Exceptional theta functions

Aaron Pollack

March 2023

Aaron Pollack [Exceptional theta functions](#page-31-0)

 \sim \sim

э

Ξ

 299

∍

- 2 [Siegel modular forms](#page-7-0)
- 3 [The group](#page-10-0) G_2
- [Main theorem 1](#page-15-0)
- 5 [Quaternionic modular forms](#page-18-0)
- 6 [Main Theorem 2](#page-22-0)
- 7 [Explicit formulas](#page-26-0)

 \sim \sim

医单头 化

Harmonic theta functions: Example

Define

$$
S=\left(\begin{array}{cccccccc}2&0&0&0&0&-1&0&0\\0&2&-1&0&0&0&0&0\\0&-1&2&-1&0&0&0&0\\0&0&-1&2&-1&0&0&0\\0&0&0&-1&2&-1&0&0\\-1&0&0&0&-1&2&-1&0\\0&0&0&0&0&-1&2&-1\\0&0&0&0&0&0&-1&2\end{array}\right)
$$

.

- Let $V = \mathbf{R}^8$, $L = \mathbf{Z}^8$, and $(x, y) = \frac{1}{2}x^tSy$.
- \bullet S is positive definite, and (,) is integral on L.
- \bullet This is the E_8 root lattice
- Set $p(v) = (e_1 + ie_2, v)^8$, $\Theta_{L,p}(z) = \sum_{v \in L} p(v) e^{2\pi i (v,v)z}$.
- $\Theta_{L,p}(z)=1920\Delta(z)=1920\sum_{n\geq1}\tau(n)\mathrm{e}^{2\pi inz}$ $\Theta_{L,p}(z)=1920\Delta(z)=1920\sum_{n\geq1}\tau(n)\mathrm{e}^{2\pi inz}$ $\Theta_{L,p}(z)=1920\Delta(z)=1920\sum_{n\geq1}\tau(n)\mathrm{e}^{2\pi inz}$

Theta function of a lattice

- Suppose V is a finite-dimensional real vector space with a positive-definite inner product (,) : $V \otimes V \rightarrow \mathbf{R}$
- Suppose $L \subseteq V$ is a lattice, such that $(x, x) \in \mathsf{Z}$, $(x, y) \in \frac{1}{2}$ $\frac{1}{2}$ Z for all $x, y \in L$.

The theta function of a lattice

Define

$$
\Theta_L(z)=\sum_{v\in L}e^{2\pi i(v,v)z}.
$$

This is a modular form of weight dim($V/2$.

Example

Suppose

- $V = \mathbf{R}^N$,
- $L = \mathbf{Z}^N$,
- \bullet (,) the usual inner product on V.

Then

Standard lattice

$$
\Theta_L(z)=\sum_{m\geq 0}r_N(m)q^m
$$

where

$$
r_N(m) = \#\{(x_1, \ldots, x_N) \in \mathbf{Z}^N : x_1^2 + \cdots + x_N^2 = m\}
$$

is the number of ways of writing m as the sum of N squares.

 $\Theta_L(z)$ is a modular form of weight $N/2$ and level $\Gamma_1(4)$ $\Gamma_1(4)$ $\Gamma_1(4)$.

イ押 トイヨ トイヨ トー

E

 200

Harmonic theta functions

 \bullet Let $V, L, (,)$ be as above

2 Suppose $w \in V \otimes C$ is isotropic, i.e. $(w, w) = 0$. Define H_n to be the polynomials $V \rightarrow C$ of degree *n* spanned by the $v \mapsto (w, v)^n$, w isotropic. These are called the harmonic polynomials. (This is a finite-dimensional irreducible representation of $SO(V)$).

Harmonic theta functions

For $p \in H_n$, set

$$
\Theta_{L,p}(z)=\sum_{v\in L}p(v)e^{2\pi i(v,v)z}.
$$

This is a modular form of weight dim(V)/2 + n. If $n > 0$ it is a cusp form.

Modern viewpoint

- \bullet Let V be a positive definite rational quadratic space
- **2** Assume for simplicity that $dim(V)$ is even
- ³ Using the Weil representation, can make (many) two-variable theta functions $\Theta(g, h)$, $g \in SL_2(\mathbf{A})$, $h \in SO(V)(\mathbf{A})$, which are automorphic forms in each variable
- **4** Given an automorphic form α on SO(V), one defines the theta lift of α ,

$$
\Theta(\alpha)(g) = \int_{[SO(V)]} \Theta(g,h)\alpha(h) dh.
$$

This is an automorphic form on $SL₂$.

• Because V is positive-definite, $SO(V)(\mathbf{Q})\setminus SO(V)(\mathbf{A})$ is compact. Consequently, automorphic forms α on SO(V) can be described in terms of finite-dimensional representations of $SO(V)(\mathbf{R})$ and combinatorial data.

1 [Classical theta functions](#page-1-0)

- 2 [Siegel modular forms](#page-7-0)
- 3 [The group](#page-10-0) G_2
- [Main theorem 1](#page-15-0)
- 5 [Quaternionic modular forms](#page-18-0)
- 6 [Main Theorem 2](#page-22-0)
- 7 [Explicit formulas](#page-26-0)

 \sim \sim

化重新化

- Suppose (ρ, V_{ρ}) is a finite-dimensional representation of $GL_n(\mathbb{C})$.
- Let $\mathcal{H}_n = \mathsf{Sp}_{2n}(\mathbf{R})/U(n)$ be the symmetric space for $\mathsf{Sp}_{2n}(\mathbf{R})$.
- \bullet One realizes \mathcal{H}_n as

$$
\mathcal{H}_n=\{Z\in M_n(\mathbf{C}): Z^t=Z, Im(Z)>0\}.
$$

 $\mathsf{Sp}_{2n}(\mathbf{R})$ acts on \mathcal{H}_n by linear fractional transformations: if $\gamma = \left(\begin{smallmatrix} a & b \ c & d \end{smallmatrix} \right) \in \mathsf{Sp}_{2n}(\mathsf{R})$ and $Z \in \mathcal{H}_n$ then

$$
\gamma \cdot Z = (aZ + b)(cZ + d)^{-1}.
$$

Siegel modular forms of weight ρ

A level one Siegel modular form of weight ρ is a holomormphic function $F: \mathcal{H}_n \to V_\rho$ satisfying $F(\gamma Z) = \rho(cZ + d)F(z)$ for all γ in $Sp_{2n}(\mathbf{Z})$.

Siegel modular forms have a classical Fourier expansion:

- Let $S(\mathbf{Z}^n)^\vee$ denote the half-integral $n \times n$ matrices.
- $T \in S(\mathbf{Z}^n)^\vee$ if T is symmetric, with integer diagonal entries, and off-diagonal entries in $\frac{1}{2}$ **Z**.

Fourier expansion

If F is a level one Siegel modular form on Sp_{2n} of weight ρ , then

$$
F(Z) = \sum_{T \in S(\mathbf{Z}^n)^{\vee} : T \geq 0} a_F(T) e^{2\pi i \operatorname{tr}(TZ)}
$$

with $a_F(T) \in V$ called the **Fourier coefficients** of F.

- 1 [Classical theta functions](#page-1-0)
- 2 [Siegel modular forms](#page-7-0)
- 3 [The group](#page-10-0) G_2
- [Main theorem 1](#page-15-0)
- 5 [Quaternionic modular forms](#page-18-0)
- 6 [Main Theorem 2](#page-22-0)
- 7 [Explicit formulas](#page-26-0)

 \sim \sim

化重新化重

Split $G₂$

Let G_2^s denote the split algebraic group of type G_2 over $\bf Q$

There is also a form of G_2 that is compact at the archimedean place:

Anisotropic G_2

There is a form G_2^c of G_2 over $\bf Q$ that is split at all finite places and such that $G_2^c(\mathbf{R})$ is compact.

The first part of the talk will be about G_2^c . The second part of the talk will be about G_2^s .

Algebraic modular forms I

- Suppose $\pi = \pi_f \otimes \pi_\infty$ is an automorphic representation of $G_2^c(\mathbf{A})$.
- Then π_{∞} is an irreducible representation of $\mathsf{G_2^c}(\mathbf{R})$ and thus is finite-dimensional.
- Let W be (the space of) this finite-dimensional representation.
- Automorphic forms φ in π can be described combinatorially in terms of vectors in W .

A finite group $G_2^c(\mathbf{Z})$

Set $\mathcal{G}_{2}^{c}(\textbf{Z}):=\mathcal{G}_{2}^{c}(\textbf{Q})\cap\mathcal{G}_{2}^{c}(\widehat{\textbf{Z}}).$ This is a finite group of order 12096.

Algebraic modular forms II

- \bullet Suppose W is a finite-dimensional irreducible representation of $G_2^c(\mathbf{R})$ over **C**.
- Let $\mathcal{A}(G_2^c; W)$ be the space of level-one automorphic forms on G_2^c with coefficients in W.
- I.e., $\varphi \in \mathcal{A}(G_2^c; W)$ if

$$
\varphi: \mathsf{G}_2^c(\mathsf{A}) \to W
$$

is an automorphic form satisfying

$$
\bullet \ \varphi(gk) = k^{-1}\varphi(g) \text{ for all } k \in G_2^c(\mathbf{R}) \text{ and } g \in G_2^c(\mathbf{A})
$$

$$
\mathbf{9} \ \varphi(gk_f) = \varphi(g) \text{ for all } k_f \in G_2^c(\widehat{\mathbf{Z}}).
$$

Lemma 1 (Well-known)

The map $\varphi \mapsto \varphi(1)$ defines a linear isomorphism

$$
\mathcal{A}(G_2^c,W)\to W^{G_2^c(\mathbf{Z})}.
$$

Langlands functoriality

- The dual group of G_2^c is $G_2(\mathbf{C})$.
- $G_2(C)$ has a 7-dimensional (standard) representation, that lands in $SO₇(C)$.
- Recall that $\mathsf{SO}_7(\mathsf{C})$ is the dual group of $\mathsf{Sp}_6.$
- Langlands functoriality predicts a lift from automorphic representations of G_2^c to automorphic representations of $\mathsf{Sp}_6.$

This conjectural lift was studied by Gross-Savin:

Gross-Savin

- There is a dual pair $G_2^c \times \text{Sp}_6 \subseteq E_{7,3}$.
- The group $E_{7,3}$ has a minimal representation (H. Kim), which can be used as a Θ-kernel to (sometimes) understand this conjectural lift
- Elements of $A(G_2^c; W)$ should lift to vector-valued Siegel modular forms of a prescribed weight.

←ロト ←何ト ←ヨト ←ヨト

- 1 [Classical theta functions](#page-1-0)
- 2 [Siegel modular forms](#page-7-0)
- 3 [The group](#page-10-0) G_2
- 4 [Main theorem 1](#page-15-0)
- 5 [Quaternionic modular forms](#page-18-0)
- 6 [Main Theorem 2](#page-22-0)
- 7 [Explicit formulas](#page-26-0)

 \sim \sim

化重新化重

Theta lifting

- Recall that there is a minimal representation Π_{min} on E_7 3 which can be used as a Θ-kernel to lift automorphic forms from $\,G^c_2\,$ to Siegel modular forms on $\mathrm{Sp}_6\,$
- If π is an automorphic representation of $\mathsf{G}_{2}^{\mathsf{c}}(\mathsf{A})$, let $\Theta(\pi)$ be its lift to Sp₆ using the various Θ_{ϕ} 's for $\phi \in \Pi_{\text{min}}$

The following proposition follows easily from work of Gan-Savin, Magaard-Savin, Gross-Savin:

Proposition 2

Suppose π on $\mathsf{G_2^c}$ is unramified at every finite place, and $\pi_{\infty} = \mathsf{W}.$ Suppose moreover that $\Theta(\pi)$ is nonzero. Then

- Θ $\Theta(\pi)$ is generated by a level one Siegel modular form F_{π} ;
- **2** The weight of F_π is explicitly determined by W;
- \bullet F_{π} is a Hecke eigenform, with Satake parameters $c_p \in G_2(\mathbf{C}) \subset SO_7(\mathbf{C})$ for all p.

A π as on the previous slide corresponds to a vector

 $\varphi_\pi\in A(G_2^c; \, W),\,$ or equivalently a $\alpha_\pi\in\mathcal{W}^{G_2^c(\mathbf{Z})}.$

Theorem 3

Let the notation be as above. Then the Fourier expansion of F_{π} can be given completely explicitly in terms of α_{π} .

Corollary 4

There is an algorithm to determine if a cuspidal Siegel modular form F of most weights is a theta lift from G_2^c .

Let
$$
\rho_1 = [(12, 8, 8)]; \ \rho_2 = [(14, 10, 8)].
$$

It is known (Chenevier-Taibi) that there are unique level one Siegel modular cusp forms F_1, F_2 of these weights, up to scalar multiple.

Corollary 5

 F_1 and F_2 are theta lifts from G_2^c . In particular, all their Satake parameters are in $G_2(\mathbf{C})$.

 $Q \cap$

- 1 [Classical theta functions](#page-1-0)
- 2 [Siegel modular forms](#page-7-0)
- 3 [The group](#page-10-0) G_2
- [Main theorem 1](#page-15-0)
- 5 [Quaternionic modular forms](#page-18-0)
- 6 [Main Theorem 2](#page-22-0)
- 7 [Explicit formulas](#page-26-0)

 \sim \sim

化重新化

Modular forms on G_2

- $G_2^s(\mathbf{R})$: a noncompact simple Lie group of dimension 14
- $K = (SU(2) \times SU(2))/\mu_2$ is a maximal compact subgroup of $G_2^s(\mathbf{R})$
- $\mathbf{V}_\ell:=\mathsf{Sym}^{2\ell}(\mathbf{C}^2)\boxtimes \mathbf{1},\ \ell\geq 1$ integer, a representation of $\mathcal{K}.$

Definition (Gross-Wallach, Gan-Gross-Savin)

Suppose $\Gamma \subseteq \mathit{G}_{2}^{s}(\bm{\mathsf{R}})$ a congruence subgroup. A modular form on G_2^s of weight ℓ and level Γ is a smooth, moderate growth function $\varphi:\mathsf{F}\backslash\mathsf{G}_{2}^{s}(\mathsf{R})\rightarrow\mathsf{V}_{\ell}$ satisfying $\mathbf{D}^{\perp}\varphi(gk)=k^{-1}\cdot\varphi(g)$ for all $k\in\mathcal{K}$ and ${\mathcal D} \!\ell \varphi \equiv 0$ for a certain special linear differential operator $D_\ell.$

御 ▶ イヨ ▶ イヨ ▶ │

 200

Modular forms on G_2^s $\frac{5}{2}$ have a Fourier expansion

Definition

A real binary cubic form $f(u,v)=au^3+bu^2v+cuv^2+dv^3$, a, b, c, $d \in \mathbb{R}$, is said to be positive semi-definite, $f \geq 0$, if $f(z, 1)$ is never 0 on the upper half-plane h. Equivalently, $f > 0$ if f factors into three linear factors over R.

Theorem 6 (P.)

Fix $\ell \geq 1$. There exist explicit functions $W_f : G_2^s(\mathbf{R}) \to \mathbf{V}_{\ell}$, if $f > 0$, satisfying

- $W_f(gk) = k^{-1} \cdot W_f(g)$ for all $k \in K$
- $D_{\ell}W_f(g) \equiv 0.$

If φ a modular form of weight ℓ and level Γ (sufficiently large), then

$$
\varphi(g)^{u} = \sum_{f \geq 0, f \text{ integral}} a_{\varphi}(f) W_{f}(g)
$$

for some $a_{\varphi}(f) \in \mathbb{C}$.

 $Q \cap$

Remark

The existence of the Fourier coefficients (without the explicit functions W_f), at least for non-degenerate f, was given by Gan-Gross-Savin, crucially using a result of Wallach.

Remark

The $a_{\varphi}(f)$ are defined in a very transcendental way. There is no a priori reason that they might be connected to arithmetic.

Conjecture (P.)

There exists a basis of modular forms of weight ℓ such that all the Fourier coefficients of elements of this basis are algebraic numbers.

- 1 [Classical theta functions](#page-1-0)
- 2 [Siegel modular forms](#page-7-0)
- 3 [The group](#page-10-0) G_2
- [Main theorem 1](#page-15-0)
- 5 [Quaternionic modular forms](#page-18-0)
- 6 [Main Theorem 2](#page-22-0)
- 7 [Explicit formulas](#page-26-0)

 \sim \sim

化重新化重

Modular forms on G_2^s 2

- There is a group F_4^c , of type F_4 , that is split at every finite place and compact at the archimedean place
- Similar to $\mathsf{Sp}_6 \times G_2^c \subseteq E_{7,3}$, there is $\mathit{G}_2^s \times \mathit{F}_4^c \subseteq E_{8,4}$.
- The minimal representation (Gan) on $E_{8,4}$ can be used to lift (algebraic) modular forms on F_4^c to (quaternionic) modular forms on G_2^s .

Let V_1 be the irreducible representation of $F_4^c(\mathbf{R})$ of dimensional 273, and V_m the irrep with highest weight m times the highest weight of V_1 .

Theorem 7

Suppose $m > 1$. There is a lattice $\Lambda_m \subset V_m$ so that if $\alpha \in \Lambda_m$. then the theta lift $\Theta(\alpha)$ is a cuspidal quaternionic modular form on G_2^s of weight $4 + m$ with completely explicit Fourier expansion. Its Fourier coefficients are all integers.

K 伊 ▶ K 手 ▶ K 手

Proof sketch

$Sp_6\times G_2^c\subseteq E_{7,3}$

- \bullet Apply differential operators to Kim's modular form on $E_{7,3}$
- **2** Do this enough times until you are in the "right" K-type of the minimal representation
- **3** Integrate out the φ , and all "bad" terms vanish

$\mathsf{G^2_s}\times\mathsf{F^c_4}\subseteq E_{8,4}$

- **•** Start with Gan's Theta function on $E_{8,4}$ which generates the minimal representation on this group
- 2 I calculated its Fourier expansion a few years ago
- **3** Apply differential operators to it until you are in the right K -type (roughly)
- ⁴ Previous step is now substantially harder
- **Integrate out the** φ **, and miraculously get a simple formula**

す 何 ト す ヨ ト す ヨ ト

Theorem 8 (Dalal)

There is an explicit formula for the dimension of the cuspidal quaternionic level one modular forms on $\mathsf{G_2^s}$ of weights $\ell \geq 3$.

- Using Dalal's formula, in weight less than 12, I have checked on my laptop that every cuspidal QMF is a lift from F_4^c , and thus these modular forms have a basis with integral Fourier coefficients
- The dimension of the space of such QMFs is 9
- If every level one cuspidal QMF is a lift from F_4^c , then one can tabulate a database of the Fourier expansion of level one cuspidal modular forms on G_{2}^{s}

母 ▶ ヨ ヨ ▶ ヨ ヨ

- 1 [Classical theta functions](#page-1-0)
- 2 [Siegel modular forms](#page-7-0)
- 3 [The group](#page-10-0) G_2
- [Main theorem 1](#page-15-0)
- 5 [Quaternionic modular forms](#page-18-0)
- 6 [Main Theorem 2](#page-22-0)
- 7 [Explicit formulas](#page-26-0)

 \sim \sim

化重新化重

Explicit formula Sp $_{6}$ I

- Let Θ be the octonions with positive definite norm form, V_7 its trace 0 elements, and $H_3(\Theta)$ the exceptional Jordan algebra of 3 \times 3 Hermitian matrices over Θ
- Suppose $T \in H_3(\Theta)$ is rank one
- \bullet By taking the trace 0 part of the off diagonal elements T, we obtain an element $v_1 \otimes x_1 + v_2 \otimes x_2 + v_3 \otimes x_3$ of $V_3 \otimes V_7$
- There is a natural map

$$
(V_3 \otimes V_7)^{\otimes (k_1+2k_2)} \rightarrow S^{k_1}(V_3) \otimes V_7^{\otimes k_1} \otimes S^{k_2}(\wedge^2 V_3) \otimes (\wedge^2 V_7)^{\otimes k_2}.
$$

Denote by $P_{k_1,k_2}(\mathcal{T})$ the image of $\mathcal{T}^{\otimes (k_1+2k_2)}$ under this map. $P_{k_1,k_2}(T) = (v_1x_1+v_2x_2+v_3x_3)^{k_1}(w_1(x_2 \wedge x_3)+w_2(x_3 \wedge x_1)+w_3(x_1 \wedge x_2))^{k_2}$ where $w_i = v_{i+1} \wedge v_{i+2}$ and indices are taken modulo 3.

御 ▶ イヨ ▶ イヨ ▶ │

 Ω

Explicit formula Sp_6 II

- The irrep W is the highest weight submodule of $V_7^{\otimes k_1}\otimes (\wedge^2 V_7)^{\otimes k_2}$ for unique non-negative integers k_1,k_2 .
- If $\beta \in W$, denote by $\{P_{k_1,k_2}(\mathcal{T}), \beta\}$ the natural pairing, valued in $\mathcal{S}^{k_1}(V_3)\otimes \mathcal{S}^{k_2}(\wedge^2V_3).$
- Finally, for T "integral" in $H_3(\Theta)$, set $a(T)$ the Fourier coefficient of T in Kim's modular form on $E_{7,3}$, so that $a(T) = 240\sigma_3(d_T)$ where d_T measures how divisible is T.

Theorem 9

Suppose
$$
\beta \in W
$$
 is such that $\alpha_{\pi} = \frac{1}{|G_2^c(\mathbf{Z})|} \sum_{\gamma \in G_2^c(\mathbf{Z})} \gamma \beta$. Then

$$
F_{\pi}(\mathbf{Z}) = \sum a(\mathbf{T}) \{ P_{k_1, k_2}(\mathbf{T}), \beta \} e^{2\pi i \operatorname{tr}(\mathbf{T}\mathbf{Z})}.
$$

$$
\overline{T \text{ rank } 1}
$$

母 ▶ ヨ ヨ ▶ ヨ ヨ

Algebraic modular forms on $F_4^{\rm c}$ 4

Proposition 10 (Gross)

The double coset

$$
F_4^c(\mathbf{Q})\backslash F_4^c(\mathbf{A}_f)/F_4^c(\widehat{\mathbf{Z}})
$$

has size two.

- Let V be a finite-dimensional representation of $F_4^c(\mathbf{R})$
- As a consequence of the proposition, level one algebraic modular forms for F_4^c can be described as elements of $V^{\Gamma_I} \oplus V^{\Gamma_E}$ for certain finite groups Γ_I and Γ_E

The representation V_m

Set $J=H_3(\Theta)$, and J^0 the subspace with 0 trace. There is an exact sequence

$$
0\to V_1\to \wedge^2 J^0\to \mathfrak{f}_4\to 0.
$$

Thus one can find $V_m \subseteq (\wedge^2 J)^{\otimes m}$.

 QQ

す 何 ト す ヨ ト す ヨ ト

Explicit formula for G_2^s 2

- Set $W_1 = \mathbf{Z} \oplus J \oplus J \oplus \mathbf{Z}$. This is an integral model for the 56-dimensional representation of E_7 .
- There is a notion of "rank one" elements of W_I , which are those elements in the $E₇$ orbit of a highest weight vector
- For $w \in W_I$, define $a_{\Theta}(w) = \sigma_4(d_w)$ if w is rank one and 0 otherwise. Here d_w is the largest integer such that $w \in d_wW$.

• For
$$
w = (a, b, c, d) \in W_J
$$
, set
\n $P_m(w) = (b \wedge c)^{\otimes m} \in (\wedge^2 J)^{\otimes m}$. Note that $\langle P_m(w), \beta \rangle \in \mathbb{C}$.

• Denote
$$
pr_1(w) = au^3 + tr(b)u^2v + tr(c)uv^2 + dv^3
$$

Theorem 11

Suppose $m > 1$ and $\beta \in V_m$. Then

$$
\sum_{w \in W_J} a_{\Theta}(w) \langle P_m(w), \beta \rangle W_{pr_l(w)}(g)
$$

is the Fourier expansion of a level one cuspidal QMF on G_2^s of weight $4 + m$.

Happy Birthday Shou-Wu!

4日)

伊 ▶ すき ▶ す

E

活 -b 299