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A theorem of Ribet

Consider a positive integer Σ, a cusp newform

f = q + a2q2 + a3q3 + · · · ∈ OL[[q]]

of weight 2, level Γ0(Σ), and rationality field L ⊆ C, together with an `-adic prime λ of L.
Take a prime number p - Σ` and denote by TΣp the unramified Hecke algebra away-from-Σp.

Denote by mf the kernel of the composite map

TΣp φf−−→ OL → OL/λ,

where φf is the Satake homomorphism determined by f.
Let X0(Σ) be the modular curve of level Γ0(Σ) over Zp . Put Y0(Σ) := X0(Σ)⊗Zp Fp with

S0(Σ) the set of supersingular locus in Y0(Σ), which is a finite union of SpecFp2 . In particular,
we have the absolute cycle class map

α : Zλ[S0(Σ)]→ H2(Y0(Σ)⊗ Fp2 ,Zλ(1)),

where Zλ := OLλ .

Theorem (Ribet)
Suppose that f mod λ is non-Eisenstein. Then the localized map αmf is surjective.

Here, that f mod λ is non-Eisenstein means that the Galois representation associated with f
remains irreducible after modulo λ. When this is the case, αmf is same as the map

αmf : Zλ[S0(Σ)]deg=0
mf → H1(Fp2 ,H

1(Y0(Σ)⊗ Fp ,Zλ(1))mf ).
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Level raising of modular forms

We say that a prime number p - Σ` is a level raising prime for f modulo λ if

a2p ≡ (p + 1)2 mod λ

holds. By the Eichler–Shimura relation, it is easy to see that

H1(Fp2 ,H
1(Y0(Σ)⊗ Fp ,Zλ(1))mf ) 6= 0

if and only if p is a level raising prime. In the context of Ribet’s theorem, we know that

Zλ[S0(Σ)]0mf 6= 0

when p is a level raising prime.
Let B be the unique quaternion algebra over Q ramified at {∞, p}. Then it is well-known

that there is a canonical Hecke equivariant isomorphism

S0(Σ) ' B×\B̂×/R̂Σ

×

of sets, where RΣ is an order of B of relative discriminant Σ. By the Jacquet–Langlands
correspondence, we obtain a cusp newform

f′ = q + a′2q2 + a′3q3 + · · · ∈ OL′ [[q]]

of weight 2, level Γ0(Σp), and rationality field L′ ⊆ C, satisfying
• a′p = ±1;
• for a certain prime λ′ of L′ such that OL′/λ

′ ⊆ OL/λ, a′v mod λ′ = av mod λ holds for
every prime number v - Σp.
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Unitary Shimura varieties

Consider
• a CM number field F ⊆ C, with F+ ⊆ F its maximal totally real subfield,
• a positive integer N,
• a (nondegenerate) hermitian space V over F/F+ that has signature (N − 1, 1) at the default
real place and signature (N, 0) at all others,
• a prime p of F+ that is inert in F and such that G := ResF+/Q U(V ) is unramified at p (the
underlying prime number of p).
Fix an isomorphism C ' Qp that induces the place p. Let q be the residue cardinality of F+

p

so that q = p[F+
p :Qp ]. Fix a hyperspecial maximal subgroup Kp of G(Qp).

To technically simplify this talk, we pretend that there exists a complex abelian variety with
complex multiplication by OF that can be defined over Zq2 . In other words, we may fix a CM
type Φ containing the default place τ : F ⊆ C and a triple (A0, i0, λ0) where
• A0 is an abelian scheme over Zq2 of dimension [F+ : Q];
• i0 : OF → End(A0) is a CM structure of CM type Φ;
• λ0 : A0 → A∨0 is a p-principal polarization under which i0 turns the complex conjugation into
the Rosati involution.
Under such simplification, we may define the Shimura variety associated with G over Zq2 via

a certain moduli interpretation, following Rapoport–Smithling–Zhang. Namely, for every neat
open compact subgroup Kp ⊆ G(A∞,p), we have a scheme X(Kp), quasi-projective and smooth
over Zq2 of relative dimension N − 1, such that

X(Kp)(C) ' G(Q)\D∞ × G(A∞)/KpKp ,

where D∞ denotes the hermitian symmetric domain of negative complex lines in V ⊗F ,τ C.
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Moduli interpretation

For every locally Noetherian scheme T over Zq2 , X(Kp)(T ) is the set of equivalence classes
of quadruples (A, i , λ, ηp) where
• A is an abelian scheme over T of dimension N[F+ : Q];
• i : OF → End(A) is an action of OF such that for every a ∈ OF , the characteristic
polynomial for the action of i(a) on the Lie algebra of A is given by

(X − a)N−1(X − a)
∏

τ ′∈Φ\{τ}

(X − τ ′(a))N ;

• λ : A→ A∨ is a p-principal polarization under which i turns the complex conjugation into
the Rosati involution;
• ηp is a Kp-level structure, that is, for a chosen geometric point t on every connected
component of T , a π1(T , t)-invariant Kp-orbit of isometries

ηp : V ⊗Q A∞,p ∼−→ Homλ0,λF⊗QA∞,p (H1(A0t ,A∞,p),H1(At ,A∞,p))

of hermitian spaces over F ⊗Q A∞,p/F+ ⊗Q A∞,p .
Put Y (Kp) := X(Kp)⊗Zq2 Fq2 .
Denote by Y (Kp)b the basic locus of Y (Kp), that is, the closed locus where the

OFp -divisible group A[p∞] is supersingular.
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Basic correspondence

To describe Y (Kp)b, we construct the so-called basic correspondence. We fix a totally
positive element $ ∈ OF+ that has valuation 1 at p and 0 at other p-adic places.

We define a moduli problem S(Kp) over Fq2 , such that for every locally Noetherian scheme
T over Fq2 , S(Kp)(T ) is the set of equivalence classes of quadruples (A′, i ′, λ′, ηp′) where
• A′ is an abelian scheme over T of dimension N[F+ : Q];
• i ′ : OF → End(A′) is an action of OF “with the characteristic polynomial”∏

τ ′∈Φ
(X − τ ′(a))N ;

• λ′ : A′ → A′∨ is an “i ′-compatible” polarization such that ker λ′[p∞] is trivial (resp.
contained in A′[p] of rank q2) if N is odd (resp. even);

• ηp′ : V ⊗Q A∞,p ∼−→ Hom$λ0,λ
′

F⊗QA∞,p (H1(A0t ,A∞,p),H1(A′t ,A∞,p)) is a Kp-level structure.

It turns out that S(Kp) is a projective smooth scheme over Fq2 of dimension 0.
We then define a moduli problem B(Kp) over Fq2 that parameterizes data

(A, i , λ, ηp ;A′, i ′, λ′, ηp′;α) where
• (A, i , λ, ηp) is an object of Y (Kp);
• (A′, i ′, λ′, ηp′) is an object of S(Kp);
• α : A→ A′ is an OF -linear isogeny such that
− kerα[p∞] is contained in A[p];
− $ · λ = α∨ ◦ λ′ ◦ α; and
− the Kp-orbit of maps v 7→ α∗ ◦ ηp(v) for v ∈ V ⊗Q A∞,p coincides with ηp′.
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Basic correspondence

By forgetting, we have an obvious correspondence

S(Kp)
π←− B(Kp)

ι−→ Y (Kp).

We have the following properties.

(1) The correspondence is equivariant with the obvious actions of Hecke operators away from p.
(2) The morphism π is projective smooth with fibers being certain irreducible Deligne–Lusztig

varieties of dimension r := bN−12 c.

(3) The morphism ι is locally a closed embedding, whose image is exactly Y (Kp)b.
(4) S(Kp) is a finite copy of SpecFq2 naturally indexed by the following double coset: Let V ′ be

the totally positive definite hermitian space over F/F+ such that
V ′ ⊗F+ A∞,pF+ ' V ⊗F+ A∞,pF+ (and fix such an isometry). Then the index set is

G ′(Q)\G ′(A∞)/KpK ′p

where G ′ := ResF+/Q U(V ′) and K ′p is a fixed maximal special subgroup of G ′(Qp).

In particular, the absolute cycle classes give a map

ι! ◦ π∗ : H0(S(Kp),Λ)→ H2(N−1−r)(Y (Kp),Λ(N − 1− r))

for any suitable coefficient ring Λ.
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Cycle class maps

By the Hoschchild–Serre sequence, we have a short exact sequence

0→ H1(Fq2 ,H
2(N−1−r)−1(Y (Kp)Fp

,Λ(N − 1− r)))

→ H2(N−1−r)(Y (Kp),Λ(N − 1− r))→ H0(Fq2 ,H
2(N−1−r)(Y (Kp)Fp

,Λ(N − 1− r)))→ 0.

If we denote by H0(S(Kp),Λ)♦ the kernel of the composite map

γN : H0(S(Kp),Λ)→ H2(N−1−r)(Y (Kp),Λ(N − 1− r))→ H2(N−1−r)(Y (Kp)Fp
,Λ(N − 1− r)),

then we obtain the induced map

αN : H0(S(Kp),Λ)♦ → H1(Fq2 ,H
2(N−1−r)−1(Y (Kp)Fp

,Λ(N − 1− r))).

In many cases, we are interested in the middle-degree (geometric) cohomology. More
precisely,
• when N = 2r + 1, we are interested in the map γN : H0(S(Kp),Λ)→ H2r (Y (Kp)Fp

,Λ(r)),
namely, Tate cycles given by basic locus (which has been extensively studied by Xiao–Zhu);
• when N = 2r , we are interested in the map

αN : H0(S(Kp),Λ)♦ → H1(Fq2 ,H
2r−1(Y (Kp)Fp

,Λ(r))).

The question of the surjective of αN after certain localization will be our analogue of Ribet’s
level raising theorem for the unitary Shimura variety X(Kp).
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Ihara’s lemma for modular curve

We recall Ihara’s lemma for modular curve and its relation with Ribet’s theorem.
Consider the modular curve X0(Σp) over Zp , which admits a natural involution i and a

natural finite morphism f : X0(Σp)→ X0(Σ) of degree p + 1.
Let f, L and λ be as in the beginning of the talk. Ihara’s lemma says that if f mod λ is

non-Eisenstein, then the map

(f∗, f∗ ◦ i∗) : H1(X0(Σp)Qp
,Zλ)→ H1(X0(Σ)Qp

,Zλ)⊕2

is surjective after localizing at mf. Ribet deduced his theorem from this lemma.
Now we give an alternative interpretation of Ihara’s lemma under the further assumption

` - (p + 1), which will be instructive later.
Put K := GL2(Zp) and let P ⊆ K be the standard upper-triangular Iwahori subgroup. Then

the Zλ[K]-module IndKP Zλ admits a unique decomposition Zλ ⊕ Ωλ in which Ωλ is a free
Zλ-module of rank p. Then the surjectivity of (f∗, f∗ ◦ i∗) localized at mf is equivalent to the
surjectivity of the composite map

β : H1(X0(Σ)Qp
,Ωλ) ↪→ H1(X0(Σ)Qp

, IndKP Zλ)

= H1(X0(Σp)Qp
,Zλ)

f∗◦i∗−−−→ H1(X0(Σ)Qp
,Zλ)

localized at mf.
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Standard module of hermitian Siegel parahoric

Now we assume that N = 2r is even and that Λ = Zλ for a finite extension Qλ/Q`.
Let K be the p-component of Kp , which is a hyperspecial maximal subgroup of U(V )(F+

p ).
Fix a hermitian Siegel parahoric subgroup P ⊆ K. Let Q be the double coset in P\K/P that
parameterizes a pair of Lagrangian subspaces with intersection of codimension 1.

Proposition
Suppose that ` - q

∏N
i=1(1− (−q)i ). We have a canonical decomposition

Zλ[P\K] =

r⊕
j=0

Ωj
N,λ

of Zλ[P\K/P]-modules in which Ωj
N,λ is the eigenspace of Q with eigenvalue

−(−q)N+1−j−(−q)j−q+1
q2−1 (the differences of these eigenvalues are all invertible in Z`).

By the above proposition, one can see easily that Ωj
N,λ is stable under the right translation

of K; and in particular, Ω0
N,λ = Zλ.

It is the direct summand Ω1
N,λ that will play the role of the “Steinberg component” Ωλ in

the modular curve case, if one wants to formulate the correct Ihara-type lemma for level raising
for the unitary Shimura variety X(Kp).

It is a good exercise to show that Ω1
N,λ is a free Zλ-module of rank q qN−1+1

q+1 .
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An Ihara lemma for unitary Shimura varieties

Let X̃(Kp) be the moduli problem over Qq2 parameterizing pairs of objects (A1, i1, λ1, ηp1 )

and (A2, i2, λ2, ηp2 ) of X(Kp) together with a compatible isogeny ψ : A1 → A2 such that
kerψ[p∞] is a Lagrangian subgroup of A1[p]. Then we have an involution i of X̃(Kp) switching
(A1, i1, λ1, ηp1 ) and (A2, i2, λ2, ηp2 ); and a morphism f : X̃(Kp)→ X(Kp)Qq2

that remembers
(A1, i1, λ1, ηp1 ), which is finite étale.

From now on, we assume ` - q
∏N

i=1(1− (−q)i ).
By the previous proposition, we have the composite map

βN : HN−1(X(Kp)Qp
,Ω1

N,λ) ↪→ HN−1(X(Kp)Qp
, IndKP Zλ)

= HN−1(X̃(Kp)Qp
,Zλ)

f∗◦i∗−−−→ HN−1(X(Kp)Qp
,Zλ).

Denote by T?
N the abstract spherical unitary Hecke algebra over F/F+ of rank N away from ?.

Fix a finite set Σ of prime numbers not containing p, away from which Kp is hyperspecial. Then
TΣ∪{p}
N acts on X(Kp) via Hecke correspondences which are finite étale. Put T?

N,λ := T?
N ⊗ Zλ.

Conjecture
Let m be a maximal ideal of TΣ

N,λ that is “non-Eisenstein” such that the Satake parameters
mod m at p contain q at most once. Then the map βN is surjective after localizing at m∩TΣ∪{p}

N,λ .
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and (A2, i2, λ2, ηp2 ) of X(Kp) together with a compatible isogeny ψ : A1 → A2 such that
kerψ[p∞] is a Lagrangian subgroup of A1[p]. Then we have an involution i of X̃(Kp) switching
(A1, i1, λ1, ηp1 ) and (A2, i2, λ2, ηp2 ); and a morphism f : X̃(Kp)→ X(Kp)Qq2

that remembers
(A1, i1, λ1, ηp1 ), which is finite étale.

From now on, we assume ` - q
∏N

i=1(1− (−q)i ).
By the previous proposition, we have the composite map

βN : HN−1(X(Kp)Qp
,Ω1

N,λ) ↪→ HN−1(X(Kp)Qp
, IndKP Zλ)

= HN−1(X̃(Kp)Qp
,Zλ)

f∗◦i∗−−−→ HN−1(X(Kp)Qp
,Zλ).

Denote by T?
N the abstract spherical unitary Hecke algebra over F/F+ of rank N away from ?.

Fix a finite set Σ of prime numbers not containing p, away from which Kp is hyperspecial. Then
TΣ∪{p}
N acts on X(Kp) via Hecke correspondences which are finite étale. Put T?

N,λ := T?
N ⊗ Zλ.

Conjecture
Let m be a maximal ideal of TΣ

N,λ that is “non-Eisenstein” such that the Satake parameters
mod m at p contain q at most once. Then the map βN is surjective after localizing at m∩TΣ∪{p}

N,λ .
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Relation with level raising

Theorem (L.–Tian–Xiao)

Suppose that p is odd and q = p. Then for every maximal ideal m of TΣ∪{p}
N,λ , the surjectivity of

(βN)m implies the surjectivity of (αN)m.

The assumption that p is odd and q = p is purely for technical reasons; one should be able
to remove them.

Theorem (LTXZZ+LTX)

Consider a prime p† of F+ inert in F and a maximal ideal m† of TΣ\{p†}
N,λ satisfying

• F+
p†

= Qp† for an odd prime number p† unramified in F ;

• V is not split at p† (⇒ p† ∈ Σ) but splits at other p†-adic places of F+;
• m† is “non-Eisenstein”;
• the Satake parameters mod m† at p contain p at most once and do not contain −1;
• the Satake parameters mod m† at p† contain p† exactly once and do not contain −1;
• some other technical conditions ...

Put m := m† ∩ TΣ∪{p}
N,λ . Then (βN)m is surjective; hence (αN)m is surjective as well.
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Why Ω1
N,λ?

The heuristic reason why Ω1
N,λ is the factor that is responsible for the surjectivity of the map

αN is the following proposition, previously proved in [LTXZZ].
Recall that N = 2r is even and K is a hyperspecial maximal subgroup of U(V )(F+

p ) with
P ⊆ K a Siegel parahoric subgroup. Similarly, write K′ for a special maximal subgroup of
U(V ′)(F+

p ).
Write Ωj

N,C for the corresponding factor of C[P\K] with complex coefficients for 0 6 j 6 r .

Proposition
Define
• S to be the set of isomorphism classes of (complex) irreducible admissible representations π
of U(V )(F+

p ) such that π|K contains Ω1
N,C (hence π is semistable) and that the Satake

parameters of π contain q;
• S′ to be the set of isomorphism classes of (complex) irreducible admissible representations
π′ of U(V ′)(F+

p ) such that π′|K′ contains the trivial representation.
Then there is a unique bijection between S and S′ such that π and π′ correspond if and only if
BC(π) ' BC(π′).
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Explicit reciprocity law

The surjectivity of (αN)m can provide a (second) explicit reciprocity law for the diagonal
cycle on the Shimura variety associated with Un ×Un+1, which is the arithmetic avatar of the
Rankin–Selberg integral.

Consider a hermitian space Vn over F/F+ as before but of rank n. Put Vn+1 := Vn ⊕ F .e
with e of length 1. We have corresponding unitary groups Gn and Gn+1, with a natural
embedding Gn ↪→ Gn+1 as the stabilizer of e. Fix a pair of open compact subgroups (Kp

n ,Kp
n+1)

satisfying Kp
n ⊆ Kp

n+1 ∩ Gn(A∞,p). Then we have a natural morphism

σX : X(Kp
n )→ X(Kp

n+1)

over Zq2 , which is finite. Denote by ∆X(Kp
n ) the graph of σX , and by

1∆X(Kp
n ) ∈ H2n(X(Kp

n )Qq2
× X(Kp

n+1)Qq2
,Zλ(n))

the absolute cycle class of ∆X(Kp
n )Qq2

.
Assume n odd from now on for simplicity. Then there is a natural map

σS : S(Kp
n )→ S(Kp

n+1)

of Shimura sets as well, compatible with σX under basic correspondences. (When n is even, one
has to replace σS by a finite correspondence.) Denote by ∆S(Kp

n ) the graph of σS , and by

1∆S(Kp
n ) ∈ Zλ[S(Kp

n )× S(Kp
n+1)]

the characteristic function of ∆S(Kp
n ).
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n ,Kp
n+1)

satisfying Kp
n ⊆ Kp

n+1 ∩ Gn(A∞,p). Then we have a natural morphism

σX : X(Kp
n )→ X(Kp

n+1)

over Zq2 , which is finite. Denote by ∆X(Kp
n ) the graph of σX , and by

1∆X(Kp
n ) ∈ H2n(X(Kp

n )Qq2
× X(Kp

n+1)Qq2
,Zλ(n))

the absolute cycle class of ∆X(Kp
n )Qq2

.
Assume n odd from now on for simplicity. Then there is a natural map

σS : S(Kp
n )→ S(Kp

n+1)

of Shimura sets as well, compatible with σX under basic correspondences. (When n is even, one
has to replace σS by a finite correspondence.) Denote by ∆S(Kp

n ) the graph of σS , and by

1∆S(Kp
n ) ∈ Zλ[S(Kp

n )× S(Kp
n+1)]

the characteristic function of ∆S(Kp
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Explicit reciprocity law

Consider maximal ideals mn and mn+1 of TΣ
n,λ and TΣ

n+1,λ, and ideals nn and nn+1 of TΣ∪{p}
n,λ

and TΣ∪{p}
n+1,λ containing some positive powers of mn ∩ TΣ∪{p}

n,λ and mn+1 ∩ TΣ∪{p}
n+1,λ , respectively.

Theorem (Second explicit reciprocity law)
Suppose that
• p is odd and q = p;
• ` - p(p2 − 1);
• both mn and mn+1 are “non-Eisenstein”;
• the Satake parameters mod mn at p contain 1 exactly once;
• the Satake parameters mod mn+1 at p contain p exactly once;
• the Satake parameters mod mn � mn+1 at p contain p exactly once.

Then

expλ
(
1∆X(Kp

n ),H
2n(X(Kp

n )Qq2
× X(Kp

n+1)Qq2
,Zλ(n))/(nn, nn+1)

)
6 expλ

(
1∆S(Kp

n ),Zλ[S(Kp
n )× S(Kp

n+1)]/(nn, nn+1)
)

holds. Here, for a torsion Zλ-module M and m ∈ M, expλ(m,M) denotes the smallest
nonnegative integer e such that λem = 0.
Furthermore, if αn+1/nn+1 is an isomorphism, then the above inequality is an equality.
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Shouwu, Happy Birthday!!

Yifeng Liu (Zhejiang University) Level raising via unitary Shimura varieties with good reduction and an Ihara lemmaMar 14, 2023 16 / 16


