Exceptional theta functions

Aaron Pollack

March 2023

Aaron Pollack Exceptional theta functions

- 2 Siegel modular forms
- **3** The group G_2
- 4 Main theorem 1
- 5 Quaternionic modular forms
- 6 Main Theorem 2
- Explicit formulas

Harmonic theta functions: Example

Define

$$S = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 \end{pmatrix}$$

- Let $V = \mathbf{R}^8$, $L = \mathbf{Z}^8$, and $(x, y) = \frac{1}{2}x^t Sy$.
- S is positive definite, and (,) is integral on L.
- This is the E₈ root lattice
- Set $p(v) = (e_1 + ie_2, v)^8$, $\Theta_{L,p}(z) = \sum_{v \in L} p(v) e^{2\pi i (v,v) z}$.
- $\Theta_{L,p}(z) = 1920\Delta(z) = 1920\sum_{n \ge 1} \tau(n)e^{2\pi i n z}$

Theta function of a lattice

- Suppose V is a finite-dimensional real vector space with a positive-definite inner product (,): V ⊗ V → R
- Suppose $L \subseteq V$ is a lattice, such that $(x, x) \in \mathbf{Z}$, $(x, y) \in \frac{1}{2}\mathbf{Z}$ for all $x, y \in L$.

The theta function of a lattice

Define

$$\Theta_L(z) = \sum_{v \in L} e^{2\pi i (v,v)z}.$$

This is a modular form of weight $\dim(V)/2$.

Example

Suppose

- $V = \mathbf{R}^N$,
- $L = \mathbf{Z}^N$,
- (,) the usual inner product on V.

Then

Standard lattice

$$\Theta_L(z) = \sum_{m \ge 0} r_N(m) q^m$$

where

$$r_N(m) = \#\{(x_1, \ldots, x_N) \in \mathbf{Z}^N : x_1^2 + \cdots + x_N^2 = m\}$$

is the number of ways of writing m as the sum of N squares.

• $\Theta_L(z)$ is a modular form of weight N/2 and level $\Gamma_1(4)$.

э

Harmonic theta functions

• Let V, L, (,) be as above

Suppose w ∈ V ⊗ C is isotropic, i.e. (w, w) = 0. Define H_n to be the polynomials V → C of degree n spanned by the v ↦ (w, v)ⁿ, w isotropic. These are called the harmonic polynomials. (This is a finite-dimensional irreducible representation of SO(V)).

Harmonic theta functions

For $p \in H_n$, set

$$\Theta_{L,p}(z) = \sum_{v \in L} p(v) e^{2\pi i (v,v) z}.$$

This is a modular form of weight $\dim(V)/2 + n$. If n > 0 it is a cusp form.

Modern viewpoint

- Let V be a positive definite rational quadratic space
- 2 Assume for simplicity that $\dim(V)$ is even
- Using the Weil representation, can make (many) two-variable theta functions $\Theta(g, h)$, $g \in SL_2(\mathbf{A})$, $h \in SO(V)(\mathbf{A})$, which are automorphic forms in each variable
- Given an automorphic form α on SO(V), one defines the theta lift of α,

$$\Theta(\alpha)(g) = \int_{[SO(V)]} \Theta(g,h) \alpha(h) \, dh.$$

This is an automorphic form on SL_2 .

Because V is positive-definite, SO(V)(Q)\SO(V)(A) is compact. Consequently, automorphic forms α on SO(V) can be described in terms of finite-dimensional representations of SO(V)(R) and combinatorial data.

Classical theta functions

- 2 Siegel modular forms
- **3** The group G_2
- 4 Main theorem 1
- 5 Quaternionic modular forms
- 6 Main Theorem 2
- Explicit formulas

- Suppose (ρ, V_ρ) is a finite-dimensional representation of GL_n(C).
- Let $\mathcal{H}_n = \operatorname{Sp}_{2n}(\mathbf{R})/U(n)$ be the symmetric space for $\operatorname{Sp}_{2n}(\mathbf{R})$.
- One realizes \mathcal{H}_n as

$$\mathcal{H}_n = \{ Z \in M_n(\mathbf{C}) : Z^t = Z, Im(Z) > 0 \}.$$

• $\operatorname{Sp}_{2n}(\mathbf{R})$ acts on \mathcal{H}_n by linear fractional transformations: if $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{Sp}_{2n}(\mathbf{R})$ and $Z \in \mathcal{H}_n$ then

$$\gamma \cdot Z = (aZ + b)(cZ + d)^{-1}.$$

Siegel modular forms of weight ρ

A level one Siegel modular form of weight ρ is a holomorphic function $F : \mathcal{H}_n \to V_\rho$ satisfying $F(\gamma Z) = \rho(cZ + d)F(z)$ for all γ in $\operatorname{Sp}_{2n}(\mathbf{Z})$.

Siegel modular forms have a classical Fourier expansion:

- Let $S(\mathbf{Z}^n)^{\vee}$ denote the half-integral $n \times n$ matrices.
- *T* ∈ *S*(**Z**ⁿ)[∨] if *T* is symmetric, with integer diagonal entries, and off-diagonal entries in ¹/₂**Z**.

Fourier expansion

If F is a level one Siegel modular form on Sp_{2n} of weight ρ , then

$$F(Z) = \sum_{T \in S(\mathbf{Z}^n)^{\vee}: T \ge 0} a_F(T) e^{2\pi i \operatorname{tr}(TZ)}$$

with $a_F(T) \in V_\rho$ called the **Fourier coefficients** of *F*.

- Classical theta functions
- 2 Siegel modular forms
- 3 The group G_2
- 4 Main theorem 1
- 5 Quaternionic modular forms
- 6 Main Theorem 2
- Explicit formulas

Split G₂

Let G_2^s denote the split algebraic group of type G_2 over **Q**

There is also a form of G_2 that is compact at the archimedean place:

Anisotropic G_2

There is a form G_2^c of G_2 over **Q** that is split at all finite places and such that $G_2^c(\mathbf{R})$ is compact.

The first part of the talk will be about G_2^c . The second part of the talk will be about G_2^s .

Algebraic modular forms I

- Suppose $\pi = \pi_f \otimes \pi_\infty$ is an automorphic representation of $G_2^c(\mathbf{A})$.
- Then π_{∞} is an irreducible representation of $G_2^c(\mathbf{R})$ and thus is finite-dimensional.
- Let W be (the space of) this finite-dimensional representation.
- Automorphic forms φ in π can be described combinatorially in terms of vectors in W.

A finite group $G_2^c(\mathbf{Z})$

Set $G_2^c(\mathbf{Z}) := G_2^c(\mathbf{Q}) \cap G_2^c(\widehat{\mathbf{Z}})$. This is a finite group of order 12096.

Algebraic modular forms II

- Suppose W is a finite-dimensional irreducible representation of G₂^c(R) over C.
- Let $\mathcal{A}(G_2^c; W)$ be the space of level-one automorphic forms on G_2^c with coefficients in W.
- I.e., $\varphi \in \mathcal{A}(\mathit{G}_2^c; \mathit{W})$ if

$$\varphi: G_2^c(\mathbf{A}) \to W$$

is an automorphic form satisfying

$$\ \ \, { { { { { 0 } } } } } } \ \ \, \varphi(gk)=k^{-1}\varphi(g) \ \, { for all } \ k\in G_2^c({\bf R}) \ { and } \ g\in G_2^c({\bf A})$$

$$\mathfrak{P}(gk_f) = \varphi(g) \text{ for all } k_f \in G_2^c(\widehat{\mathsf{Z}}).$$

Lemma 1 (Well-known)

The map $\varphi \mapsto \varphi(1)$ defines a linear isomorphism

$$\mathcal{A}(G_2^c, W) o W^{G_2^c(\mathbf{Z})}.$$

Langlands functoriality

- The dual group of G_2^c is $G_2(\mathbf{C})$.
- G₂(**C**) has a 7-dimensional (standard) representation, that lands in SO₇(**C**).
- Recall that SO₇(**C**) is the dual group of Sp₆.
- Langlands functoriality predicts a lift from automorphic representations of G_2^c to automorphic representations of Sp₆.

This conjectural lift was studied by Gross-Savin:

Gross-Savin

- There is a dual pair $G_2^c \times Sp_6 \subseteq E_{7,3}$.
- The group $E_{7,3}$ has a minimal representation (H. Kim), which can be used as a Θ -kernel to (sometimes) understand this conjectural lift
- Elements of A(G₂^c; W) should lift to vector-valued Siegel modular forms of a prescribed weight.

< ロ > < 同 > < 回 > < 回 >

- Classical theta functions
- 2 Siegel modular forms
- 3 The group G_2
- 4 Main theorem 1
- 5 Quaternionic modular forms
- 6 Main Theorem 2
- Explicit formulas

∃ ►

Theta lifting

- Recall that there is a minimal representation Π_{min} on $E_{7,3}$ which can be used as a Θ -kernel to lift automorphic forms from G_2^c to Siegel modular forms on Sp₆
- If π is an automorphic representation of $G_2^c(\mathbf{A})$, let $\Theta(\pi)$ be its lift to Sp_6 using the various Θ_{ϕ} 's for $\phi \in \Pi_{min}$

The following proposition follows easily from work of Gan-Savin, Magaard-Savin, Gross-Savin:

Proposition 2

Suppose π on G_2^c is unramified at every finite place, and $\pi_{\infty} = W$. Suppose moreover that $\Theta(\pi)$ is nonzero. Then

- $\Theta(\pi)$ is generated by a level one Siegel modular form F_{π} ;
- **2** The weight of F_{π} is explicitly determined by W;
- **③** F_{π} is a Hecke eigenform, with Satake parameters $c_p \in G_2(\mathbf{C}) \subseteq SO_7(\mathbf{C})$ for all *p*.

A π as on the previous slide corresponds to a vector

 $\varphi_{\pi} \in A(G_2^c; W)$, or equivalently a $\alpha_{\pi} \in W^{G_2^c(\mathbf{Z})}$.

Theorem 3

Let the notation be as above. Then the Fourier expansion of F_{π} can be given completely explicitly in terms of α_{π} .

Corollary 4

There is an algorithm to determine if a cuspidal Siegel modular form F of most weights is a theta lift from G_2^c .

Let
$$\rho_1 = [(12, 8, 8)]; \ \rho_2 = [(14, 10, 8)].$$

It is known (Chenevier-Taibi) that there are unique level one Siegel modular cusp forms F_1 , F_2 of these weights, up to scalar multiple.

Corollary 5

 F_1 and F_2 are theta lifts from G_2^c . In particular, all their Satake parameters are in $G_2(\mathbf{C})$.

- Classical theta functions
- 2 Siegel modular forms
- 3 The group G_2
- 4 Main theorem 1
- 5 Quaternionic modular forms
- 6 Main Theorem 2
- Explicit formulas

Modular forms on G_2

- $G_2^s(\mathbf{R})$: a noncompact simple Lie group of dimension 14
- $K = (SU(2) \times SU(2))/\mu_2$ is a maximal compact subgroup of $G_2^s(\mathbf{R})$
- $V_{\ell} := Sym^{2\ell}(C^2) \boxtimes 1$, $\ell \ge 1$ integer, a representation of K.

Definition (Gross-Wallach, Gan-Gross-Savin)

Suppose $\Gamma \subseteq G_2^s(\mathbf{R})$ a congruence subgroup. A modular form on G_2^s of weight ℓ and level Γ is a smooth, moderate growth function $\varphi : \Gamma \setminus G_2^s(\mathbf{R}) \to \mathbf{V}_{\ell}$ satisfying **1** $\varphi(gk) = k^{-1} \cdot \varphi(g)$ for all $k \in K$ and **2** $D_{\ell}\varphi \equiv 0$ for a certain special linear differential operator D_{ℓ} .

伺 ト イヨ ト イヨト

Modular forms on G_2^s have a Fourier expansion

Definition

A real binary cubic form $f(u, v) = au^3 + bu^2v + cuv^2 + dv^3$, $a, b, c, d \in \mathbf{R}$, is said to be positive semi-definite, $f \ge 0$, if f(z, 1)is never 0 on the upper half-plane \mathfrak{h} . Equivalently, $f \ge 0$ if ffactors into three linear factors over \mathbf{R} .

Theorem 6 (P.)

Fix $\ell \geq 1$. There exist explicit functions $W_f : G_2^s(\mathbf{R}) \to \mathbf{V}_{\ell}$, if $f \geq 0$, satisfying

- $W_f(gk) = k^{-1} \cdot W_f(g)$ for all $k \in K$
- $D_\ell W_f(g) \equiv 0.$

If φ a modular form of weight ℓ and level Γ (sufficiently large), then

$$arphi(g)$$
 " = " $\sum_{f \geq 0, f \; integral} a_arphi(f) W_f(g)$.

for some $a_{\varphi}(f) \in \mathbf{C}$.

Remark

The existence of the Fourier coefficients (without the explicit functions W_f), at least for non-degenerate f, was given by Gan-Gross-Savin, crucially using a result of Wallach.

Remark

The $a_{\varphi}(f)$ are defined in a very transcendental way. There is no a priori reason that they might be connected to arithmetic.

Conjecture (P.)

There exists a basis of modular forms of weight ℓ such that all the Fourier coefficients of elements of this basis are algebraic numbers.

- Classical theta functions
- 2 Siegel modular forms
- 3 The group G_2
- 4 Main theorem 1
- 5 Quaternionic modular forms
- 6 Main Theorem 2
- Explicit formulas

Modular forms on G_2^s

- There is a group F_4^c , of type F_4 , that is split at every finite place and compact at the archimedean place
- Similar to $\operatorname{Sp}_6 \times G_2^c \subseteq E_{7,3}$, there is $G_2^s \times F_4^c \subseteq E_{8,4}$.
- The minimal representation (Gan) on $E_{8,4}$ can be used to lift (algebraic) modular forms on F_4^c to (quaternionic) modular forms on G_2^s .

Let V_1 be the irreducible representation of $F_4^c(\mathbf{R})$ of dimensional 273, and V_m the irrep with highest weight m times the highest weight of V_1 .

Theorem 7

Suppose $m \ge 1$. There is a lattice $\Lambda_m \subseteq V_m$ so that if $\alpha \in \Lambda_m$, then the theta lift $\Theta(\alpha)$ is a cuspidal quaternionic modular form on G_2^s of weight 4 + m with completely explicit Fourier expansion. Its Fourier coefficients are all integers.

Proof sketch

$\operatorname{Sp}_6 \times G_2^c \subseteq E_{7,3}$

- Apply differential operators to Kim's modular form on $E_{7,3}$
- O this enough times until you are in the "right" K-type of the minimal representation

$G_s^2 \times F_4^c \subseteq E_{8,4}$

- Start with Gan's Theta function on $E_{8,4}$ which generates the minimal representation on this group
- **2** I calculated its Fourier expansion a few years ago
- Apply differential operators to it until you are in the right K-type (roughly)
- Previous step is now substantially harder
- **(3)** Integrate out the φ , and miraculously get a simple formula

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem 8 (Dalal)

There is an explicit formula for the dimension of the cuspidal quaternionic level one modular forms on G_2^s of weights $\ell \geq 3$.

- Using Dalal's formula, in weight less than 12, I have checked on my laptop that every cuspidal QMF is a lift from F_4^c , and thus these modular forms have a basis with integral Fourier coefficients
- The dimension of the space of such QMFs is 9
- If every level one cuspidal QMF is a lift from F^c₄, then one can tabulate a database of the Fourier expansion of level one cuspidal modular forms on G^s₂

- Classical theta functions
- 2 Siegel modular forms
- 3 The group G_2
- 4 Main theorem 1
- 5 Quaternionic modular forms
- 6 Main Theorem 2
- Explicit formulas

Explicit formula Sp₆ I

- Let Θ be the octonions with positive definite norm form, V₇ its trace 0 elements, and H₃(Θ) the exceptional Jordan algebra of 3 × 3 Hermitian matrices over Θ
- Suppose $T \in H_3(\Theta)$ is rank one
- By taking the trace 0 part of the off diagonal elements T, we obtain an element $v_1 \otimes x_1 + v_2 \otimes x_2 + v_3 \otimes x_3$ of $V_3 \otimes V_7$
- There is a natural map

$$(V_3 \otimes V_7)^{\otimes (k_1+2k_2)} \to S^{k_1}(V_3) \otimes V_7^{\otimes k_1} \otimes S^{k_2}(\wedge^2 V_3) \otimes (\wedge^2 V_7)^{\otimes k_2}.$$

• Denote by $P_{k_1,k_2}(T)$ the image of $T^{\otimes (k_1+2k_2)}$ under this map. $P_{k_1,k_2}(T) = (v_1x_1+v_2x_2+v_3x_3)^{k_1}(w_1(x_2\wedge x_3)+w_2(x_3\wedge x_1)+w_3(x_1\wedge x_2))^{k_2}$ where $w_i = v_{i+1} \wedge v_{i+2}$ and indices are taken modulo 3.

Explicit formula Sp₆ II

- The irrep W is the highest weight submodule of V₇^{⊗k₁} ⊗ (∧²V₇)^{⊗k₂} for unique non-negative integers k₁, k₂.
- If $\beta \in W$, denote by $\{P_{k_1,k_2}(T),\beta\}$ the natural pairing, valued in $S^{k_1}(V_3) \otimes S^{k_2}(\wedge^2 V_3)$.
- Finally, for *T* "integral" in *H*₃(Θ), set *a*(*T*) the Fourier coefficient of *T* in Kim's modular form on *E*_{7,3}, so that *a*(*T*) = 240σ₃(*d*_{*T*}) where *d*_{*T*} measures how divisible is *T*.

Theorem 9

Suppose
$$\beta \in W$$
 is such that $\alpha_{\pi} = \frac{1}{|G_2^c(\mathbf{Z})|} \sum_{\gamma \in G_2^c(\mathbf{Z})} \gamma \beta$. Then

$$F_{\pi}(Z) = \sum_{T \text{ rank } 1} a(T) \{ P_{k_1,k_2}(T), \beta \} e^{2\pi i \operatorname{tr}(TZ)}.$$

Algebraic modular forms on F_4^c

Proposition 10 (Gross)

The double coset

$$F_4^c(\mathbf{Q}) \setminus F_4^c(\mathbf{A}_f) / F_4^c(\widehat{\mathbf{Z}})$$

has size two.

- Let V be a finite-dimensional representation of $F_4^c(\mathbf{R})$
- As a consequence of the proposition, level one algebraic modular forms for F^c₄ can be described as elements of V^{Γ_I} ⊕ V^{Γ_E} for certain finite groups Γ_I and Γ_E

The representation V_m

Set $J = H_3(\Theta)$, and J^0 the subspace with 0 trace. There is an exact sequence

$$0 \rightarrow V_1 \rightarrow \wedge^2 J^0 \rightarrow \mathfrak{f}_4 \rightarrow 0.$$

Thus one can find $V_m \subseteq (\wedge^2 J)^{\otimes m}$.

Explicit formula for G_2^s

- Set $W_J = \mathbf{Z} \oplus J \oplus J \oplus \mathbf{Z}$. This is an integral model for the 56-dimensional representation of E_7 .
- There is a notion of "rank one" elements of W_J , which are those elements in the E_7 orbit of a highest weight vector
- For w ∈ W_J, define a_Θ(w) = σ₄(d_w) if w is rank one and 0 otherwise. Here d_w is the largest integer such that w ∈ d_wW_J.

• For
$$w = (a, b, c, d) \in W_J$$
, set $P_m(w) = (b \wedge c)^{\otimes m} \in (\wedge^2 J)^{\otimes m}$. Note that $\langle P_m(w), \beta \rangle \in \mathbf{C}$.

• Denote $pr_l(w) = au^3 + tr(b)u^2v + tr(c)uv^2 + dv^3$

Theorem 11

Suppose m > 1 and $\beta \in V_m$. Then

$$\sum_{w \in W_J} a_{\Theta}(w) \langle P_m(w), \beta \rangle W_{pr_I(w)}(g)$$

is the Fourier expansion of a level one cuspidal QMF on G_2^s of weight 4 + m.

Happy Birthday Shou-Wu!

æ

æ

() 《 문 》 《