \in \mathbb{Z}.$$

Theorem ([He-L.-Shi-Yang 2022], KR for Krämer models, precise version)

Define

Here

$$\Phi_{\nu} := \sum_{j=1}^{t_{\max}/2} c_{2j} \cdot \mathbf{1}_{(\Lambda_{2j}^{\sharp})^n} \cdot \frac{\operatorname{vol}(\mathsf{U}(I_n))}{\operatorname{vol}(\mathsf{U}(\Lambda_{2j}^{\sharp}))} \cdot \log q_{\nu} \in \mathscr{S}(\mathbb{V}_{\nu}^n).$$

- -

Theorem ([He–L.–Shi–Yang 2022], Local KR for Krämer models) Let $L \subseteq \mathbb{V}$ be an O_F -lattice of rank n. Then

$$\mathsf{Int}(\mathcal{L}) = \partial \mathsf{Den}(\mathcal{L}). \ \partial \mathsf{Den}(\mathcal{L}) := \mathsf{Den}'(\mathcal{L}) + \sum_{j=1}^{t_{\max}/2} c_{2j} \cdot \mathsf{Den}_{2j}(\mathcal{L}) \in \mathbb{Z}$$

Theorem ([He-L.-Shi-Yang 2022], KR for Krämer models, precise version)

$$\Phi_{v} := \sum_{j=1}^{t_{\max}/2} c_{2j} \cdot \mathbf{1}_{(\Lambda_{2j}^{\sharp})^{n}} \cdot \frac{\operatorname{vol}(\mathsf{U}(I_{n}))}{\operatorname{vol}(\mathsf{U}(\Lambda_{2j}^{\sharp}))} \cdot \log q_{v} \in \mathscr{S}(\mathbb{V}_{v}^{n}).$$

Then for any $T \in \text{Herm}_n(F_0)_{>0}$,

Here

Define

$$\operatorname{Int}_{T,\nu}(\varphi)q^{T} \stackrel{\cdot}{=} E_{T,\nu}'(\tau,0,\varphi) + E_{T}(\tau,0,\varphi^{\nu}\otimes\Phi_{\nu}).$$

Theorem ([He–L.–Shi–Yang 2022], Local KR for Krämer models) Let $L \subseteq \mathbb{V}$ be an O_F -lattice of rank n. Then

$$\operatorname{Int}(L) = \partial \operatorname{\mathsf{Den}}(L). \ \partial \operatorname{\mathsf{Den}}(L) := \operatorname{\mathsf{Den}}'(L) + \sum_{j=1}^{t_{\max}/2} c_{2j} \cdot \operatorname{\mathsf{Den}}_{2j}(L) \in \mathbb{Z}.$$

Theorem ([He-L.-Shi-Yang 2022], KR for Krämer models, precise version)

$$\Phi_{\nu} := \sum_{j=1}^{t_{\max}/2} c_{2j} \cdot \mathbf{1}_{(\Lambda_{2j}^{\sharp})^n} \cdot \frac{\operatorname{vol}(\mathsf{U}(I_n))}{\operatorname{vol}(\mathsf{U}(\Lambda_{2j}^{\sharp}))} \cdot \log q_{\nu} \in \mathscr{S}(\mathbb{V}_{\nu}^n).$$

Then for any $T \in \text{Herm}_n(F_0)_{>0}$,

$$\operatorname{Int}_{T,\nu}(\varphi)\boldsymbol{q}^{T} \stackrel{\cdot}{=} \boldsymbol{E}_{T,\nu}'(\tau,0,\varphi) + \boldsymbol{E}_{T}(\tau,0,\varphi^{\nu}\otimes\Phi_{\nu}).$$

Remark

Also prove a closed formula for c_{2i} in terms of quadratic spaces over finite fields:

$$c_t = -2 \frac{\prod_{\ell=1}^{t-1} (1-q^{2\ell})}{\mathsf{Den}(I_n, I_n)} \cdot \sum_{i=0}^{n-t} \prod_{\ell=0}^{n-t-i-1} (1-q^{2(\ell+t)}) \cdot \sum_{W \in \mathrm{Gr}(i, \overline{I_{n-t}})(\mathbb{F}_q)} |\mathsf{O}(W, \overline{I_n})|.$$

Theorem ([He–L.–Shi–Yang 2022], Local KR for Krämer models) Let $L \subseteq \mathbb{V}$ be an O_F -lattice of rank n. Then

$$\operatorname{Int}(L) = \partial \operatorname{\mathsf{Den}}(L). \ \partial \operatorname{\mathsf{Den}}(L) := \operatorname{\mathsf{Den}}'(L) + \sum_{j=1}^{t_{\max}/2} c_{2j} \cdot \operatorname{\mathsf{Den}}_{2j}(L) \in \mathbb{Z}.$$

Theorem ([He-L.-Shi-Yang 2022], KR for Krämer models, precise version)

$$\Phi_{\nu} := \sum_{j=1}^{l_{\max}/2} c_{2j} \cdot \mathbf{1}_{(\Lambda_{2j}^{\sharp})^n} \cdot \frac{\operatorname{vol}(\mathsf{U}(I_n))}{\operatorname{vol}(\mathsf{U}(\Lambda_{2j}^{\sharp}))} \cdot \log q_{\nu} \in \mathscr{S}(\mathbb{V}_{\nu}^n).$$

Then for any $T \in \operatorname{Herm}_n(F_0)_{>0}$,

$$\operatorname{Int}_{T,\nu}(\varphi)\boldsymbol{q}^{T} \stackrel{\cdot}{=} \boldsymbol{E}_{T,\nu}'(\tau,0,\varphi) + \boldsymbol{E}_{T}(\tau,0,\varphi^{\nu}\otimes\Phi_{\nu}).$$

Remark

Also prove a closed formula for c_{2j} in terms of quadratic spaces over finite fields:

$$c_{t} = -2 \frac{\prod_{\ell=1}^{t-1} (1-q^{2\ell})}{\text{Den}(I_{n}, I_{n})} \cdot \sum_{i=0}^{n-t} \prod_{\ell=0}^{n-t-i-1} (1-q^{2(\ell+t)}) \cdot \sum_{W \in \text{Gr}(i, \overline{I_{n-t}})(\mathbb{F}_{q})} |O(W, \overline{I_{n}})|.$$

It can be simplified depending on *n* and $\chi(\mathbb{V})$, e.g. when *n* is odd:

$$c_{2j} = rac{(-1)^{n+j}}{q^{j(n-j-1)}(q^j+1)}.$$

Chao Li (Columbia)

Kudla-Rapoport conjecture for Krämer models

Theorem (Lattice-theoretic formula for $\partial Den(L)$)

Let $L \subseteq \mathbb{V}$ be an O_F -lattice of rank n. Then there is a primitive decomposition

$$\partial \text{Den}(L) = \sum_{L \subset L' \subset L_F} \partial \text{Pden}(L').$$

Theorem (Lattice-theoretic formula for $\partial Den(L)$)

Let $L \subseteq \mathbb{V}$ be an O_F -lattice of rank n. Then there is a primitive decomposition

$$\partial \text{Den}(L) = \sum_{L \subset L' \subset L_F} \partial \text{Pden}(L').$$

• If L is not integral,

 $\partial \text{Pden}(L) = 0.$

Theorem (Lattice-theoretic formula for $\partial Den(L)$)

Let $L \subseteq \mathbb{V}$ be an O_F -lattice of rank n. Then there is a primitive decomposition

$$\partial \mathsf{Den}(L) = \sum_{L \subset L' \subset L_F} \partial \mathsf{Pden}(L').$$

• If L is not integral,

 $\partial \text{Pden}(L) = 0.$

• If *L* is integral, then $\partial Pden(L)$ has a simple formula, e.g. when *n* is odd,

$$\partial \mathsf{Pden}(\mathcal{L}) = \begin{cases} 1, & \text{if } t = 0, \\ \prod_{\ell=1}^{\frac{t-1}{2}} (1 - q^{2\ell}), & \text{if } t > 0 \text{ is odd}, \\ (1 - \chi(\mathcal{L}')q^{\frac{1}{2}}) \prod_{\ell=1}^{\frac{t}{2}-1} (1 - q^{2\ell}), & \text{if } t > 0 \text{ is even.} \end{cases}$$

Here we write $L \simeq I_{n-t} \oplus L'$ with I_{n-t} self dual of rank n - t.

Theorem (Lattice-theoretic formula for $\partial Den(L)$)

Let $L \subseteq \mathbb{V}$ be an O_F -lattice of rank n. Then there is a primitive decomposition

$$\partial \mathsf{Den}(L) = \sum_{L \subset L' \subset L_F} \partial \mathsf{Pden}(L').$$

• If L is not integral,

 $\partial \text{Pden}(L) = 0.$

• If *L* is integral, then $\partial Pden(L)$ has a simple formula, e.g. when *n* is odd,

$$\partial \mathsf{Pden}(L) = \begin{cases} 1, & \text{if } t = 0, \\ \prod_{\ell=1}^{\frac{t-1}{2}} (1 - q^{2\ell}), & \text{if } t > 0 \text{ is odd}, \\ (1 - \chi(L')q^{\frac{t}{2}}) \prod_{\ell=1}^{\frac{t}{2}-1} (1 - q^{2\ell}), & \text{if } t > 0 \text{ is even.} \end{cases}$$

Here we write $L \simeq I_{n-t} \oplus L'$ with I_{n-t} self dual of rank n - t.

Remark

This theorem involves proving a lot of cancellation of terms.

Theorem (Lattice-theoretic formula for $\partial Den(L)$)

Let $L \subseteq \mathbb{V}$ be an O_F -lattice of rank n. Then there is a primitive decomposition

$$\partial \mathsf{Den}(L) = \sum_{L \subset L' \subset L_F} \partial \mathsf{Pden}(L').$$

• If L is not integral,

 $\partial \text{Pden}(L) = 0.$

• If L is integral, then $\partial Pden(L)$ has a simple formula, e.g. when n is odd,

$$\partial \mathsf{Pden}(L) = \begin{cases} 1, & \text{if } t = 0, \\ \prod_{\ell=1}^{\frac{t-1}{2}} (1 - q^{2\ell}), & \text{if } t > 0 \text{ is odd}, \\ (1 - \chi(L')q^{\frac{t}{2}}) \prod_{\ell=1}^{\frac{t}{2}-1} (1 - q^{2\ell}), & \text{if } t > 0 \text{ is even.} \end{cases}$$

Here we write $L \simeq I_{n-t} \oplus L'$ with I_{n-t} self dual of rank n-t.

Remark

This theorem involves proving a lot of cancellation of terms. The cancellation is easier when L is "very integral", harder when L is "slightly integral", and hardest when L is "slightly non-integral". The modification assumption exactly kicks in to simplify the hardest case.

• Goal: $Int(L) = \partial Den(L).$

- Goal: $Int(L) = \partial Den(L).$
- Fix $L^{\flat} \subseteq \mathbb{V}$ a non-degenerate O_F -lattice of rank n-1.
- Define functions on $x \in \mathbb{V} \setminus L_F^{\flat}$,

 $\mathsf{Int}_{L^\flat}(x) := \mathsf{Int}(L^\flat + \langle x \rangle), \quad \partial \mathsf{Den}_{L^\flat}(x) := \partial \mathsf{Den}(L^\flat + \langle x \rangle).$

- Goal: $Int(L) = \partial Den(L).$
- Fix $L^{\flat} \subseteq \mathbb{V}$ a non-degenerate O_F -lattice of rank n-1.
- Define functions on $x \in \mathbb{V} \setminus L_F^{\flat}$,

 $\mathsf{Int}_{L^\flat}(x) := \mathsf{Int}(L^\flat + \langle x \rangle), \quad \partial \mathsf{Den}_{L^\flat}(x) := \partial \mathsf{Den}(L^\flat + \langle x \rangle).$

· Then it remains to show an identity of functions

 $\operatorname{Int}_{L^{\flat}} = \partial \operatorname{Den}_{L^{\flat}}.$

- Goal: $Int(L) = \partial Den(L).$
- Fix $L^{\flat} \subseteq \mathbb{V}$ a non-degenerate O_F -lattice of rank n-1.
- Define functions on $x \in \mathbb{V} \setminus L_F^{\flat}$,

 $\mathsf{Int}_{L^\flat}(x) := \mathsf{Int}(L^\flat + \langle x \rangle), \quad \partial \mathsf{Den}_{L^\flat}(x) := \partial \mathsf{Den}(L^\flat + \langle x \rangle).$

· Then it remains to show an identity of functions

 $\operatorname{Int}_{L^{\flat}} = \partial \operatorname{Den}_{L^{\flat}}.$

- Int_{L^b} is hard to compute due to improper intersection.
- $\partial \text{Den}_{L^b}$ has a (complicated) lattice-theoretic formula.

Proof strategy: decomposition

Chao Li (Columbia)

 $\mathsf{Int}_{L^\flat} = \mathsf{Int}_{L^\flat,\mathscr{H}} + \mathsf{Int}_{L^\flat,\mathscr{V}}, \quad \partial \mathsf{Den}_{L^\flat} = \partial \mathsf{Den}_{L^\flat,\mathscr{H}} + \partial \mathsf{Den}_{L^\flat,\mathscr{V}}$

into "horizontal" and "vertical" parts.

 $\mathsf{Int}_{L^\flat} = \mathsf{Int}_{L^\flat,\mathscr{H}} + \mathsf{Int}_{L^\flat,\mathscr{V}}, \quad \partial \mathsf{Den}_{L^\flat} = \partial \mathsf{Den}_{L^\flat,\mathscr{H}} + \partial \mathsf{Den}_{L^\flat,\mathscr{V}}$

into "horizontal" and "vertical" parts.

 $\mathsf{Int}_{L^\flat} = \mathsf{Int}_{L^\flat,\mathscr{H}} + \mathsf{Int}_{L^\flat,\mathscr{V}}, \quad \partial \mathsf{Den}_{L^\flat} = \partial \mathsf{Den}_{L^\flat,\mathscr{H}} + \partial \mathsf{Den}_{L^\flat,\mathscr{V}}$

into "horizontal" and "vertical" parts.

 $\mathrm{Int}_{L^{\flat},\mathscr{H}}(x):=\chi(\mathcal{N},\mathcal{Z}(L^{\flat})_{\mathscr{H}}\cap^{\mathbb{L}}\mathcal{Z}(x)),\quad \mathrm{Int}_{L^{\flat},\mathscr{V}}(x):=\mathrm{Int}_{L^{\flat}}(x)-\mathrm{Int}_{L^{\flat},\mathscr{H}}(x).$

 $\mathsf{Int}_{L^\flat} = \mathsf{Int}_{L^\flat,\mathscr{H}} + \mathsf{Int}_{L^\flat,\mathscr{V}}, \quad \partial \mathsf{Den}_{L^\flat} = \partial \mathsf{Den}_{L^\flat,\mathscr{H}} + \partial \mathsf{Den}_{L^\flat,\mathscr{V}}$

into "horizontal" and "vertical" parts.

 $\mathrm{Int}_{L^{\flat},\mathscr{H}}(x):=\chi(\mathcal{N},\mathcal{Z}(L^{\flat})_{\mathscr{H}}\cap^{\mathbb{L}}\mathcal{Z}(x)),\quad \mathrm{Int}_{L^{\flat},\mathscr{V}}(x):=\mathrm{Int}_{L^{\flat}}(x)-\mathrm{Int}_{L^{\flat},\mathscr{H}}(x).$

The horizontal part $\mathcal{Z}(L^{\flat})_{\mathscr{H}}$ can be understood in terms of Gross' quasi-canonical lifting, and allows us to match

$$\operatorname{Int}_{L^{\flat},\mathscr{H}} = \partial \operatorname{Den}_{L^{\flat},\mathscr{H}}.$$

Thus it remains to prove the vertical identity

$$\operatorname{Int}_{L^{\flat},\mathscr{V}} = \partial \operatorname{Den}_{L^{\flat},\mathscr{V}}.$$

Chao Li (Columbia)

Kudla-Rapoport conjecture for Krämer models

• $\mathbb{W} := (L_F^{\flat})^{\perp} \subseteq \mathbb{V}$, a 1-dimensional hermitian space over *F*.

- $\mathbb{W} := (L_F^{\flat})^{\perp} \subseteq \mathbb{V}$, a 1-dimensional hermitian space over *F*.
- Induction on valuation of L^{\flat} and *n* gives:

$$\operatorname{Int}_{L^{\flat},\mathscr{V}} - \partial \operatorname{Den}_{L^{\flat},\mathscr{V}} = \mathbf{1}_{L^{\flat}} \otimes f.$$

Here $f \in \mathscr{S}(\mathbb{W})$ vanishes on $\mathbb{W}^{\leq 0} := \{x \in \mathbb{W} : \operatorname{val}_{F_0}(x, x) \leq 0\}.$

- $\mathbb{W} := (L_F^{\flat})^{\perp} \subseteq \mathbb{V}$, a 1-dimensional hermitian space over *F*.
- Induction on valuation of L^b and n gives:

$$\operatorname{Int}_{L^{\flat},\mathscr{V}} - \partial \operatorname{Den}_{L^{\flat},\mathscr{V}} = \mathbf{1}_{L^{\flat}} \otimes f.$$

Here $f \in \mathscr{S}(\mathbb{W})$ vanishes on $\mathbb{W}^{\leq 0} := \{x \in \mathbb{W} : \operatorname{val}_{F_0}(x, x) \leq 0\}.$

• To show f = 0, define functions on $x \in W$,

$$\mathsf{Int}_{L^{\flat},\mathscr{V}}^{\bot}(x):=\int_{L^{\flat}_{\mathcal{F}}}\mathsf{Int}_{L^{\flat},\mathscr{V}}(y+x)\mathsf{d}y,\quad\partial\mathsf{Den}_{L^{\flat},\mathscr{V}}^{\bot}(x):=\int_{L^{\flat}_{\mathcal{F}}}\partial\mathsf{Den}_{L^{\flat},\mathscr{V}}(y+x)\mathsf{d}y.$$

- $\mathbb{W} := (L_F^{\flat})^{\perp} \subseteq \mathbb{V}$, a 1-dimensional hermitian space over *F*.
- Induction on valuation of L^b and n gives:

$$\operatorname{Int}_{L^{\flat},\mathscr{V}} - \partial \operatorname{Den}_{L^{\flat},\mathscr{V}} = \mathbf{1}_{L^{\flat}} \otimes f.$$

Here $f \in \mathscr{S}(\mathbb{W})$ vanishes on $\mathbb{W}^{\leq 0} := \{x \in \mathbb{W} : \operatorname{val}_{F_0}(x, x) \leq 0\}.$

• To show f = 0, define functions on $x \in \mathbb{W}$,

$$\operatorname{Int}_{L^{\flat},\mathscr{V}}^{\perp}(x) := \int_{L_{F}^{\flat}} \operatorname{Int}_{L^{\flat},\mathscr{V}}(y+x) dy, \quad \partial \operatorname{Den}_{L^{\flat},\mathscr{V}}^{\perp}(x) := \int_{L_{F}^{\flat}} \partial \operatorname{Den}_{L^{\flat},\mathscr{V}}(y+x) dy.$$

Theorem (Key theorem)

(1) $\operatorname{Int}_{L^{\flat},\mathscr{V}}^{\perp}$ is supported on $\mathbb{W}^{\geq -1} := \{x \in \mathbb{W} : \operatorname{val}_{F_0}(x, x) \geq -1\}.$

(2) $\partial \text{Den}_{L^{\flat},\mathscr{V}}^{\perp}$ is constant on $\mathbb{W}^{\geq 0} := \{x \in \mathbb{W} : \text{val}_{F_0}(x, x) \geq 0\}.$

- $\mathbb{W} := (L_F^{\flat})^{\perp} \subseteq \mathbb{V}$, a 1-dimensional hermitian space over *F*.
- Induction on valuation of L^b and n gives:

$$\operatorname{Int}_{L^{\flat},\mathscr{V}} - \partial \operatorname{Den}_{L^{\flat},\mathscr{V}} = \mathbf{1}_{L^{\flat}} \otimes f.$$

Here $f \in \mathscr{S}(\mathbb{W})$ vanishes on $\mathbb{W}^{\leq 0} := \{x \in \mathbb{W} : \operatorname{val}_{F_0}(x, x) \leq 0\}.$

• To show f = 0, define functions on $x \in \mathbb{W}$,

$$\mathrm{Int}_{L^{\flat},\mathscr{V}}^{\bot}(x) := \int_{L_{F}^{\flat}} \mathrm{Int}_{L^{\flat},\mathscr{V}}(y+x) \mathrm{d}y, \quad \partial \mathrm{Den}_{L^{\flat},\mathscr{V}}^{\bot}(x) := \int_{L_{F}^{\flat}} \partial \mathrm{Den}_{L^{\flat},\mathscr{V}}(y+x) \mathrm{d}y.$$

Theorem (Key theorem)

(1)
$$\operatorname{Int}_{L^{\flat},\mathscr{V}}^{\perp}$$
 is supported on $\mathbb{W}^{\geq -1} := \{x \in \mathbb{W} : \operatorname{val}_{F_0}(x, x) \geq -1\}.$

(2) $\partial \text{Den}_{L^b,\mathscr{V}}^{\perp}$ is constant on $\mathbb{W}^{\geq 0} := \{x \in \mathbb{W} : \text{val}_{F_0}(x, x) \geq 0\}.$

End of proof: (1) implies that $\operatorname{Int}_{L^{\flat},\mathscr{V}}^{\perp}$ is invariant under $(\mathbb{W}^{\geq -1})^{\vee} = \mathbb{W}^{\geq 0}$. In particular, $\operatorname{Int}_{L^{\flat},\mathscr{V}}^{\perp}$ is constant on $\mathbb{W}^{\geq 0}$. Combining with (2), we know that $\operatorname{Int}_{L^{\flat},\mathscr{V}}^{\perp} - \partial \operatorname{Den}_{L^{\flat},\mathscr{V}}^{\perp}$ is also constant on $\mathbb{W}^{\geq 0}$.

- $\mathbb{W} := (L_F^{\flat})^{\perp} \subseteq \mathbb{V}$, a 1-dimensional hermitian space over *F*.
- Induction on valuation of L^b and n gives:

$$\operatorname{Int}_{L^{\flat},\mathscr{V}} - \partial \operatorname{Den}_{L^{\flat},\mathscr{V}} = \mathbf{1}_{L^{\flat}} \otimes f.$$

Here $f \in \mathscr{S}(\mathbb{W})$ vanishes on $\mathbb{W}^{\leq 0} := \{x \in \mathbb{W} : \operatorname{val}_{F_0}(x, x) \leq 0\}.$

• To show f = 0, define functions on $x \in \mathbb{W}$,

$$\mathrm{Int}_{L^{\flat},\mathscr{V}}^{\perp}(x) := \int_{L_{F}^{\flat}} \mathrm{Int}_{L^{\flat},\mathscr{V}}(y+x) \mathrm{d}y, \quad \partial \mathrm{Den}_{L^{\flat},\mathscr{V}}^{\perp}(x) := \int_{L_{F}^{\flat}} \partial \mathrm{Den}_{L^{\flat},\mathscr{V}}(y+x) \mathrm{d}y.$$

Theorem (Key theorem)

(1)
$$\operatorname{Int}_{L^{\flat},\mathscr{V}}^{\perp}$$
 is supported on $\mathbb{W}^{\geq -1} := \{x \in \mathbb{W} : \operatorname{val}_{F_0}(x, x) \geq -1\}.$

(2) $\partial \text{Den}_{L^{\flat},\mathscr{V}}^{\perp}$ is constant on $\mathbb{W}^{\geq 0} := \{x \in \mathbb{W} : \text{val}_{F_0}(x, x) \geq 0\}.$

End of proof: (1) implies that $\operatorname{Int}_{L^{\flat},\mathscr{V}}^{\perp}$ is invariant under $(\mathbb{W}^{\geq -1})^{\vee} = \mathbb{W}^{\geq 0}$. In particular, $\operatorname{Int}_{L^{\flat},\mathscr{V}}^{\perp}$ is constant on $\mathbb{W}^{\geq 0}$. Combining with (2), we know that $\operatorname{Int}_{L^{\flat},\mathscr{V}}^{\perp} - \partial \operatorname{Den}_{L^{\flat},\mathscr{V}}^{\perp}$ is also constant on $\mathbb{W}^{\geq 0}$. Because *f* vanishes on $\mathbb{W}^{\leq 0}$, this constant must be 0.

- $\mathbb{W} := (L_F^{\flat})^{\perp} \subseteq \mathbb{V}$, a 1-dimensional hermitian space over *F*.
- Induction on valuation of L^{\flat} and *n* gives:

$$\operatorname{Int}_{L^{\flat},\mathscr{V}} - \partial \operatorname{Den}_{L^{\flat},\mathscr{V}} = \mathbf{1}_{L^{\flat}} \otimes f.$$

Here $f \in \mathscr{S}(\mathbb{W})$ vanishes on $\mathbb{W}^{\leq 0} := \{x \in \mathbb{W} : \operatorname{val}_{F_0}(x, x) \leq 0\}.$

• To show f = 0, define functions on $x \in \mathbb{W}$,

$$\mathrm{Int}_{L^{\flat},\mathscr{V}}^{\perp}(x) := \int_{L_{F}^{\flat}} \mathrm{Int}_{L^{\flat},\mathscr{V}}(y+x) \mathrm{d}y, \quad \partial \mathrm{Den}_{L^{\flat},\mathscr{V}}^{\perp}(x) := \int_{L_{F}^{\flat}} \partial \mathrm{Den}_{L^{\flat},\mathscr{V}}(y+x) \mathrm{d}y.$$
Theorem (Key theorem)

(1)
$$\operatorname{Int}_{L^{\flat},\mathscr{V}}^{\perp}$$
 is supported on $\mathbb{W}^{\geq -1} := \{x \in \mathbb{W} : \operatorname{val}_{F_0}(x, x) \geq -1\}.$

(2) $\partial \text{Den}_{L^b,\mathscr{V}}^{\perp}$ is constant on $\mathbb{W}^{\geq 0} := \{x \in \mathbb{W} : \text{val}_{F_0}(x, x) \geq 0\}.$

End of proof: (1) implies that $\operatorname{Int}_{L^{b},\mathscr{V}}^{\perp}$ is invariant under $(\mathbb{W}^{\geq -1})^{\vee} = \mathbb{W}^{\geq 0}$. In particular, $\operatorname{Int}_{L^{b},\mathscr{V}}^{\perp}$ is constant on $\mathbb{W}^{\geq 0}$. Combining with (2), we know that $\operatorname{Int}_{L^{b},\mathscr{V}}^{\perp} -\partial \operatorname{Den}_{L^{b},\mathscr{V}}^{\perp}$ is also constant on $\mathbb{W}^{\geq 0}$. Because *f* vanishes on $\mathbb{W}^{\leq 0}$, this constant must be 0.

Remark

In the unramified case, $Int_{L^b, \mathscr{V}} = -Int_{L^b, \mathscr{V}}$. This stronger invariance is not true in the Krämer case and (1) can be viewed as a weaker replacement.

- $\mathbb{W} := (L_F^{\flat})^{\perp} \subseteq \mathbb{V}$, a 1-dimensional hermitian space over *F*.
- Induction on valuation of L^{\flat} and *n* gives:

$$\operatorname{Int}_{L^{\flat},\mathscr{V}} - \partial \operatorname{Den}_{L^{\flat},\mathscr{V}} = \mathbf{1}_{L^{\flat}} \otimes f.$$

Here $f \in \mathscr{S}(\mathbb{W})$ vanishes on $\mathbb{W}^{\leq 0} := \{x \in \mathbb{W} : \operatorname{val}_{F_0}(x, x) \leq 0\}.$

• To show f = 0, define functions on $x \in \mathbb{W}$,

$$\mathrm{Int}_{L^{\flat},\mathscr{V}}^{\bot}(x) := \int_{L_{F}^{\flat}} \mathrm{Int}_{L^{\flat},\mathscr{V}}(y+x) \mathrm{d}y, \quad \partial \mathrm{Den}_{L^{\flat},\mathscr{V}}^{\bot}(x) := \int_{L_{F}^{\flat}} \partial \mathrm{Den}_{L^{\flat},\mathscr{V}}(y+x) \mathrm{d}y.$$

Theorem (Key theorem)

(1)
$$\operatorname{Int}_{L^{\flat},\mathscr{V}}^{\perp}$$
 is supported on $\mathbb{W}^{\geq -1} := \{x \in \mathbb{W} : \operatorname{val}_{F_0}(x, x) \geq -1\}.$

(2) $\partial \text{Den}_{L^{b},\mathscr{V}}^{\perp}$ is constant on $\mathbb{W}^{\geq 0} := \{x \in \mathbb{W} : \text{val}_{F_{0}}(x, x) \geq 0\}.$

End of proof: (1) implies that $\operatorname{Int}_{L^{b},\mathscr{V}}^{\perp}$ is invariant under $(\mathbb{W}^{\geq -1})^{\vee} = \mathbb{W}^{\geq 0}$. In particular, $\operatorname{Int}_{L^{b},\mathscr{V}}^{\perp}$ is constant on $\mathbb{W}^{\geq 0}$. Combining with (2), we know that $\operatorname{Int}_{L^{b},\mathscr{V}}^{\perp} -\partial \operatorname{Den}_{L^{b},\mathscr{V}}^{\perp}$ is also constant on $\mathbb{W}^{\geq 0}$. Because *f* vanishes on $\mathbb{W}^{\leq 0}$, this constant must be 0.

Remark

In the unramified case, $\widehat{\operatorname{Int}_{L^{\flat},\mathscr{V}}} = -\operatorname{Int}_{L^{\flat},\mathscr{V}}$. This stronger invariance is not true in the Krämer case and (1) can be viewed as a weaker replacement. Its proof only uses the linear invariance of special cycles [Howard] and Bruhat–Tits stratification, and avoids proving the Tate conjecture for certain Deligne–Lusztig varieties.

Chao Li (Columbia)

$$r(n^2) = ?$$
, for $n = 3 \cdot 13 \cdot 2023$

 $r(n^2) = ?$, for $n = 3 \cdot 13 \cdot 2023$

$$= 0^{2} + (\pm 78897)^{2}$$

= $(\pm 7497)^{2} + (\pm 78540)^{2}$
= $(\pm 15372)^{2} + (\pm 77385)^{2}$
= $(\pm 30345)^{2} + (\pm 72828)^{2}$
= $(\pm 37128)^{2} + (\pm 69615)^{2}$
= $(\pm 43575)^{2} + (\pm 65772)^{2}$
= $(\pm 43953)^{2} + (\pm 65520)^{2}$
= $(\pm 49980)^{2} + (\pm 61047)^{2}$

$$13 \cdot 2023)^{2} = (\pm 78897)^{2} + 0^{2}$$

= $(\pm 78540)^{2} + (\pm 7497)^{2}$
= $(\pm 77385)^{2} + (\pm 15372)^{2}$
= $(\pm 72828)^{2} + (\pm 30345)^{2}$
= $(\pm 69615)^{2} + (\pm 37128)^{2}$
= $(\pm 65772)^{2} + (\pm 43575)^{2}$
= $(\pm 65520)^{2} + (\pm 43953)^{2}$

 $=(\pm 61047)^2 + (\pm 49980)^2$

Happy $r((3 \cdot 13 \cdot 2023)^2)$ -th Birthday to Shou-Wu!

(3 ·