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Sum of two squares

Theorem (Fermat, Dec 25, 1640)
A prime p 6= 2 is of the form p = x2 + y2 if and only if p ≡ 1 (mod 4).

Remark

• “only if”: obvious.
• “if”: Fermat claimed an “irrefutable proof” by the method of infinite descent. But

the margin seems never big enough for him.
• Euler (1740s) completed the proof.

Theorem (Jacobi, 1820s)
Define representation number r(n) := #{(x , y) ∈ Z2 : n = x2 + y2}. Then

r(n) = 4

 ∑
d|n

d≡1 mod 4

1−
∑
d|n

d≡3 mod 4

1


Example (Reprove Fermat)

• If p ≡ 1 (mod 4), then r(p) = 4(2− 0) = 8.
• If p ≡ 3 (mod 4), then r(p) = 4(1− 1) = 0.

Exercise: What is r(n2) for n = 3 · 13 · 2023?
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A proof by modular forms

• Jacobi’s theta series for the quadratic form x2 + y2,

θ(τ) =
∑

x,y∈Z

qx2+y2
=
∑
n≥0

r(n)qn, q = e2πiτ , τ ∈ H.

• θ(τ) is a modular form in M1(4, χ), where χ : (Z/4Z)×
∼−→ {±1}.

• dim M1(4, χ) = 1, spanned by an Eisenstein series E of weight 1,

E(τ) = 1 + 4
∑
n≥1

∑
d|n

χ(d)

 qn.

• So θ(τ) = E(τ) and comparing the coefficients of qn proves Jacobi’s theorem,

r(n) = 4
∑
d|n

χ(d).

• Summary of the proof: relate theta series and Eisenstein series.
• A simplest instance of the more general Siegel–Weil formula.
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Siegel–Weil formula

• Weil (1960s): Weil representations ω for dual pairs of classical groups (G,H).
• F/F0: quadratic extension of number fields. A = AF0 : the ring of adeles of F0.
• V : hermitian space over F of dimension m. (G,H) = (U(n, n),U(V )).
• ω: representation of G(A)× H(A) on S (V (A)n) (space of Schwartz functions).
• Associated to ϕ ∈ S (V (A)n), define theta series

θ(g, h, ϕ) =:
∑

x∈V n

ω(g, h)ϕ(x), g ∈ G(A), h ∈ H(A).

• Define Siegel Eisenstein series

E(g, s, ϕ) :=
∑
γ∈P\G

Φϕ(γg, s), g ∈ G(A), s ∈ C,

where S (V (A)n)→ IndG(A)
P(A)(χV , s), ϕ 7→ Φϕ(g, s) := ω(g)ϕ(0) · |a(g)|s.

Theorem (Siegel–Weil formula (V anisotropic or n� m), 1960s)∫
H(Q)\H(A)

θ(g, h, ϕ) dh = E(g, s0, ϕ), s0 =
m − n

2
.

Remark

• Recover Jacobi’s formula for (G,H) = (Sp(2),O(2))

• Extended to complete generality: [Kudla–Rallis, Ikeda, Ichino, Yamana,
Gan–Qiu–Takeda, ... ]
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Geometric Siegel–Weil formula: Unitary Shimura varieties X

• Kudla (1990s): a geometric Siegel–Weil formula by realizing the theta integral as a
geometric intersection number on the associated Shimura variety.

• Assume F/F0 is a CM extension of a totally real field. Fix σ : F ↪→ C.
• Assume V is standard indefinite: V has signature (m− 1, 1) at the real place of F0

induced by σ, and signature (m, 0) at all other real places.
• K ⊆ H(Af ): open compact subgroup.
• X : unitary Shimura variety of dimension m − 1 over F ⊆ C with complex

uniformization
X (C) = H(F0)\[D× H(Af )/K ],

D = {negative C-lines in V ⊗F C} ' {z ∈ Cm−1 : |z| < 1} ' U(m − 1, 1)

U(m − 1)× U(1)
.

Remark

• Motivic L-function of X should be factorized into a product of automorphic
L-functions for H(A) [Langlands, Kottwitz]. When V is standard indefinite, the
L-function appearing should be the standard L-functions.

• X is a Shimura variety of abelian type. Its étale cohomology and L-function are
computed in forthcoming [Kisin–Shin–Zhu], under the help of the endoscopic
classification for unitary groups [Mok, Kaletha–Minguez–Shin–White].
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Special cycles on X

• For any y ∈ V with (y , y) > 0. Its orthogonal complement Vy ⊆ V is standard
indefinite of rank m − 1. The embedding Hy = U(Vy ) ↪→ H = U(V ) defines a
Shimura subvariety of codimension 1

Z (y)→ X .

• For any x ∈ V (Af ) with (x , x) ∈ (F0)>0, there exists y ∈ V and g ∈ H(Af ) such
that y = gx . Define the special divisor

Z (x)→ X

to be the g-translate of Z (y).
• For any x = (x1, . . . , xn) ∈ V (Af )

n with T (x) = ((xi , xj )) ∈ Hermn(F0)>0, define the
special cycle (of codimension n)

Z (x) = Z (x1) ∩ · · · ∩ Z (xn)→ X .
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Geometric Siegel–Weil formula

• More generally, for ϕ ∈ S (V (Af )
n)K and T ∈ Hermn(F0)>0, define the weighted

special cycle
Z (T , ϕ) =

∑
x∈K\V (Af )n

T (x)=T

ϕ(x)Z (x) ∈ CHn(X )C.

• With extra care, one can also define Z (T , ϕ) ∈ CHm(X )C for any
T ∈ Hermn(F0)≥0.

• Define Kudla’s arithmetic theta series

Z (τ, ϕ) =
∑

T∈Hermn(F )≥0

Z (T , ϕ) · qT ,

τ ∈ Hn = {x + iy : x ∈ Hermn(F0,∞), y ∈ Hermn(F0,∞)>0}
lies in the hermitian half space and qT :=

∏
v|∞ e2πi tr Tτv .

• Take n = m − 1, then Z (T , ϕ) has dimension 0.
• Its degree deg Z (T , ϕ) = geometric intersection number of n special divisors.

Theorem (Kudla, 1990s, Geometric Siegel–Weil formula)
Take n = m − 1. Assume that X is compact. Then∑

T∈Hermn(F0)≥0

deg Z (T , ϕ) · qT ·
= E(τ, 1/2, ϕ).

Chao Li (Columbia) Kudla–Rapoport conjecture for Krämer models 3/13/2023



Geometric Siegel–Weil formula
• More generally, for ϕ ∈ S (V (Af )

n)K and T ∈ Hermn(F0)>0, define the weighted
special cycle

Z (T , ϕ) =
∑

x∈K\V (Af )n

T (x)=T

ϕ(x)Z (x) ∈ CHn(X )C.

• With extra care, one can also define Z (T , ϕ) ∈ CHm(X )C for any
T ∈ Hermn(F0)≥0.

• Define Kudla’s arithmetic theta series

Z (τ, ϕ) =
∑

T∈Hermn(F )≥0

Z (T , ϕ) · qT ,

τ ∈ Hn = {x + iy : x ∈ Hermn(F0,∞), y ∈ Hermn(F0,∞)>0}
lies in the hermitian half space and qT :=

∏
v|∞ e2πi tr Tτv .

• Take n = m − 1, then Z (T , ϕ) has dimension 0.
• Its degree deg Z (T , ϕ) = geometric intersection number of n special divisors.

Theorem (Kudla, 1990s, Geometric Siegel–Weil formula)
Take n = m − 1. Assume that X is compact. Then∑

T∈Hermn(F0)≥0

deg Z (T , ϕ) · qT ·
= E(τ, 1/2, ϕ).

Chao Li (Columbia) Kudla–Rapoport conjecture for Krämer models 3/13/2023



Geometric Siegel–Weil formula
• More generally, for ϕ ∈ S (V (Af )

n)K and T ∈ Hermn(F0)>0, define the weighted
special cycle

Z (T , ϕ) =
∑

x∈K\V (Af )n

T (x)=T

ϕ(x)Z (x) ∈ CHn(X )C.

• With extra care, one can also define Z (T , ϕ) ∈ CHm(X )C for any
T ∈ Hermn(F0)≥0.

• Define Kudla’s arithmetic theta series

Z (τ, ϕ) =
∑

T∈Hermn(F )≥0

Z (T , ϕ) · qT ,

τ ∈ Hn = {x + iy : x ∈ Hermn(F0,∞), y ∈ Hermn(F0,∞)>0}
lies in the hermitian half space and qT :=

∏
v|∞ e2πi tr Tτv .

• Take n = m − 1, then Z (T , ϕ) has dimension 0.
• Its degree deg Z (T , ϕ) = geometric intersection number of n special divisors.

Theorem (Kudla, 1990s, Geometric Siegel–Weil formula)
Take n = m − 1. Assume that X is compact. Then∑

T∈Hermn(F0)≥0

deg Z (T , ϕ) · qT ·
= E(τ, 1/2, ϕ).

Chao Li (Columbia) Kudla–Rapoport conjecture for Krämer models 3/13/2023



Geometric Siegel–Weil formula
• More generally, for ϕ ∈ S (V (Af )

n)K and T ∈ Hermn(F0)>0, define the weighted
special cycle

Z (T , ϕ) =
∑

x∈K\V (Af )n

T (x)=T

ϕ(x)Z (x) ∈ CHn(X )C.

• With extra care, one can also define Z (T , ϕ) ∈ CHm(X )C for any
T ∈ Hermn(F0)≥0.

• Define Kudla’s arithmetic theta series

Z (τ, ϕ) =
∑

T∈Hermn(F )≥0

Z (T , ϕ) · qT ,

τ ∈ Hn = {x + iy : x ∈ Hermn(F0,∞), y ∈ Hermn(F0,∞)>0}
lies in the hermitian half space and qT :=

∏
v|∞ e2πi tr Tτv .

• Take n = m − 1, then Z (T , ϕ) has dimension 0.
• Its degree deg Z (T , ϕ) = geometric intersection number of n special divisors.

Theorem (Kudla, 1990s, Geometric Siegel–Weil formula)
Take n = m − 1. Assume that X is compact. Then∑

T∈Hermn(F0)≥0

deg Z (T , ϕ) · qT ·
= E(τ, 1/2, ϕ).

Chao Li (Columbia) Kudla–Rapoport conjecture for Krämer models 3/13/2023



Arithmetic Siegel–Weil formula

• For suitable levels K , one can construct a regular integral model X of (a PEL
variant) of X , and also integral models of special cycles [Kudla–Rapoport].

• Z (x)→ X extends to a special divisor Z(x)→ X .
• X is an arithmetic variety of dimension m.
• Take n = m so that Z(T , ϕ) (T ∈ Hermn(F0)>0) has “expected dimension” 0.
• Its arithmetic degree encodes arithmetic intersection numbers at all places

d̂eg Z(T , ϕ) ” = ”
∑

v

IntT ,v (ϕ).

• Kudla envisioned arithmetic Siegel–Weil formula

d̂eg Z(T , ϕ)qT ”
?
= ” ET

′

(τ, 0, ϕ).

• The nonsingular Fourier coefficient decomposes as

E ′T (τ, 0, ϕ) =
∑

v

E ′T ,v (τ, 0, ϕ).

• At v | ∞, proved by [Liu 2011] and [Garcia–Sankaran 2018] independently.
• At v -∞, the identity is the content of the Kudla–Rapoport conjecture.
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Kudla–Rapoport Conjecture

• v | p 6= 2 a finite place of F0.
• Λv ⊆ Vv a self-dual lattice with respect to the hermitian form.
• Kv = U(Λv ).

• v unramified in F : Kv is hyperspecial; get smooth integral model X at v .
• v ramified in F : Kv is parahoric; get semistable integral model X at v (Krämer model).

• Take n = m, ϕ = ϕ1 ⊗ · · · ⊗ ϕn ∈ S (V (Af )
n)K such that ϕi,v = 1Λv .

• T ∈ Hermn(F0)>0 with diagonal entries t1, . . . , tn.
• Define arithmetic intersection number at v

IntT ,v (ϕ) := χ(Z(T , ϕ)v ,OZ(t1,ϕ1) ⊗L
OX · · · ⊗

L
OX OZ(tn,ϕn)) · log qv

Theorem ([L.-Zhang 2019], Kudla–Rapoport Conjecture)
Assume that v is unramified in F . Take n = m. Then for any T ∈ Hermn(F0)>0,

IntT ,v (ϕ)qT ·
= E ′T ,v (τ, 0, ϕ).
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Kudla–Rapoport Conjecture for Krämer models

• When v is ramified, however, for easy reasons (explained soon) analogous identity

IntT ,v (ϕ)qT ·
= E ′T ,v (τ, 0, ϕ)

does not hold.

Theorem ([He–L.–Shi–Yang 2022], KR for Krämer models, impressionist version)
Assume that v is ramified in F . Take n = m. Then for any T ∈ Hermn(F0)>0,

IntT ,v (ϕ)qT ·
= E ′T ,v (τ, 0, ϕ) + ET (τ, 0, ϕv ⊗ Φv ).

Here
• Φv ∈ S (Vn

v ) is an explicit function independent of T , and
• Vv is the unique local hermitian space of dimension m and χ(Vv ) = −χ(Vv ).

• χ(Vv ) := χF/F0 ((−1)
m(m−1)

2 det(Vv )) ∈ {±1}.

Remark

• The necessity of such modification in the presence of bad reduction was first
discovered by [Kudla–Rapoport] via explicit computation in the context of Shimura
curves uniformized by the Drinfeld p-adic half plane.

• The conceptual recipe of the correction term (i.e. the choice of Φv ) was
conjectured by [He–Shi–Yang 2021], who also proved the special case n = 2, 3.
The proof of the theorem is new even for n = 2, 3.

Chao Li (Columbia) Kudla–Rapoport conjecture for Krämer models 3/13/2023



Kudla–Rapoport Conjecture for Krämer models
• When v is ramified, however, for easy reasons (explained soon) analogous identity

IntT ,v (ϕ)qT ·
= E ′T ,v (τ, 0, ϕ)

does not hold.

Theorem ([He–L.–Shi–Yang 2022], KR for Krämer models, impressionist version)
Assume that v is ramified in F . Take n = m. Then for any T ∈ Hermn(F0)>0,

IntT ,v (ϕ)qT ·
= E ′T ,v (τ, 0, ϕ) + ET (τ, 0, ϕv ⊗ Φv ).

Here
• Φv ∈ S (Vn

v ) is an explicit function independent of T , and
• Vv is the unique local hermitian space of dimension m and χ(Vv ) = −χ(Vv ).

• χ(Vv ) := χF/F0 ((−1)
m(m−1)

2 det(Vv )) ∈ {±1}.

Remark

• The necessity of such modification in the presence of bad reduction was first
discovered by [Kudla–Rapoport] via explicit computation in the context of Shimura
curves uniformized by the Drinfeld p-adic half plane.

• The conceptual recipe of the correction term (i.e. the choice of Φv ) was
conjectured by [He–Shi–Yang 2021], who also proved the special case n = 2, 3.
The proof of the theorem is new even for n = 2, 3.

Chao Li (Columbia) Kudla–Rapoport conjecture for Krämer models 3/13/2023



Kudla–Rapoport Conjecture for Krämer models
• When v is ramified, however, for easy reasons (explained soon) analogous identity

IntT ,v (ϕ)qT ·
= E ′T ,v (τ, 0, ϕ)

does not hold.

Theorem ([He–L.–Shi–Yang 2022], KR for Krämer models, impressionist version)
Assume that v is ramified in F . Take n = m. Then for any T ∈ Hermn(F0)>0,

IntT ,v (ϕ)qT ·
= E ′T ,v (τ, 0, ϕ) + ET (τ, 0, ϕv ⊗ Φv ).

Here
• Φv ∈ S (Vn

v ) is an explicit function independent of T , and
• Vv is the unique local hermitian space of dimension m and χ(Vv ) = −χ(Vv ).

• χ(Vv ) := χF/F0 ((−1)
m(m−1)

2 det(Vv )) ∈ {±1}.
Remark

• The necessity of such modification in the presence of bad reduction was first
discovered by [Kudla–Rapoport] via explicit computation in the context of Shimura
curves uniformized by the Drinfeld p-adic half plane.

• The conceptual recipe of the correction term (i.e. the choice of Φv ) was
conjectured by [He–Shi–Yang 2021], who also proved the special case n = 2, 3.
The proof of the theorem is new even for n = 2, 3.

Chao Li (Columbia) Kudla–Rapoport conjecture for Krämer models 3/13/2023



Kudla–Rapoport Conjecture for Krämer models
• When v is ramified, however, for easy reasons (explained soon) analogous identity

IntT ,v (ϕ)qT ·
= E ′T ,v (τ, 0, ϕ)

does not hold.

Theorem ([He–L.–Shi–Yang 2022], KR for Krämer models, impressionist version)
Assume that v is ramified in F . Take n = m. Then for any T ∈ Hermn(F0)>0,

IntT ,v (ϕ)qT ·
= E ′T ,v (τ, 0, ϕ) + ET (τ, 0, ϕv ⊗ Φv ).

Here
• Φv ∈ S (Vn

v ) is an explicit function independent of T , and
• Vv is the unique local hermitian space of dimension m and χ(Vv ) = −χ(Vv ).

• χ(Vv ) := χF/F0 ((−1)
m(m−1)

2 det(Vv )) ∈ {±1}.

Remark

• The necessity of such modification in the presence of bad reduction was first
discovered by [Kudla–Rapoport] via explicit computation in the context of Shimura
curves uniformized by the Drinfeld p-adic half plane.

• The conceptual recipe of the correction term (i.e. the choice of Φv ) was
conjectured by [He–Shi–Yang 2021], who also proved the special case n = 2, 3.
The proof of the theorem is new even for n = 2, 3.

Chao Li (Columbia) Kudla–Rapoport conjecture for Krämer models 3/13/2023



Kudla–Rapoport Conjecture for Krämer models
• When v is ramified, however, for easy reasons (explained soon) analogous identity

IntT ,v (ϕ)qT ·
= E ′T ,v (τ, 0, ϕ)

does not hold.

Theorem ([He–L.–Shi–Yang 2022], KR for Krämer models, impressionist version)
Assume that v is ramified in F . Take n = m. Then for any T ∈ Hermn(F0)>0,

IntT ,v (ϕ)qT ·
= E ′T ,v (τ, 0, ϕ) + ET (τ, 0, ϕv ⊗ Φv ).

Here
• Φv ∈ S (Vn

v ) is an explicit function independent of T , and
• Vv is the unique local hermitian space of dimension m and χ(Vv ) = −χ(Vv ).

• χ(Vv ) := χF/F0 ((−1)
m(m−1)

2 det(Vv )) ∈ {±1}.
Remark

• The necessity of such modification in the presence of bad reduction was first
discovered by [Kudla–Rapoport] via explicit computation in the context of Shimura
curves uniformized by the Drinfeld p-adic half plane.

• The conceptual recipe of the correction term (i.e. the choice of Φv ) was
conjectured by [He–Shi–Yang 2021], who also proved the special case n = 2, 3.
The proof of the theorem is new even for n = 2, 3.

Chao Li (Columbia) Kudla–Rapoport conjecture for Krämer models 3/13/2023



Kudla–Rapoport Conjecture for Krämer models
• When v is ramified, however, for easy reasons (explained soon) analogous identity

IntT ,v (ϕ)qT ·
= E ′T ,v (τ, 0, ϕ)

does not hold.

Theorem ([He–L.–Shi–Yang 2022], KR for Krämer models, impressionist version)
Assume that v is ramified in F . Take n = m. Then for any T ∈ Hermn(F0)>0,

IntT ,v (ϕ)qT ·
= E ′T ,v (τ, 0, ϕ) + ET (τ, 0, ϕv ⊗ Φv ).

Here
• Φv ∈ S (Vn

v ) is an explicit function independent of T , and
• Vv is the unique local hermitian space of dimension m and χ(Vv ) = −χ(Vv ).

• χ(Vv ) := χF/F0 ((−1)
m(m−1)

2 det(Vv )) ∈ {±1}.
Remark

• The necessity of such modification in the presence of bad reduction was first
discovered by [Kudla–Rapoport] via explicit computation in the context of Shimura
curves uniformized by the Drinfeld p-adic half plane.

• The conceptual recipe of the correction term (i.e. the choice of Φv ) was
conjectured by [He–Shi–Yang 2021], who also proved the special case n = 2, 3.
The proof of the theorem is new even for n = 2, 3.

Chao Li (Columbia) Kudla–Rapoport conjecture for Krämer models 3/13/2023



Applications to L-functions (via the doubling method)

• [L.–Liu 2020, 2021] proved an arithmetic inner product formula, when m is even:

〈Zπ,Zπ〉X ·
= L′(1/2, π).

• π: cuspidal automorphic representations on U(m).
• Zπ : cycles on X constructed by arithmetic theta lifting.

This generalizes Gross–Zagier formula to Shimura varieties of higher dimension.

• It implies the following application to the Beilinson–Bloch conjecture

ords=1/2 L(s, π) = 1 =⇒ rank CHm/2(X )0
π ≥ 1

• [Disegni–Liu 2022] proved a p-adic arithmetic inner product formula,

p-adic height pairing of Zπ
·

= derivative of cyclotomic p-adic L-function Lp(π)

• It implies the following application to the p-adic Bloch–Kato conjecture

central order of vanishing of Lp(π) is 1 =⇒ rank H1
f (F ,Vπ) ≥ 1.

• The Kudla-Rapoport conjecture is a key local ingredient in all these applications.
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Reduce to Local Kudla-Rapoport conjecture

IntT ,v (ϕ)
?
= E ′T ,v (τ, 0, ϕ) + ET (τ, 0, ϕv ⊗ Φv )

Int(L)
?
= ∂Den(L)

arithmetic intersection number
of n special divisors on RZ space N

modified central derivative
of local representation density
of hermitian lattices of rank n

Next: define Int(L) and ∂Den(L).
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Krämer model of unitary Rapoport–Zink space N = Nn

• F0: finite extension of Qp with residue field k = Fq .
• F/F0: ramified quadratic extension.
• π: uniformizer of F such that trF/F0 (π) = 0.
• OF̆ : the completion of the maximal unramified extension of OF .
• X/k̄ : principally polarized supersingular hermitian OF -module of sig. (1, n − 1).
• N = Nn: the Krämer model of the unitary Rapoport–Zink space parameterizing

hermitian OF -modules of signature (1, n − 1) within the quasi-isogeny class of X,
together with a rank 1 filtration F ⊆ Lie X satisfying the Krämer condition.

• More precisely, N is the formal scheme over Spf OF̆ representing the functor

S 7→ N (S) = {(X , ι, λ,F , ρ)}/isom.

• (X , ι, λ): hermitian OF -module of signature (1, n − 1) over S,
• F : local direct summand of Lie X of rank 1 as an OS-module such that OF acts on F

(resp. Lie X/F ) through the embedding OF → OF̆ (resp. the conjugate embedding),
• ρ : X ×S S → X×Spec k̄ S is a framing.

• N provides a p-adic uniformization of X̂/X ss
k̄

at a ramified place.

• Two choices of the local hermitian space V (up to isometry) in local Shimura data:

• n even: two non-isomorphic U(V ), giving rise to two non-isomorphic N ,
• n odd: two isomorphic U(V ), giving rise to only one N .
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• N = Nn: the Krämer model of the unitary Rapoport–Zink space parameterizing

hermitian OF -modules of signature (1, n − 1) within the quasi-isogeny class of X,
together with a rank 1 filtration F ⊆ Lie X satisfying the Krämer condition.

• More precisely, N is the formal scheme over Spf OF̆ representing the functor

S 7→ N (S) = {(X , ι, λ,F , ρ)}/isom.

• (X , ι, λ): hermitian OF -module of signature (1, n − 1) over S,
• F : local direct summand of Lie X of rank 1 as an OS-module such that OF acts on F

(resp. Lie X/F ) through the embedding OF → OF̆ (resp. the conjugate embedding),
• ρ : X ×S S → X×Spec k̄ S is a framing.

• N provides a p-adic uniformization of X̂/X ss
k̄

at a ramified place.

• Two choices of the local hermitian space V (up to isometry) in local Shimura data:

• n even: two non-isomorphic U(V ), giving rise to two non-isomorphic N ,
• n odd: two isomorphic U(V ), giving rise to only one N .
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Geometry of N

• N is locally of finite type, and semistable of relative dimension n − 1 over Spf OF̆ .
• There is another integral modelM (Pappas model), which is flat but not regular.

The Krämer model N provides a resolution of singularities

N →M,

with fiber of each singular point isomorphic to Pn−1
/k̄ (“exceptional divisor”).

• Mred has a Bruhat–Tits stratification [Rapoport–Terstiege–Wilson] into generalized
Deligne–Lusztig varieties DLi of dimension i , associated to a parabolic subgroup
of Sp(2i)/k̄ (normal with isolated singularities when i > 1).

• We prove a similar Bruhat–Tits stratification for N red by smooth projective varieties.
Example

• n = 2: χ(V ) = +1,M' Spf OF̆ [[x , y ]]/(xy − π2),Mred = {pt},
• n = 2: χ(V ) = −1,M' Ω̂F0 ×Spf OF0

Spf OF̆ , dimMred = 1.

• n = 3,M complicated, dimMred = 1.

F̆ k̄
SpfOF̆

DL1

DL0

DL0 = {pt}, a single point.

DL1 ' P1.

#{DL1 ⊇ a given DL0} = q + 1.

#{DL0 ⊆ a given DL1} = q + 1.
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Arithmetic intersection number Int(L)

• V: hermitian space over F of same dimension n, but

χ(V) = −χ(V ).

• V can be identified with the space of special quasi-homomorphisms:

V = HomOF (E,X)⊗OF F .

Here E is the standard framing object of signature (0, 1).
• Each x ∈ V gives a special divisor Z(x) ⊆ N , the locus where x deforms.
• Z(x) is non-empty only when x is integral, i.e., (x , x) ∈ OF .
• L = 〈x1, . . . , xn〉 ⊆ V: OF -lattice of rank n. Define the special cycle

Z(L) := Z(x1) ∩ · · · ∩ Z(xn) ⊆ N .
• Define the arithmetic intersection number

Int(L) := χ(N ,OZ(x1) ⊗L · · · ⊗L OZ(xn)) ∈ Z.
• Int(L) depends only on L [Howard]; it is nonzero only when L is integral, i.e. L ⊆ L].
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Local densities

• L,M: two hermitian OF -lattices of rank n, m.

• HermL,M : the OF0 -scheme of hermitian OF -module homomorphisms from L to M.
• Define the local density of representations to be

Den(M, L) := lim
N→+∞

|HermL,M (OF0/π
2N)|

qN·dL,M
,

where dL,M is the dimension of HermL,M ⊗OF0
F0.

• H: standard hyperbolic hermitian OF -lattice of rank 2 (with matrix
(

0 π−1

−π−1 0

)
).

• There is a local density polynomial Den(M, L,X ) ∈ Q[X ] such that for any k ≥ 0,

Den(M, L, q−2k ) = Den(Hk ⊕M, L).

• Den(M, L,X ) appears in the local factor for the T -coefficient of E(τ, s, ϕ)
(Dictionary: locally ϕ is 1Mn ; T is the moment matrix of L).

• For us, take n = m, M = In ⊆ V self dual and L ⊆ V.
• Since χ(M) 6= χ(L), we have Den(In, L) = 0 and consider the derivative

Den′(In, L) := −2 · d
dX

∣∣∣∣
X=1

Den(In, L,X ).

• Define the (normalized) derived local density

Den′(L) :=
Den′(In, L)

Den(In, In)
∈ Q.
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Naive KR conjecture for Krämer models

• Naive analogue of the KR conjecture for Krämer models states

Int(L)
?
= Den′(L).

• However, this identity does not hold for easy reasons:

• Int(L) vanishes when L is non-integral.
• Den′(L) may not vanish when L is non-integral.

• Why this discrepancy? There are two notions of dual lattices for hermitian forms:

L] := {x ∈ V : (x , L) ⊆ OF}, L∨ := {x ∈ V : trF/F0 (x , L) ⊆ OF0}.

When F/F0 is unramified, L] = L∨. But when F/F0 is ramified, π−1L] = L∨.

• H = H∨: Den′(L) = 0 unless L ⊆ L∨ = π−1L].

Example
An integral OF -lattice Λ ⊆ V is called a vertex lattice (of type t) if Λ]/Λ is a k -vector
space (of dimension t), equivalently

Λ ⊆t Λ] ⊆ π−1Λ.

Let Λt be a vertex lattice of type t > 0. Then L = Λ]t satisfies L 6⊆ L], while L ⊆ L∨, so:

Int(Λ]t ) = 0, while Den′(Λ]t ) 6= 0.
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Modified Kudla–Rapoport conjecture for Krämer models

• Idea [He–Shi–Yang 2021]: modify Den′(L) with a linear combination of local
densities

Dent (L) :=
Den(Λ]t , L)

Den(Λ]t ,Λ
]
t )
∈ Z.

• Possible vertex type t is given by any even integer such that 0 ≤ t ≤ tmax, where

tmax =


n, if n even, χ(V) = +1,
n − 1, if n odd,
n − 2, if n even, χ(V) = −1.

• Define the modified derived local density

∂Den(L) := Den′(L) +

tmax/2∑
j=1

c2j · Den2j (L) ∈ Z.

Here the coefficients c2j ∈ Q are chosen to satisfy

∂Den(Λ]2i ) = 0, 1 ≤ i ≤ tmax/2,

which is a linear system in (c2, c4, . . . , ctmax ) with a unique solution.

Theorem (He–L.–Shi–Yang 2022, Local KR for Krämer models)
Let L ⊆ V be an OF -lattice of rank n. Then

Int(L) = ∂Den(L).
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Remarks on the main theorem

Theorem ([He–L.–Shi–Yang 2022], Local KR for Krämer models)
Let L ⊆ V be an OF -lattice of rank n. Then

Int(L) = ∂Den(L).

Here ∂Den(L) := Den′(L) +

tmax/2∑
j=1

c2j · Den2j (L) ∈ Z.

Theorem ([He–L.–Shi–Yang 2022], KR for Krämer models, precise version)
Define

Φv :=

tmax/2∑
j=1

c2j · 1(Λ
]
2j )

n ·
vol(U(In))

vol(U(Λ]2j ))
· log qv ∈ S (Vn

v ).

Then for any T ∈ Hermn(F0)>0,

IntT ,v (ϕ)qT ·
= E ′T ,v (τ, 0, ϕ) + ET (τ, 0, ϕv ⊗ Φv ).

Remark
Also prove a closed formula for c2j in terms of quadratic spaces over finite fields:
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How to use the modification?

Theorem (Lattice-theoretic formula for ∂Den(L))
Let L ⊆ V be an OF -lattice of rank n. Then there is a primitive decomposition

∂Den(L) =
∑

L⊂L′⊂LF

∂Pden(L′).

• If L is not integral,
∂Pden(L) = 0.

• If L is integral, then ∂Pden(L) has a simple formula, e.g. when n is odd,

∂Pden(L) =


1, if t = 0,∏ t−1

2
`=1 (1− q2`), if t > 0 is odd,

(1− χ(L′)q
t
2 )
∏ t

2−1
`=1 (1− q2`), if t > 0 is even.

Here we write L ' In−t ⊕ L′ with In−t self dual of rank n − t .

Remark
This theorem involves proving a lot of cancellation of terms.

The cancellation is easier
when L is “very integral”, harder when L is “slightly integral”, and hardest when L is
“slightly non-integral”. The modification assumption exactly kicks in to simplify the
hardest case.
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Proof strategy: upgrade to functions

• Goal: Int(L) = ∂Den(L).

• Fix L[ ⊆ V a non-degenerate OF -lattice of rank n − 1.
• Define functions on x ∈ V \ L[F ,

IntL[(x) := Int(L[ + 〈x〉), ∂DenL[(x) := ∂Den(L[ + 〈x〉).

• Then it remains to show an identity of functions

IntL[ = ∂DenL[ .

• IntL[ is hard to compute due to improper intersection.
• ∂DenL[ has a (complicated) lattice-theoretic formula.
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Proof strategy: decomposition

Decompose

IntL[ = IntL[,H + IntL[,V , ∂DenL[ = ∂DenL[,H + ∂DenL[,V

into “horizontal” and “vertical” parts.

F̆ k̄
SpfOF̆

Z(L♭)H Z(L♭)V

IntL[,H (x) := χ(N ,Z(L[)H ∩L Z(x)), IntL[,V (x) := IntL[(x)− IntL[,H (x).

The horizontal part Z(L[)H can be understood in terms of Gross’ quasi-canonical
lifting, and allows us to match

IntL[,H = ∂DenL[,H .

Thus it remains to prove the vertical identity

IntL[,V = ∂DenL[,V .
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Proof strategy: gain extra symmetry

• W := (L[F )⊥ ⊆ V, a 1-dimensional hermitian space over F .
• Induction on valuation of L[ and n gives:

IntL[,V −∂DenL[,V = 1L[ ⊗ f .

Here f ∈ S (W) vanishes on W≤0 := {x ∈W : valF0 (x , x) ≤ 0}.
• To show f = 0, define functions on x ∈W,

Int⊥L[,V (x) :=

∫
L[F

IntL[,V (y + x)dy , ∂Den⊥L[,V (x) :=

∫
L[F

∂DenL[,V (y + x)dy .

Theorem (Key theorem)

(1) ̂Int⊥L[,V is supported on W≥−1 := {x ∈W : valF0 (x , x) ≥ −1}.
(2) ∂Den⊥L[,V is constant on W≥0 := {x ∈W : valF0 (x , x) ≥ 0}.

End of proof: (1) implies that Int⊥L[,V is invariant under (W≥−1)∨ = W≥0. In particular,
Int⊥L[,V is constant on W≥0. Combining with (2), we know that Int⊥L[,V −∂Den⊥L[,V is
also constant on W≥0. Because f vanishes on W≤0, this constant must be 0.

Remark
In the unramified case, ̂IntL[,V = − IntL[,V . This stronger invariance is not true in the
Krämer case and (1) can be viewed as a weaker replacement.

Its proof only uses the
linear invariance of special cycles [Howard] and Bruhat–Tits stratification, and avoids
proving the Tate conjecture for certain Deligne–Lusztig varieties.
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r(n2) = ?, for n = 3 · 13 · 2023

(3 · 13 · 2023)2 = (±78897)2 + 02 = 02 + (±78897)2

= (±78540)2 + (±7497)2 = (±7497)2 + (±78540)2

= (±77385)2 + (±15372)2 = (±15372)2 + (±77385)2

= (±72828)2 + (±30345)2 = (±30345)2 + (±72828)2

= (±69615)2 + (±37128)2 = (±37128)2 + (±69615)2

= (±65772)2 + (±43575)2 = (±43575)2 + (±65772)2

= (±65520)2 + (±43953)2 = (±43953)2 + (±65520)2

= (±61047)2 + (±49980)2 = (±49980)2 + (±61047)2

Happy r ((3 · 13 · 2023)2) -th Birthday
to Shou-Wu!
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