Level raising via unitary Shimura varieties with good reduction and an Ihara lemma

Yifeng Liu

Institute for Advanced Study in Mathematics
Zhejiang University

Shimura Varieties and L-functions MSRI

Consider a positive integer Σ , a cusp newform

$$\mathtt{f} = \mathtt{q} + \mathsf{a}_2 \mathtt{q}^2 + \mathsf{a}_3 \mathtt{q}^3 + \dots \in \mathit{O}_L[[\mathtt{q}]]$$

of weight 2, level $\Gamma_0(\Sigma)$, and rationality field $L\subseteq\mathbb{C}$, together with an ℓ -adic prime λ of L.

Consider a positive integer Σ , a cusp newform

$$f = q + a_2q^2 + a_3q^3 + \cdots \in O_L[[q]]$$

of weight 2, level $\Gamma_0(\Sigma)$, and rationality field $L\subseteq\mathbb{C}$, together with an ℓ -adic prime λ of L. Take a prime number $p\nmid \Sigma\ell$ and denote by $\mathbb{T}^{\Sigma\rho}$ the unramified Hecke algebra away-from- $\Sigma\rho$. Denote by $\mathbb{T}_{\mathfrak{p}}$ the kernel of the composite map

$$\mathbb{T}^{\Sigma\rho} \xrightarrow{\phi_{\mathrm{f}}} \mathit{O}_{L} \rightarrow \mathit{O}_{L}/\lambda,$$

where $\phi_{\mathtt{f}}$ is the Satake homomorphism determined by f.

Consider a positive integer Σ , a cusp newform

$$f = q + a_2q^2 + a_3q^3 + \cdots \in O_L[[q]]$$

of weight 2, level $\Gamma_0(\Sigma)$, and rationality field $L\subseteq \mathbb{C}$, together with an ℓ -adic prime λ of L.

Take a prime number $p \nmid \Sigma \ell$ and denote by $\mathbb{T}^{\Sigma p}$ the unramified Hecke algebra away-from- Σp . Denote by $\mathfrak{m}_{\mathfrak{f}}$ the kernel of the composite map

$$\mathbb{T}^{\Sigma\rho} \xrightarrow{\phi_{\mathrm{f}}} O_L \to O_L/\lambda,$$

where $\phi_{\mathtt{f}}$ is the Satake homomorphism determined by f.

Let $X_0(\Sigma)$ be the modular curve of level $\Gamma_0(\Sigma)$ over \mathbb{Z}_p . Put $Y_0(\Sigma) \coloneqq X_0(\Sigma) \otimes_{\mathbb{Z}_p} \mathbb{F}_p$ with $S_0(\Sigma)$ the set of supersingular locus in $Y_0(\Sigma)$, which is a finite union of $\operatorname{Spec} \mathbb{F}_{p^2}$.

Consider a positive integer Σ , a cusp newform

$$f = q + a_2q^2 + a_3q^3 + \cdots \in O_L[[q]]$$

of weight 2, level $\Gamma_0(\Sigma)$, and rationality field $L \subseteq \mathbb{C}$, together with an ℓ -adic prime λ of L.

Take a prime number $p \nmid \Sigma \ell$ and denote by $\mathbb{T}^{\Sigma p}$ the unramified Hecke algebra away-from- Σp . Denote by $\mathfrak{m}_{\mathfrak{f}}$ the kernel of the composite map

$$\mathbb{T}^{\Sigma\rho} \xrightarrow{\phi_{\mathrm{f}}} O_L \to O_L/\lambda,$$

where $\phi_{\rm f}$ is the Satake homomorphism determined by f.

Let $X_0(\Sigma)$ be the modular curve of level $\Gamma_0(\Sigma)$ over \mathbb{Z}_p . Put $Y_0(\Sigma) \coloneqq X_0(\Sigma) \otimes_{\mathbb{Z}_p} \mathbb{F}_p$ with $S_0(\Sigma)$ the set of supersingular locus in $Y_0(\Sigma)$, which is a finite union of $\operatorname{Spec} \mathbb{F}_{p^2}$. In particular, we have the absolute cycle class map

$$\alpha \colon \mathbb{Z}_{\lambda}[S_0(\Sigma)] \to \mathrm{H}^2(Y_0(\Sigma) \otimes \mathbb{F}_{\rho^2}, \mathbb{Z}_{\lambda}(1)),$$

where $\mathbb{Z}_{\lambda} \coloneqq \mathit{O}_{\mathit{L}_{\lambda}}$.

Consider a positive integer Σ , a cusp newform

$$f = q + a_2q^2 + a_3q^3 + \cdots \in O_L[[q]]$$

of weight 2, level $\Gamma_0(\Sigma)$, and rationality field $L \subseteq \mathbb{C}$, together with an ℓ -adic prime λ of L.

Take a prime number $p \nmid \Sigma \ell$ and denote by $\mathbb{T}^{\Sigma p}$ the unramified Hecke algebra away-from- Σp . Denote by $\mathfrak{m}_{\mathfrak{f}}$ the kernel of the composite map

$$\mathbb{T}^{\Sigma\rho} \xrightarrow{\phi_{\mathrm{f}}} O_L \to O_L/\lambda,$$

where $\phi_{\mathtt{f}}$ is the Satake homomorphism determined by f.

Let $X_0(\Sigma)$ be the modular curve of level $\Gamma_0(\Sigma)$ over \mathbb{Z}_p . Put $Y_0(\Sigma) \coloneqq X_0(\Sigma) \otimes_{\mathbb{Z}_p} \mathbb{F}_p$ with $S_0(\Sigma)$ the set of supersingular locus in $Y_0(\Sigma)$, which is a finite union of $\operatorname{Spec} \mathbb{F}_{p^2}$. In particular, we have the absolute cycle class map

$$\alpha \colon \mathbb{Z}_{\lambda}[S_0(\Sigma)] \to \mathrm{H}^2(Y_0(\Sigma) \otimes \mathbb{F}_{\rho^2}, \mathbb{Z}_{\lambda}(1)),$$

where $\mathbb{Z}_{\lambda} \coloneqq O_{L_{\lambda}}$.

Theorem (Ribet)

Suppose that f mod λ is non-Eisenstein. Then the localized map $\alpha_{\mathfrak{m}_f}$ is surjective.

Consider a positive integer Σ , a cusp newform

$$f = q + a_2q^2 + a_3q^3 + \cdots \in O_L[[q]]$$

of weight 2, level $\Gamma_0(\Sigma)$, and rationality field $L \subseteq \mathbb{C}$, together with an ℓ -adic prime λ of L.

Take a prime number $p \nmid \Sigma \ell$ and denote by $\mathbb{T}^{\Sigma p}$ the unramified Hecke algebra away-from- Σp . Denote by $\mathfrak{m}_{\mathfrak{f}}$ the kernel of the composite map

$$\mathbb{T}^{\Sigma p} \xrightarrow{\phi_{\mathrm{f}}} O_L \to O_L/\lambda,$$

where $\phi_{\rm f}$ is the Satake homomorphism determined by f.

Let $X_0(\Sigma)$ be the modular curve of level $\Gamma_0(\Sigma)$ over \mathbb{Z}_p . Put $Y_0(\Sigma) \coloneqq X_0(\Sigma) \otimes_{\mathbb{Z}_p} \mathbb{F}_p$ with $S_0(\Sigma)$ the set of supersingular locus in $Y_0(\Sigma)$, which is a finite union of $\operatorname{Spec} \mathbb{F}_{p^2}$. In particular, we have the absolute cycle class map

$$\alpha \colon \mathbb{Z}_{\lambda}[S_0(\Sigma)] \to \mathrm{H}^2(Y_0(\Sigma) \otimes \mathbb{F}_{\rho^2}, \mathbb{Z}_{\lambda}(1)),$$

where $\mathbb{Z}_{\lambda} \coloneqq O_{L_{\lambda}}$.

Theorem (Ribet)

Suppose that f $\mod \lambda$ is non-Eisenstein. Then the localized map $\alpha_{\mathfrak{m}_{\mathrm{f}}}$ is surjective.

Here, that f $\mod \lambda$ is non-Eisenstein means that the Galois representation associated with f remains irreducible after modulo λ

Consider a positive integer Σ , a cusp newform

$$f = q + a_2q^2 + a_3q^3 + \cdots \in O_L[[q]]$$

of weight 2, level $\Gamma_0(\Sigma)$, and rationality field $L \subseteq \mathbb{C}$, together with an ℓ -adic prime λ of L.

Take a prime number $p \nmid \Sigma \ell$ and denote by $\mathbb{T}^{\Sigma p}$ the unramified Hecke algebra away-from- Σp . Denote by $\mathfrak{m}_{\mathfrak{f}}$ the kernel of the composite map

$$\mathbb{T}^{\Sigma p} \xrightarrow{\phi_{\mathrm{f}}} O_L \to O_L/\lambda,$$

where ϕ_{f} is the Satake homomorphism determined by f.

Let $X_0(\Sigma)$ be the modular curve of level $\Gamma_0(\Sigma)$ over \mathbb{Z}_p . Put $Y_0(\Sigma) \coloneqq X_0(\Sigma) \otimes_{\mathbb{Z}_p} \mathbb{F}_p$ with $S_0(\Sigma)$ the set of supersingular locus in $Y_0(\Sigma)$, which is a finite union of $\operatorname{Spec} \mathbb{F}_{p^2}$. In particular, we have the absolute cycle class map

$$\alpha \colon \mathbb{Z}_{\lambda}[S_0(\Sigma)] \to \mathrm{H}^2(Y_0(\Sigma) \otimes \mathbb{F}_{p^2}, \mathbb{Z}_{\lambda}(1)),$$

where $\mathbb{Z}_{\lambda} \coloneqq O_{L_{\lambda}}$.

Theorem (Ribet)

Suppose that f $\mod \lambda$ is non-Eisenstein. Then the localized map $\alpha_{\mathfrak{m}_f}$ is surjective.

Here, that f $\mod \lambda$ is non-Eisenstein means that the Galois representation associated with f remains irreducible after modulo λ . When this is the case, $\alpha_{\mathfrak{m}_{\mathfrak{f}}}$ is same as the map

$$\alpha_{\mathfrak{m}_{\mathsf{f}}} : \mathbb{Z}_{\lambda}[S_0(\Sigma)]_{\mathfrak{m}_{\mathsf{f}}}^{\mathsf{deg}=0} \to \mathrm{H}^1(\mathbb{F}_{p^2}, \mathrm{H}^1(Y_0(\Sigma) \otimes \overline{\mathbb{F}}_p, \mathbb{Z}_{\lambda}(1))_{\mathfrak{m}_{\mathsf{f}}}).$$

We say that a prime number $p \nmid \Sigma \ell$ is a level raising prime for f modulo λ if

$$a_p^2 \equiv (p+1)^2 \mod \lambda$$

holds.

We say that a prime number $p \nmid \Sigma \ell$ is a level raising prime for f modulo λ if

$$a_p^2 \equiv (p+1)^2 \mod \lambda$$

holds. By the Eichler-Shimura relation, it is easy to see that

$$\mathrm{H}^1(\mathbb{F}_{\rho^2},\mathrm{H}^1(Y_0(\Sigma)\otimes\overline{\mathbb{F}}_{\rho},\mathbb{Z}_{\lambda}(1))_{\mathfrak{m}_{\mathrm{f}}})\neq 0$$

if and only if p is a level raising prime.

We say that a prime number $p \nmid \Sigma \ell$ is a level raising prime for f modulo λ if

$$a_p^2 \equiv (p+1)^2 \mod \lambda$$

holds. By the Eichler-Shimura relation, it is easy to see that

$$\mathrm{H}^1(\mathbb{F}_{\rho^2},\mathrm{H}^1(\mathit{Y}_0(\Sigma)\otimes\overline{\mathbb{F}}_{\rho},\mathbb{Z}_{\lambda}(1))_{\mathfrak{m}_{\mathtt{f}}})\neq 0$$

if and only if p is a level raising prime. In the context of Ribet's theorem, we know that

$$\mathbb{Z}_{\lambda}[S_0(\Sigma)]_{\mathfrak{m}_{\mathtt{f}}}^0 \neq 0$$

when p is a level raising prime.

We say that a prime number $p \nmid \Sigma \ell$ is a **level raising prime** for f modulo λ if

$$a_p^2 \equiv (p+1)^2 \mod \lambda$$

holds. By the Eichler-Shimura relation, it is easy to see that

$$\mathrm{H}^1(\mathbb{F}_{\rho^2},\mathrm{H}^1(Y_0(\Sigma)\otimes\overline{\mathbb{F}}_{\rho},\mathbb{Z}_{\lambda}(1))_{\mathfrak{m}_{\mathrm{f}}})\neq 0$$

if and only if p is a level raising prime. In the context of Ribet's theorem, we know that

$$\mathbb{Z}_{\lambda}[S_0(\Sigma)]_{\mathfrak{m}_{\mathtt{f}}}^0 \neq 0$$

when p is a level raising prime.

Let B be the unique quaternion algebra over $\mathbb Q$ ramified at $\{\infty, p\}$. Then it is well-known that there is a canonical Hecke equivariant isomorphism

$$S_0(\Sigma) \simeq B^{\times} \backslash \widehat{B}^{\times} / \widehat{R_{\Sigma}}^{\times}$$

of sets, where R_{Σ} is an order of B of relative discriminant Σ .

We say that a prime number $p \nmid \Sigma \ell$ is a **level raising prime** for f modulo λ if

$$a_p^2 \equiv (p+1)^2 \mod \lambda$$

holds. By the Eichler-Shimura relation, it is easy to see that

$$\mathrm{H}^{1}(\mathbb{F}_{\rho^{2}},\mathrm{H}^{1}(Y_{0}(\Sigma)\otimes\overline{\mathbb{F}}_{p},\mathbb{Z}_{\lambda}(1))_{\mathfrak{m}_{\mathrm{f}}})\neq0$$

if and only if p is a level raising prime. In the context of Ribet's theorem, we know that

$$\mathbb{Z}_{\lambda}[S_0(\Sigma)]_{\mathfrak{m}_{\mathtt{f}}}^0 \neq 0$$

when p is a level raising prime.

Let B be the unique quaternion algebra over \mathbb{Q} ramified at $\{\infty, p\}$. Then it is well-known that there is a canonical Hecke equivariant isomorphism

$$S_0(\Sigma) \simeq B^{\times} \backslash \widehat{B}^{\times} / \widehat{R_{\Sigma}}^{\times}$$

of sets, where R_{Σ} is an order of B of relative discriminant Σ . By the Jacquet-Langlands correspondence, we obtain a cusp newform

$$\mathtt{f}' = \mathtt{q} + \mathtt{a}_2' \mathtt{q}^2 + \mathtt{a}_3' \mathtt{q}^3 + \dots \in \mathit{O}_{L'}[[\mathtt{q}]]$$

of weight 2, level $\Gamma_0(\Sigma p)$, and rationality field $L' \subseteq \mathbb{C}$, satisfying

- $a_{p}' = \pm 1$;
- for a certain prime λ' of L' such that $O_{L'}/\lambda' \subseteq O_L/\lambda$, $a_{\nu}' \mod \lambda' = a_{\nu} \mod \lambda$ holds for every prime number $v \nmid \Sigma p$. イロメ イ御 とくきとくきとしき

Consider

ullet a CM number field $F\subseteq \mathbb{C}$, with $F^+\subseteq F$ its maximal totally real subfield,

Consider

- ullet a CM number field $F\subseteq \mathbb{C}$, with $F^+\subseteq F$ its maximal totally real subfield,
- ullet a positive integer N,

Consider

- ullet a CM number field $F\subseteq \mathbb{C}$, with $F^+\subseteq F$ its maximal totally real subfield,
- a positive integer N,
- a (nondegenerate) hermitian space V over F/F^+ that has signature (N-1,1) at the default real place and signature (N,0) at all others,

Consider

- ullet a CM number field $F\subseteq \mathbb{C}$, with $F^+\subseteq F$ its maximal totally real subfield,
- a positive integer N,
- a (nondegenerate) hermitian space V over F/F^+ that has signature (N-1,1) at the default real place and signature (N,0) at all others,
- a prime $\mathfrak p$ of F^+ that is **inert** in F and such that $G:=\operatorname{Res}_{F^+/\mathbb Q}\operatorname{U}(V)$ is unramified at p (the underlying prime number of $\mathfrak p$).

Consider

- ullet a CM number field $F\subseteq \mathbb{C}$, with $F^+\subseteq F$ its maximal totally real subfield,
- a positive integer N,
- a (nondegenerate) hermitian space V over F/F^+ that has signature (N-1,1) at the default real place and signature (N,0) at all others,
- a prime p of F⁺ that is inert in F and such that G := Res_{F⁺/Q} U(V) is unramified at p (the underlying prime number of p).

Fix an isomorphism $\mathbb{C} \simeq \overline{\mathbb{Q}}_p$ that induces the place \mathfrak{p} . Let q be the residue cardinality of $F_{\mathfrak{p}}^+$ so that $q = p^{[F_{\mathfrak{p}}^+:\mathbb{Q}_p]}$. Fix a hyperspecial maximal subgroup K_p of $G(\mathbb{Q}_p)$.

Consider

- ullet a CM number field $F\subseteq \mathbb{C}$, with $F^+\subseteq F$ its maximal totally real subfield,
- a positive integer N,
- a (nondegenerate) hermitian space V over F/F^+ that has signature (N-1,1) at the default real place and signature (N,0) at all others,
- a prime p of F⁺ that is inert in F and such that G := Res_{F⁺/Q} U(V) is unramified at p (the underlying prime number of p).

Fix an isomorphism $\mathbb{C}\simeq\overline{\mathbb{Q}}_p$ that induces the place \mathfrak{p} . Let q be the residue cardinality of $F_{\mathfrak{p}}^+$ so that $q=p^{[F_{\mathfrak{p}}^+:\mathbb{Q}_p]}$. Fix a hyperspecial maximal subgroup K_p of $G(\mathbb{Q}_p)$.

To technically simplify this talk, we pretend that there exists a complex abelian variety with complex multiplication by O_F that can be defined over \mathbb{Z}_{q^2} .

Consider

- ullet a CM number field $F\subseteq \mathbb{C}$, with $F^+\subseteq F$ its maximal totally real subfield,
- a positive integer N,
- a (nondegenerate) hermitian space V over F/F^+ that has signature (N-1,1) at the default real place and signature (N,0) at all others,
- a prime $\mathfrak p$ of F^+ that is **inert** in F and such that $G := \operatorname{Res}_{F^+/\mathbb Q} \operatorname{U}(V)$ is unramified at p (the underlying prime number of $\mathfrak p$).

Fix an isomorphism $\mathbb{C}\simeq\overline{\mathbb{Q}}_p$ that induces the place \mathfrak{p} . Let q be the residue cardinality of $F_{\mathfrak{p}}^+$ so that $q=p^{[F_{\mathfrak{p}}^+:\mathbb{Q}_p]}$. Fix a hyperspecial maximal subgroup K_p of $G(\mathbb{Q}_p)$.

To technically simplify this talk, we pretend that there exists a complex abelian variety with complex multiplication by O_F that can be defined over \mathbb{Z}_{q^2} . In other words, we may fix a CM type Φ containing the default place $\tau\colon F\subseteq\mathbb{C}$ and a triple (A_0,i_0,λ_0) where

- A_0 is an abelian scheme over \mathbb{Z}_{q^2} of dimension $[F^+:\mathbb{Q}]$;
- $i_0: O_F \to \operatorname{End}(A_0)$ is a CM structure of CM type Φ ;
- \(\lambda_0: A_0 \rightarrow A_0^\sigma\) is a p-principal polarization under which \(i_0\) turns the complex conjugation into the Rosati involution.

Consider

- ullet a CM number field $F\subseteq \mathbb{C}$, with $F^+\subseteq F$ its maximal totally real subfield,
- a positive integer N,
- a (nondegenerate) hermitian space V over F/F^+ that has signature (N-1,1) at the default real place and signature (N,0) at all others,
- a prime p of F⁺ that is inert in F and such that G := Res_{F⁺/Q} U(V) is unramified at p (the underlying prime number of p).

Fix an isomorphism $\mathbb{C}\simeq\overline{\mathbb{Q}}_p$ that induces the place \mathfrak{p} . Let q be the residue cardinality of $F_{\mathfrak{p}}^+$ so that $q=p^{[F_{\mathfrak{p}}^+:\mathbb{Q}_p]}$. Fix a hyperspecial maximal subgroup K_p of $G(\mathbb{Q}_p)$.

To technically simplify this talk, we pretend that there exists a complex abelian variety with complex multiplication by O_F that can be defined over \mathbb{Z}_{q^2} . In other words, we may fix a CM type Φ containing the default place $\tau\colon F\subseteq\mathbb{C}$ and a triple (A_0,i_0,λ_0) where

- A_0 is an abelian scheme over \mathbb{Z}_{q^2} of dimension $[F^+:\mathbb{Q}]$;
- $i_0: O_F \to \operatorname{End}(A_0)$ is a CM structure of CM type Φ ;
- λ_0 : $A_0 \to A_0^{\vee}$ is a *p*-principal polarization under which i_0 turns the complex conjugation into the Rosati involution.

Under such simplification, we may define the Shimura variety associated with G over \mathbb{Z}_{q^2} via a certain moduli interpretation, following Rapoport–Smithling–Zhang.

Consider

- ullet a CM number field $F\subseteq \mathbb{C}$, with $F^+\subseteq F$ its maximal totally real subfield,
- a positive integer N,
- ullet a (nondegenerate) hermitian space V over F/F^+ that has signature (N-1,1) at the default real place and signature (N,0) at all others,
- a prime p of F^+ that is **inert** in F and such that $G := \operatorname{Res}_{F^+/\mathbb{Q}} \mathrm{U}(V)$ is unramified at p (the underlying prime number of p).

Fix an isomorphism $\mathbb{C}\simeq\overline{\mathbb{Q}}_p$ that induces the place \mathfrak{p} . Let q be the residue cardinality of $F_{\mathfrak{p}}^+$ so that $q=p^{[F_{\mathfrak{p}}^+:\mathbb{Q}_p]}$. Fix a hyperspecial maximal subgroup K_p of $G(\mathbb{Q}_p)$.

To technically simplify this talk, we pretend that there exists a complex abelian variety with complex multiplication by O_F that can be defined over \mathbb{Z}_{q^2} . In other words, we may fix a CM type Φ containing the default place $\tau\colon F\subseteq\mathbb{C}$ and a triple (A_0,i_0,λ_0) where

- A_0 is an abelian scheme over \mathbb{Z}_{q^2} of dimension $[F^+:\mathbb{Q}]$;
- $i_0: O_F \to \operatorname{End}(A_0)$ is a CM structure of CM type Φ ;
- λ_0 : $A_0 \to A_0^{\vee}$ is a *p*-principal polarization under which i_0 turns the complex conjugation into the Rosati involution.

Under such simplification, we may define the Shimura variety associated with G over \mathbb{Z}_{q^2} via a certain moduli interpretation, following Rapoport–Smithling–Zhang. Namely, for every neat open compact subgroup $K^p\subseteq G(\mathbb{A}^{\infty,p})$, we have a scheme $X(K^p)$, quasi-projective and smooth over \mathbb{Z}_{q^2} of relative dimension N-1, such that

$$X(K^p)(\mathbb{C}) \simeq G(\mathbb{Q}) \backslash D_{\infty} \times G(\mathbb{A}^{\infty}) / K^p K_p,$$

where D_{∞} denotes the hermitian symmetric domain of negative complex lines in $V \otimes_{F,\tau} \mathbb{C}$.

For every locally Noetherian scheme T over \mathbb{Z}_{q^2} , $X(K^p)(T)$ is the set of equivalence classes of quadruples (A, i, λ, η^p) where

- A is an abelian scheme over T of dimension N[F⁺ : ℚ];
- $i: O_F \to \operatorname{End}(A)$ is an action of O_F such that for every $a \in O_F$, the characteristic polynomial for the action of i(a) on the Lie algebra of A is given by

$$(X-a)^{N-1}(X-\overline{a})\prod_{\tau'\in\Phi\setminus\{\tau\}}(X-\tau'(a))^N;$$

- $\lambda \colon A \to A^{\vee}$ is a *p*-principal polarization under which *i* turns the complex conjugation into the Rosati involution;
- η^p is a K^p-level structure, that is, for a chosen geometric point t on every connected component of T, a π₁(T,t)-invariant K^p-orbit of isometries

$$\eta^p \colon V \otimes_{\mathbb{Q}} \mathbb{A}^{\infty,p} \xrightarrow{\sim} \mathsf{Hom}_{F \otimes_{\mathbb{Q}} \mathbb{A}^{\infty,p}}^{\lambda_0,\lambda}(\mathrm{H}_1(A_{0t},\mathbb{A}^{\infty,p}),\mathrm{H}_1(A_t,\mathbb{A}^{\infty,p}))$$

of hermitian spaces over $F \otimes_{\mathbb{Q}} \mathbb{A}^{\infty,p}/F^+ \otimes_{\mathbb{Q}} \mathbb{A}^{\infty,p}$.

For every locally Noetherian scheme T over \mathbb{Z}_{q^2} , $X(K^p)(T)$ is the set of equivalence classes of quadruples (A, i, λ, η^p) where

- A is an abelian scheme over T of dimension N[F⁺ : ℚ];
- $i: O_F \to \operatorname{End}(A)$ is an action of O_F such that for every $a \in O_F$, the characteristic polynomial for the action of i(a) on the Lie algebra of A is given by

$$(X-a)^{N-1}(X-\overline{a})\prod_{\tau'\in\Phi\setminus\{\tau\}}(X-\tau'(a))^N;$$

- $\lambda \colon A \to A^{\vee}$ is a *p*-principal polarization under which *i* turns the complex conjugation into the Rosati involution;
- η^p is a K^p-level structure, that is, for a chosen geometric point t on every connected component of T, a π₁(T, t)-invariant K^p-orbit of isometries

$$\eta^p \colon V \otimes_{\mathbb{Q}} \mathbb{A}^{\infty,p} \xrightarrow{\sim} \mathsf{Hom}_{F \otimes_{\mathbb{Q}} \mathbb{A}^{\infty,p}}^{\lambda_0,\lambda}(\mathrm{H}_1(A_{0t},\mathbb{A}^{\infty,p}),\mathrm{H}_1(A_t,\mathbb{A}^{\infty,p}))$$

of hermitian spaces over $F \otimes_{\mathbb{Q}} \mathbb{A}^{\infty,p}/F^+ \otimes_{\mathbb{Q}} \mathbb{A}^{\infty,p}$.

Put
$$Y(K^p) := X(K^p) \otimes_{\mathbb{Z}_{q^2}} \mathbb{F}_{q^2}$$
.

For every locally Noetherian scheme T over \mathbb{Z}_{q^2} , $X(K^p)(T)$ is the set of equivalence classes of quadruples (A, i, λ, η^p) where

- A is an abelian scheme over T of dimension N[F⁺ : ℚ];
- $i: O_F \to \operatorname{End}(A)$ is an action of O_F such that for every $a \in O_F$, the characteristic polynomial for the action of i(a) on the Lie algebra of A is given by

$$(X-a)^{N-1}(X-\overline{a})\prod_{\tau'\in\Phi\setminus\{\tau\}}(X-\tau'(a))^N;$$

- $\lambda \colon A \to A^{\vee}$ is a *p*-principal polarization under which *i* turns the complex conjugation into the Rosati involution;
- η^p is a K^p-level structure, that is, for a chosen geometric point t on every connected component of T, a π₁(T,t)-invariant K^p-orbit of isometries

$$\eta^p \colon V \otimes_{\mathbb{Q}} \mathbb{A}^{\infty,p} \xrightarrow{\sim} \mathsf{Hom}_{F \otimes_{\mathbb{Q}} \mathbb{A}^{\infty,p}}^{\lambda_0,\lambda}(\mathrm{H}_1(A_{0t},\mathbb{A}^{\infty,p}),\mathrm{H}_1(A_t,\mathbb{A}^{\infty,p}))$$

of hermitian spaces over $F \otimes_{\mathbb{Q}} \mathbb{A}^{\infty,p}/F^+ \otimes_{\mathbb{Q}} \mathbb{A}^{\infty,p}$.

Put
$$Y(K^p) \coloneqq X(K^p) \otimes_{\mathbb{Z}_{q^2}} \mathbb{F}_{q^2}$$
.

Denote by $Y(K^p)^b$ the **basic locus** of $Y(K^p)$, that is, the closed locus where the O_{F_p} -divisible group $A[\mathfrak{p}^{\infty}]$ is supersingular.

To describe $Y(K^p)^{\operatorname{b}}$, we construct the so-called basic correspondence.

To describe $Y(K^p)^{\mathrm{b}}$, we construct the so-called basic correspondence. We fix a totally positive element $\varpi \in O_{F^+}$ that has valuation 1 at $\mathfrak p$ and 0 at other p-adic places.

To describe $Y(K^p)^{\mathrm{b}}$, we construct the so-called basic correspondence. We fix a totally positive element $\varpi \in O_{F^+}$ that has valuation 1 at $\mathfrak p$ and 0 at other p-adic places.

We define a moduli problem $S(K^p)$ over \mathbb{F}_{q^2} , such that for every locally Noetherian scheme T over \mathbb{F}_{q^2} , $S(K^p)(T)$ is the set of equivalence classes of quadruples $(A',i',\lambda',\eta^{p\prime})$ where

- A' is an abelian scheme over T of dimension $N[F^+:\mathbb{Q}]$;
- $i': O_F \to \operatorname{End}(A')$ is an action of O_F "with the characteristic polynomial" $\prod_{\tau' \in \Phi} (X \tau'(a))^N$;
- $\lambda' : A' \to A'^{\vee}$ is an "i'-compatible" polarization such that $\ker \lambda'[p^{\infty}]$ is trivial (resp. contained in $A'[\mathfrak{p}]$ of rank q^2) if N is odd (resp. even);
- $\eta^{p\prime}$: $V \otimes_{\mathbb{Q}} \mathbb{A}^{\infty,p} \xrightarrow{\sim} \mathsf{Hom}_{F \otimes_{\mathbb{Q}} \mathbb{A}^{\infty,p}}^{\varpi \lambda_0,\lambda'}(\mathrm{H}_1(A_{0t},\mathbb{A}^{\infty,p}),\mathrm{H}_1(A_t',\mathbb{A}^{\infty,p}))$ is a K^p -level structure.

To describe $Y(K^p)^b$, we construct the so-called basic correspondence. We fix a totally positive element $\varpi \in O_{F^+}$ that has valuation 1 at p and 0 at other p-adic places.

We define a moduli problem $S(K^p)$ over \mathbb{F}_{q^2} , such that for every locally Noetherian scheme T over \mathbb{F}_{q^2} , $S(K^p)(T)$ is the set of equivalence classes of quadruples $(A',i',\lambda',\eta^{p'})$ where

- A' is an abelian scheme over T of dimension $N[F^+:\mathbb{Q}]$;
- $i': O_F \to \operatorname{End}(A')$ is an action of O_F "with the characteristic polynomial" $\prod_{-'\in\Phi}(X-\tau'(a))^N$;
- $\lambda': A' \to A'^{\vee}$ is an "i'-compatible" polarization such that $\ker \lambda'[p^{\infty}]$ is trivial (resp. contained in A'[p] of rank q^2) if N is odd (resp. even);
- $\eta^{p\prime}$: $V \otimes_{\mathbb{Q}} \mathbb{A}^{\infty,p} \xrightarrow{\sim} \mathsf{Hom}_{F \otimes_{\mathbb{Q}} \mathbb{A}^{\infty,p}}^{\varpi \lambda_0, \lambda'} (\mathsf{H}_1(A_{0t}, \mathbb{A}^{\infty,p}), \mathsf{H}_1(A_t', \mathbb{A}^{\infty,p}))$ is a K^p -level structure. It turns out that $S(K^p)$ is a projective smooth scheme over \mathbb{F}_{a^2} of dimension 0.

4 日 × 4 周 × 4 国 × 4 国 × 1 国

To describe $Y(K^p)^{\mathrm{b}}$, we construct the so-called basic correspondence. We fix a totally positive element $\varpi \in O_{F^+}$ that has valuation 1 at $\mathfrak p$ and 0 at other p-adic places.

We define a moduli problem $S(K^p)$ over \mathbb{F}_{q^2} , such that for every locally Noetherian scheme T over \mathbb{F}_{q^2} , $S(K^p)(T)$ is the set of equivalence classes of quadruples $(A',i',\lambda',\eta^{p'})$ where

- A' is an abelian scheme over T of dimension $N[F^+:\mathbb{Q}]$;
- $i': O_F \to \operatorname{End}(A')$ is an action of O_F "with the characteristic polynomial" $\prod_{\tau' \in \Phi} (X \tau'(a))^N$;
- $\lambda' \colon A' \to A'^{\vee}$ is an "i'-compatible" polarization such that $\ker \lambda'[p^{\infty}]$ is trivial (resp. contained in $A'[\mathfrak{p}]$ of rank q^2) if N is odd (resp. even);
- $\bullet \ \eta^{p\prime} \colon V \otimes_{\mathbb{Q}} \mathbb{A}^{\infty,p} \xrightarrow{\sim} \mathsf{Hom}_{F \otimes_{\mathbb{D}} \mathbb{A}^{\infty,p}}^{\varpi \lambda_0,\lambda'} (\mathrm{H}_1(A_{0t},\mathbb{A}^{\infty,p}),\mathrm{H}_1(A_t',\mathbb{A}^{\infty,p})) \text{ is a } K^p\text{-level structure}.$

It turns out that $S(K^p)$ is a projective smooth scheme over \mathbb{F}_{q^2} of dimension 0. We then define a moduli problem $B(K^p)$ over \mathbb{F}_{q^2} that parameterizes data

 $(A, i, \lambda, \eta^p; A', i', \lambda', \eta^{p\prime}; \alpha)$ where

- (A, i, λ, η^p) is an object of $Y(K^p)$;
- $(A', i', \lambda', \eta^{p'})$ is an object of $S(K^p)$;
- $\alpha: A \to A'$ is an O_F -linear isogeny such that
 - $\ker \alpha[p^{\infty}]$ is contained in $A[\mathfrak{p}]$;
 - $\varpi \cdot \lambda = \alpha^{\vee} \circ \lambda' \circ \alpha$; and
 - the K^p -orbit of maps $v \mapsto \alpha_* \circ \eta^p(v)$ for $v \in V \otimes_{\mathbb{Q}} \mathbb{A}^{\infty,p}$ coincides with $\eta^{p'}$.

By forgetting, we have an obvious correspondence

$$S(K^p) \xleftarrow{\pi} B(K^p) \xrightarrow{\iota} Y(K^p).$$

We have the following properties.

By forgetting, we have an obvious correspondence

$$S(K^p) \stackrel{\pi}{\leftarrow} B(K^p) \stackrel{\iota}{\rightarrow} Y(K^p).$$

We have the following properties.

(1) The correspondence is equivariant with the obvious actions of Hecke operators away from p.

By forgetting, we have an obvious correspondence

$$S(K^p) \stackrel{\pi}{\leftarrow} B(K^p) \stackrel{\iota}{\rightarrow} Y(K^p).$$

We have the following properties.

- (1) The correspondence is equivariant with the obvious actions of Hecke operators away from p.
- (2) The morphism π is projective smooth with fibers being certain irreducible Deligne–Lusztig varieties of dimension $r:=\lfloor \frac{N-1}{2} \rfloor$.

By forgetting, we have an obvious correspondence

$$S(K^p) \stackrel{\pi}{\leftarrow} B(K^p) \stackrel{\iota}{\rightarrow} Y(K^p).$$

We have the following properties.

- (1) The correspondence is equivariant with the obvious actions of Hecke operators away from p.
- (2) The morphism π is projective smooth with fibers being certain irreducible Deligne–Lusztig varieties of dimension $r := \lfloor \frac{N-1}{2} \rfloor$.
- (3) The morphism ι is locally a closed embedding, whose image is exactly $Y(K^p)^b$.

7 / 16

By forgetting, we have an obvious correspondence

$$S(K^p) \stackrel{\pi}{\leftarrow} B(K^p) \stackrel{\iota}{\rightarrow} Y(K^p).$$

We have the following properties.

- (1) The correspondence is equivariant with the obvious actions of Hecke operators away from p.
- (2) The morphism π is projective smooth with fibers being certain irreducible Deligne–Lusztig varieties of dimension $r := \lfloor \frac{N-1}{2} \rfloor$.
- (3) The morphism ι is locally a closed embedding, whose image is exactly $Y(K^p)^b$.
- (4) $S(K^p)$ is a finite copy of Spec \mathbb{F}_{q^2} naturally indexed by the following double coset: Let V' be the totally positive definite hermitian space over F/F^+ such that $V'\otimes_{F^+}\mathbb{A}_{\mathbb{C}^+}^{\infty,\mathfrak{P}}\simeq V\otimes_{F^+}\mathbb{A}_{\mathbb{C}^+}^{\infty,\mathfrak{P}}$ (and fix such an isometry). Then the index set is

$$G'(\mathbb{Q})\backslash G'(\mathbb{A}^{\infty})/K^{p}K'_{p}$$

where $G' \coloneqq \operatorname{\mathsf{Res}}_{F^+/\mathbb{Q}} \mathrm{U}(V')$ and K'_p is a fixed maximal special subgroup of $G'(\mathbb{Q}_p)$.

By forgetting, we have an obvious correspondence

$$S(K^p) \stackrel{\pi}{\leftarrow} B(K^p) \stackrel{\iota}{\rightarrow} Y(K^p).$$

We have the following properties.

- (1) The correspondence is equivariant with the obvious actions of Hecke operators away from p.
- (2) The morphism π is projective smooth with fibers being certain irreducible Deligne–Lusztig varieties of dimension $r := \lfloor \frac{N-1}{2} \rfloor$.
- (3) The morphism ι is locally a closed embedding, whose image is exactly $Y(K^p)^b$.
- (4) $S(K^p)$ is a finite copy of Spec \mathbb{F}_{q^2} naturally indexed by the following double coset: Let V' be the totally positive definite hermitian space over F/F^+ such that $V'\otimes_{F^+}\mathbb{A}_{\mathbb{C}^+}^{\infty,\mathfrak{P}}\simeq V\otimes_{F^+}\mathbb{A}_{\mathbb{C}^+}^{\infty,\mathfrak{P}}$ (and fix such an isometry). Then the index set is

$$G'(\mathbb{Q})\backslash G'(\mathbb{A}^{\infty})/K^{p}K'_{p}$$

where $G' \coloneqq \operatorname{\mathsf{Res}}_{F^+/\mathbb{Q}} \mathrm{U}(V')$ and K'_p is a fixed maximal special subgroup of $G'(\mathbb{Q}_p)$.

In particular, the absolute cycle classes give a map

$$\iota_! \circ \pi^* \colon \mathrm{H}^0(S(K^p), \Lambda) \to \mathrm{H}^{2(N-1-r)}(Y(K^p), \Lambda(N-1-r))$$

for any suitable coefficient ring Λ .

By the Hoschchild-Serre sequence, we have a short exact sequence

$$\begin{split} 0 &\to \mathrm{H}^1(\mathbb{F}_{q^2}, \mathrm{H}^{2(N-1-r)-1}(Y(K^p)_{\overline{\mathbb{F}}_p}, \Lambda(N-1-r))) \\ &\to \mathrm{H}^{2(N-1-r)}(Y(K^p), \Lambda(N-1-r)) \to \mathrm{H}^0(\mathbb{F}_{q^2}, \mathrm{H}^{2(N-1-r)}(Y(K^p)_{\overline{\mathbb{F}}_p}, \Lambda(N-1-r))) \to 0. \end{split}$$

By the Hoschchild-Serre sequence, we have a short exact sequence

$$\begin{split} &0 \to \mathrm{H}^1(\mathbb{F}_{q^2}, \mathrm{H}^{2(N-1-r)-1}(Y(K^p)_{\overline{\mathbb{F}}_p}, \Lambda(N-1-r))) \\ &\to \mathrm{H}^{2(N-1-r)}(Y(K^p), \Lambda(N-1-r)) \to \mathrm{H}^0(\mathbb{F}_{q^2}, \mathrm{H}^{2(N-1-r)}(Y(K^p)_{\overline{\mathbb{F}}_p}, \Lambda(N-1-r))) \to 0. \end{split}$$

If we denote by $\mathrm{H}^0(S(K^p),\Lambda)^\diamondsuit$ the kernel of the composite map

$$\gamma_N \colon \mathrm{H}^0(S(K^p), \Lambda) \to \mathrm{H}^{2(N-1-r)}(Y(K^p), \Lambda(N-1-r)) \to \mathrm{H}^{2(N-1-r)}(Y(K^p)_{\overline{\mathbb{F}}_p}, \Lambda(N-1-r)),$$

then we obtain the induced map

$$\alpha_{\textit{N}} \colon \mathrm{H}^{0}(\textit{S}(\textit{K}^{\textit{p}}), \Lambda)^{\diamondsuit} \to \mathrm{H}^{1}(\mathbb{F}_{\textit{q}^{2}}, \mathrm{H}^{2(\textit{N}-1-\textit{r})-1}(\textit{Y}(\textit{K}^{\textit{p}})_{\overline{\mathbb{F}}_{\textit{p}}}, \Lambda(\textit{N}-1-\textit{r}))).$$

By the Hoschchild-Serre sequence, we have a short exact sequence

$$\begin{split} &0 \to \mathrm{H}^1(\mathbb{F}_{q^2}, \mathrm{H}^{2(N-1-r)-1}(Y(K^p)_{\overline{\mathbb{F}}_p}, \Lambda(N-1-r))) \\ &\to \mathrm{H}^{2(N-1-r)}(Y(K^p), \Lambda(N-1-r)) \to \mathrm{H}^0(\mathbb{F}_{q^2}, \mathrm{H}^{2(N-1-r)}(Y(K^p)_{\overline{\mathbb{F}}_p}, \Lambda(N-1-r))) \to 0. \end{split}$$

If we denote by $\mathrm{H}^0(S(K^p),\Lambda)^\diamondsuit$ the kernel of the composite map

$$\gamma_N \colon \mathrm{H}^0(S(K^p), \Lambda) \to \mathrm{H}^{2(N-1-r)}(Y(K^p), \Lambda(N-1-r)) \to \mathrm{H}^{2(N-1-r)}(Y(K^p)_{\overline{\mathbb{F}}_p}, \Lambda(N-1-r)),$$

then we obtain the induced map

$$\alpha_{N} \colon \mathrm{H}^{0}(S(K^{p}), \Lambda)^{\diamondsuit} \to \mathrm{H}^{1}(\mathbb{F}_{q^{2}}, \mathrm{H}^{2(N-1-r)-1}(Y(K^{p})_{\overline{\mathbb{F}}_{p}}, \Lambda(N-1-r))).$$

In many cases, we are interested in the middle-degree (geometric) cohomology. More precisely,

By the Hoschchild-Serre sequence, we have a short exact sequence

$$\begin{split} &0 \to \mathrm{H}^1(\mathbb{F}_{q^2}, \mathrm{H}^{2(N-1-r)-1}(Y(K^p)_{\overline{\mathbb{F}}_p}, \Lambda(N-1-r))) \\ &\to \mathrm{H}^{2(N-1-r)}(Y(K^p), \Lambda(N-1-r)) \to \mathrm{H}^0(\mathbb{F}_{q^2}, \mathrm{H}^{2(N-1-r)}(Y(K^p)_{\overline{\mathbb{F}}_p}, \Lambda(N-1-r))) \to 0. \end{split}$$

If we denote by $\mathrm{H}^0(S(K^p),\Lambda)^\diamondsuit$ the kernel of the composite map

$$\gamma_N \colon \mathrm{H}^0(S(K^p), \Lambda) \to \mathrm{H}^{2(N-1-r)}(Y(K^p), \Lambda(N-1-r)) \to \mathrm{H}^{2(N-1-r)}(Y(K^p)_{\overline{\mathbb{F}}_p}, \Lambda(N-1-r)),$$

then we obtain the induced map

$$\alpha_N \colon \mathrm{H}^0(S(K^p), \Lambda)^\diamondsuit \to \mathrm{H}^1(\mathbb{F}_{q^2}, \mathrm{H}^{2(N-1-r)-1}(Y(K^p)_{\overline{\mathbb{F}}_p}, \Lambda(N-1-r))).$$

In many cases, we are interested in the middle-degree (geometric) cohomology. More precisely,

• when N = 2r + 1, we are interested in the map $\gamma_N \colon \mathrm{H}^0(S(K^p), \Lambda) \to \mathrm{H}^{2r}(Y(K^p)_{\overline{\mathbb{F}}_p}, \Lambda(r))$, namely, Tate cycles given by basic locus (which has been extensively studied by Xiao–Zhu);

By the Hoschchild-Serre sequence, we have a short exact sequence

$$\begin{split} &0 \rightarrow \mathrm{H}^1(\mathbb{F}_{q^2}, \mathrm{H}^{2(N-1-r)-1}(Y(K^p)_{\overline{\mathbb{F}}_p}, \Lambda(N-1-r))) \\ &\rightarrow \mathrm{H}^{2(N-1-r)}(Y(K^p), \Lambda(N-1-r)) \rightarrow \mathrm{H}^0(\mathbb{F}_{q^2}, \mathrm{H}^{2(N-1-r)}(Y(K^p)_{\overline{\mathbb{F}}_p}, \Lambda(N-1-r))) \rightarrow 0. \end{split}$$

If we denote by $\mathrm{H}^0(S(K^p),\Lambda)^\diamondsuit$ the kernel of the composite map

$$\gamma_N \colon \mathrm{H}^0(S(K^p), \Lambda) \to \mathrm{H}^{2(N-1-r)}(Y(K^p), \Lambda(N-1-r)) \to \mathrm{H}^{2(N-1-r)}(Y(K^p)_{\overline{\mathbb{F}}_p}, \Lambda(N-1-r)),$$

then we obtain the induced map

$$\alpha_N \colon \mathrm{H}^0(S(K^p), \Lambda)^\diamondsuit \to \mathrm{H}^1(\mathbb{F}_{q^2}, \mathrm{H}^{2(N-1-r)-1}(Y(K^p)_{\overline{\mathbb{F}}_p}, \Lambda(N-1-r))).$$

In many cases, we are interested in the middle-degree (geometric) cohomology. More precisely,

- when N=2r+1, we are interested in the map $\gamma_N \colon \mathrm{H}^0(S(K^p),\Lambda) \to \mathrm{H}^{2r}(Y(K^p)_{\overline{\mathbb{F}}_p},\Lambda(r))$, namely, Tate cycles given by basic locus (which has been extensively studied by Xiao–Zhu);
- when N=2r, we are interested in the map

$$\alpha_N \colon \mathrm{H}^0(S(K^p), \Lambda)^{\diamondsuit} \to \mathrm{H}^1(\mathbb{F}_{q^2}, \mathrm{H}^{2r-1}(Y(K^p)_{\overline{\mathbb{F}}_q}, \Lambda(r))).$$

The question of the surjective of α_N after certain localization will be our analogue of Ribet's level raising theorem for the unitary Shimura variety $X(K^p)$.

We recall Ihara's lemma for modular curve and its relation with Ribet's theorem.

We recall Ihara's lemma for modular curve and its relation with Ribet's theorem. Consider the modular curve $X_0(\Sigma p)$ over \mathbb{Z}_p , which admits a natural involution i and a natural finite morphism $f: X_0(\Sigma p) \to X_0(\Sigma)$ of degree p+1.

9 / 16

We recall Ihara's lemma for modular curve and its relation with Ribet's theorem.

Consider the modular curve $X_0(\Sigma p)$ over \mathbb{Z}_p , which admits a natural involution i and a natural finite morphism $f: X_0(\Sigma p) \to X_0(\Sigma)$ of degree p+1.

Let ${\bf f}, L$ and λ be as in the beginning of the talk. Ihara's lemma says that if ${\bf f} \mod \lambda$ is non-Eisenstein, then the map

$$(f_*,f_*\circ i_*)\colon \mathrm{H}^1(X_0(\Sigma p)_{\overline{\mathbb{Q}}_p},\mathbb{Z}_\lambda)\to \mathrm{H}^1(X_0(\Sigma)_{\overline{\mathbb{Q}}_p},\mathbb{Z}_\lambda)^{\oplus 2}$$

is surjective after localizing at \mathfrak{m}_f .

We recall Ihara's lemma for modular curve and its relation with Ribet's theorem.

Consider the modular curve $X_0(\Sigma p)$ over \mathbb{Z}_p , which admits a natural involution i and a natural finite morphism $f: X_0(\Sigma p) \to X_0(\Sigma)$ of degree p+1.

Let ${\bf f}, L$ and λ be as in the beginning of the talk. Ihara's lemma says that if ${\bf f} \mod \lambda$ is non-Eisenstein, then the map

$$(f_*,f_*\circ i_*)\colon \mathrm{H}^1(X_0(\Sigma\rho)_{\overline{\mathbb{Q}}_\rho},\mathbb{Z}_\lambda)\to \mathrm{H}^1(X_0(\Sigma)_{\overline{\mathbb{Q}}_\rho},\mathbb{Z}_\lambda)^{\oplus 2}$$

is surjective after localizing at $\mathfrak{m}_{\mathtt{f}}$. Ribet deduced his theorem from this lemma.

We recall Ihara's lemma for modular curve and its relation with Ribet's theorem.

Consider the modular curve $X_0(\Sigma p)$ over \mathbb{Z}_p , which admits a natural involution i and a natural finite morphism $f: X_0(\Sigma p) \to X_0(\Sigma)$ of degree p+1.

Let ${\bf f}, L$ and λ be as in the beginning of the talk. Ihara's lemma says that if ${\bf f} \mod \lambda$ is non-Eisenstein, then the map

$$(f_*,f_*\circ i_*)\colon \mathrm{H}^1(X_0(\Sigma\rho)_{\overline{\mathbb{Q}}_\rho},\mathbb{Z}_\lambda)\to \mathrm{H}^1(X_0(\Sigma)_{\overline{\mathbb{Q}}_\rho},\mathbb{Z}_\lambda)^{\oplus 2}$$

is surjective after localizing at \mathfrak{m}_f . Ribet deduced his theorem from this lemma.

Now we give an alternative interpretation of Ihara's lemma under the further assumption $\ell \nmid (p+1)$, which will be instructive later.

We recall Ihara's lemma for modular curve and its relation with Ribet's theorem.

Consider the modular curve $X_0(\Sigma p)$ over \mathbb{Z}_p , which admits a natural involution i and a natural finite morphism $f: X_0(\Sigma p) \to X_0(\Sigma)$ of degree p+1.

Let ${\bf f}, L$ and λ be as in the beginning of the talk. Ihara's lemma says that if ${\bf f} \mod \lambda$ is non-Eisenstein, then the map

$$(f_*,f_*\circ i_*)\colon \mathrm{H}^1(X_0(\Sigma\rho)_{\overline{\mathbb{Q}}_\rho},\mathbb{Z}_\lambda)\to \mathrm{H}^1(X_0(\Sigma)_{\overline{\mathbb{Q}}_\rho},\mathbb{Z}_\lambda)^{\oplus 2}$$

is surjective after localizing at \mathfrak{m}_f . Ribet deduced his theorem from this lemma.

Now we give an alternative interpretation of Ihara's lemma under the further assumption $\ell \nmid (p+1)$, which will be instructive later.

Put $\mathcal{K} \coloneqq \mathsf{GL}_2(\mathbb{Z}_p)$ and let $\mathcal{P} \subseteq \mathcal{K}$ be the standard upper-triangular lwahori subgroup. Then the $\mathbb{Z}_{\lambda}[\mathcal{K}]$ -module $\mathsf{Ind}_{\mathcal{P}}^{\mathcal{K}}\mathbb{Z}_{\lambda}$ admits a unique decomposition $\mathbb{Z}_{\lambda} \oplus \Omega_{\lambda}$ in which Ω_{λ} is a free \mathbb{Z}_{λ} -module of rank p.

We recall Ihara's lemma for modular curve and its relation with Ribet's theorem.

Consider the modular curve $X_0(\Sigma p)$ over \mathbb{Z}_p , which admits a natural involution i and a natural finite morphism $f: X_0(\Sigma p) \to X_0(\Sigma)$ of degree p+1.

Let ${\bf f}, L$ and λ be as in the beginning of the talk. Ihara's lemma says that if ${\bf f} \mod \lambda$ is non-Eisenstein, then the map

$$(f_*,f_*\circ i_*)\colon \mathrm{H}^1(X_0(\Sigma\rho)_{\overline{\mathbb{Q}}_\rho},\mathbb{Z}_\lambda)\to \mathrm{H}^1(X_0(\Sigma)_{\overline{\mathbb{Q}}_\rho},\mathbb{Z}_\lambda)^{\oplus 2}$$

is surjective after localizing at \mathfrak{m}_f . Ribet deduced his theorem from this lemma.

Now we give an alternative interpretation of Ihara's lemma under the further assumption $\ell \nmid (p+1)$, which will be instructive later.

Put $\mathcal{K} \coloneqq \mathsf{GL}_2(\mathbb{Z}_p)$ and let $\mathcal{P} \subseteq \mathcal{K}$ be the standard upper-triangular Iwahori subgroup. Then the $\mathbb{Z}_{\lambda}[\mathcal{K}]$ -module $\mathsf{Ind}_{\mathcal{P}}^{\mathcal{K}}\mathbb{Z}_{\lambda}$ admits a unique decomposition $\mathbb{Z}_{\lambda} \oplus \Omega_{\lambda}$ in which Ω_{λ} is a free \mathbb{Z}_{λ} -module of rank p. Then the surjectivity of $(f_*, f_* \circ i_*)$ localized at $\mathfrak{m}_{\mathtt{f}}$ is equivalent to the surjectivity of the composite map

$$\begin{split} \beta \colon \mathrm{H}^{1}(X_{0}(\Sigma)_{\overline{\mathbb{Q}}_{p}}, \Omega_{\lambda}) &\hookrightarrow \mathrm{H}^{1}(X_{0}(\Sigma)_{\overline{\mathbb{Q}}_{p}}, \mathsf{Ind}_{\mathcal{P}}^{\mathcal{K}} \mathbb{Z}_{\lambda}) \\ &= \mathrm{H}^{1}(X_{0}(\Sigma p)_{\overline{\mathbb{Q}}_{p}}, \mathbb{Z}_{\lambda}) \xrightarrow{f_{*} \circ i_{*}} \mathrm{H}^{1}(X_{0}(\Sigma)_{\overline{\mathbb{Q}}_{p}}, \mathbb{Z}_{\lambda}) \end{split}$$

localized at mf.

10 / 16

Now we assume that N=2r is **even** and that $\Lambda=\mathbb{Z}_{\lambda}$ for a finite extension $\mathbb{Q}_{\lambda}/\mathbb{Q}_{\ell}$.

Now we assume that N=2r is **even** and that $\Lambda=\mathbb{Z}_{\lambda}$ for a finite extension $\mathbb{Q}_{\lambda}/\mathbb{Q}_{\ell}$. Let \mathcal{K} be the p-component of K_p , which is a hyperspecial maximal subgroup of $\mathrm{U}(V)(F_{\mathfrak{p}}^+)$. Fix a hermitian Siegel parahoric subgroup $\mathcal{P}\subseteq\mathcal{K}$. Let \mathcal{Q} be the double coset in $\mathcal{P}\backslash\mathcal{K}/\mathcal{P}$ that parameterizes a pair of Lagrangian subspaces with intersection of codimension 1.

Now we assume that N=2r is **even** and that $\Lambda=\mathbb{Z}_\lambda$ for a finite extension $\mathbb{Q}_\lambda/\mathbb{Q}_\ell$. Let \mathcal{K} be the p-component of K_p , which is a hyperspecial maximal subgroup of $\mathrm{U}(V)(F_\mathfrak{p}^+)$. Fix a hermitian Siegel parahoric subgroup $\mathcal{P}\subseteq\mathcal{K}$. Let \mathcal{Q} be the double coset in $\mathcal{P}\backslash\mathcal{K}/\mathcal{P}$ that parameterizes a pair of Lagrangian subspaces with intersection of codimension 1.

Proposition

Suppose that $\ell \nmid q \prod_{i=1}^N (1-(-q)^i)$. We have a canonical decomposition

$$\mathbb{Z}_{\lambda}[\mathcal{P}\backslash\mathcal{K}] = \bigoplus_{j=0}^{r} \Omega_{N,\lambda}^{j}$$

of $\mathbb{Z}_{\lambda}[\mathcal{P}\backslash\mathcal{K}/\mathcal{P}]$ -modules in which $\Omega^{j}_{N,\lambda}$ is the eigenspace of \mathcal{Q} with eigenvalue $\frac{-(-q)^{N+1-j}-(-q)^{j}-q+1}{q^{2}-1}$ (the differences of these eigenvalues are all invertible in \mathbb{Z}_{ℓ}).

Now we assume that N=2r is **even** and that $\Lambda=\mathbb{Z}_\lambda$ for a finite extension $\mathbb{Q}_\lambda/\mathbb{Q}_\ell$. Let $\mathcal K$ be the p-component of K_p , which is a hyperspecial maximal subgroup of $\mathrm{U}(V)(\mathcal F_p^+)$. Fix a hermitian Siegel parahoric subgroup $\mathcal P\subseteq\mathcal K$. Let $\mathcal Q$ be the double coset in $\mathcal P\setminus\mathcal K/\mathcal P$ that parameterizes a pair of Lagrangian subspaces with intersection of codimension 1.

Proposition

Suppose that $\ell \nmid q \prod_{i=1}^{N} (1-(-q)^i)$. We have a canonical decomposition

$$\mathbb{Z}_{\lambda}[\mathcal{P}\backslash\mathcal{K}] = \bigoplus_{j=0}^{r} \Omega_{N,\lambda}^{j}$$

of $\mathbb{Z}_{\lambda}[\mathcal{P}\backslash\mathcal{K}/\mathcal{P}]$ -modules in which $\Omega^{j}_{N,\lambda}$ is the eigenspace of \mathcal{Q} with eigenvalue $\frac{-(-q)^{N+1-j}-(-q)^{j}-q+1}{q^{2}-1}$ (the differences of these eigenvalues are all invertible in \mathbb{Z}_{ℓ}).

By the above proposition, one can see easily that $\Omega^j_{N,\lambda}$ is stable under the right translation of \mathcal{K} ; and in particular, $\Omega^0_{N,\lambda}=\mathbb{Z}_\lambda$.

Now we assume that N=2r is **even** and that $\Lambda=\mathbb{Z}_\lambda$ for a finite extension $\mathbb{Q}_\lambda/\mathbb{Q}_\ell$. Let $\mathcal K$ be the p-component of K_p , which is a hyperspecial maximal subgroup of $\mathrm{U}(V)(F_p^+)$. Fix a hermitian Siegel parahoric subgroup $\mathcal P\subseteq\mathcal K$. Let $\mathcal Q$ be the double coset in $\mathcal P\backslash\mathcal K/\mathcal P$ that parameterizes a pair of Lagrangian subspaces with intersection of codimension 1.

Proposition

Suppose that $\ell \nmid q \prod_{i=1}^{N} (1-(-q)^i)$. We have a canonical decomposition

$$\mathbb{Z}_{\lambda}[\mathcal{P}\backslash\mathcal{K}] = \bigoplus_{j=0}^{r} \Omega_{N,\lambda}^{j}$$

of $\mathbb{Z}_{\lambda}[\mathcal{P}\backslash\mathcal{K}/\mathcal{P}]$ -modules in which $\Omega^{j}_{N,\lambda}$ is the eigenspace of \mathcal{Q} with eigenvalue $\frac{-(-q)^{N+1-j}-(-q)^{j}-q+1}{q^{2}-1}$ (the differences of these eigenvalues are all invertible in \mathbb{Z}_{ℓ}).

By the above proposition, one can see easily that $\Omega^j_{N,\lambda}$ is stable under the right translation of \mathcal{K} ; and in particular, $\Omega^0_{N,\lambda}=\mathbb{Z}_\lambda$.

It is the direct summand $\Omega^1_{N,\lambda}$ that will play the role of the "Steinberg component" Ω_{λ} in the modular curve case, if one wants to formulate the correct Ihara-type lemma for level raising for the unitary Shimura variety $X(K^p)$.

Now we assume that N=2r is **even** and that $\Lambda=\mathbb{Z}_\lambda$ for a finite extension $\mathbb{Q}_\lambda/\mathbb{Q}_\ell$. Let $\mathcal K$ be the p-component of K_p , which is a hyperspecial maximal subgroup of $\mathrm{U}(V)(F_p^+)$. Fix a hermitian Siegel parahoric subgroup $\mathcal P\subseteq\mathcal K$. Let $\mathcal Q$ be the double coset in $\mathcal P\backslash\mathcal K/\mathcal P$ that parameterizes a pair of Lagrangian subspaces with intersection of codimension 1.

Proposition

Suppose that $\ell \nmid q \prod_{i=1}^{N} (1-(-q)^i)$. We have a canonical decomposition

$$\mathbb{Z}_{\lambda}[\mathcal{P}\backslash\mathcal{K}] = \bigoplus_{j=0}^{r} \Omega_{N,\lambda}^{j}$$

of $\mathbb{Z}_{\lambda}[\mathcal{P}\backslash\mathcal{K}/\mathcal{P}]$ -modules in which $\Omega^{j}_{N,\lambda}$ is the eigenspace of \mathcal{Q} with eigenvalue $\frac{-(-q)^{N+1-j}-(-q)^{j}-q+1}{q^{2}-1}$ (the differences of these eigenvalues are all invertible in \mathbb{Z}_{ℓ}).

By the above proposition, one can see easily that $\Omega'_{N,\lambda}$ is stable under the right translation of \mathcal{K} ; and in particular, $\Omega^0_{N,\lambda}=\mathbb{Z}_\lambda$.

It is the direct summand $\Omega^1_{N,\lambda}$ that will play the role of the "Steinberg component" Ω_{λ} in the modular curve case, if one wants to formulate the correct Ihara-type lemma for level raising for the unitary Shimura variety $X(K^{\rho})$.

It is a good exercise to show that $\Omega^1_{N,\lambda}$ is a free \mathbb{Z}_{λ} -module of rank $q\frac{q^{N-1}+1}{q+1}$.

Let $\widetilde{X}(K^p)$ be the moduli problem over \mathbb{Q}_{q^2} parameterizing pairs of objects $(A_1,i_1,\lambda_1,\eta_1^p)$ and $(A_2,i_2,\lambda_2,\eta_2^p)$ of $X(K^p)$ together with a compatible isogeny $\psi\colon A_1\to A_2$ such that $\ker\psi[p^\infty]$ is a Lagrangian subgroup of $A_1[\mathfrak{p}]$.

Let $\widetilde{X}(K^p)$ be the moduli problem over \mathbb{Q}_{q^2} parameterizing pairs of objects $(A_1,i_1,\lambda_1,\eta_1^p)$ and $(A_2,i_2,\lambda_2,\eta_2^p)$ of $X(K^p)$ together with a compatible isogeny $\psi\colon A_1\to A_2$ such that $\ker\psi[p^\infty]$ is a Lagrangian subgroup of $A_1[\mathfrak{p}]$. Then we have an involution i of $\widetilde{X}(K^p)$ switching $(A_1,i_1,\lambda_1,\eta_1^p)$ and $(A_2,i_2,\lambda_2,\eta_2^p)$; and a morphism $f\colon\widetilde{X}(K^p)\to X(K^p)_{\mathbb{Q}_{q^2}}$ that remembers $(A_1,i_1,\lambda_1,\eta_1^p)$, which is finite étale.

Let $\widetilde{X}(K^p)$ be the moduli problem over \mathbb{Q}_{q^2} parameterizing pairs of objects $(A_1,i_1,\lambda_1,\eta_1^p)$ and $(A_2,i_2,\lambda_2,\eta_2^p)$ of $X(K^p)$ together with a compatible isogeny $\psi\colon A_1\to A_2$ such that $\ker\psi[p^\infty]$ is a Lagrangian subgroup of $A_1[\mathfrak{p}]$. Then we have an involution i of $\widetilde{X}(K^p)$ switching $(A_1,i_1,\lambda_1,\eta_1^p)$ and $(A_2,i_2,\lambda_2,\eta_2^p)$; and a morphism $f\colon\widetilde{X}(K^p)\to X(K^p)_{\mathbb{Q}_{q^2}}$ that remembers $(A_1,i_1,\lambda_1,\eta_1^p)$, which is finite étale.

From now on, we assume $\ell \nmid q \prod_{i=1}^{N} (1 - (-q)^i)$.

Let $\widetilde{X}(K^p)$ be the moduli problem over \mathbb{Q}_{q^2} parameterizing pairs of objects $(A_1,i_1,\lambda_1,\eta_1^p)$ and $(A_2,i_2,\lambda_2,\eta_2^p)$ of $X(K^p)$ together with a compatible isogeny $\psi\colon A_1\to A_2$ such that $\ker\psi[p^\infty]$ is a Lagrangian subgroup of $A_1[\mathfrak{p}]$. Then we have an involution i of $\widetilde{X}(K^p)$ switching $(A_1,i_1,\lambda_1,\eta_1^p)$ and $(A_2,i_2,\lambda_2,\eta_2^p)$; and a morphism $f\colon\widetilde{X}(K^p)\to X(K^p)_{\mathbb{Q}_{q^2}}$ that remembers $(A_1,i_1,\lambda_1,\eta_1^p)$, which is finite étale.

From now on, we assume $\ell \nmid q \prod_{i=1}^{N} (1 - (-q)^i)$. By the previous proposition, we have the composite map

$$\begin{split} \beta_{N} \colon \mathrm{H}^{N-1}(X(K^{\rho})_{\overline{\mathbb{Q}}_{p}}, \Omega^{1}_{N, \lambda}) &\hookrightarrow \mathrm{H}^{N-1}(X(K^{\rho})_{\overline{\mathbb{Q}}_{p}}, \mathsf{Ind}_{\mathcal{P}}^{\mathcal{K}} \mathbb{Z}_{\lambda}) \\ &= \mathrm{H}^{N-1}(\widetilde{X}(K^{\rho})_{\overline{\mathbb{Q}}_{p}}, \mathbb{Z}_{\lambda}) \xrightarrow{f_{*} \circ i_{*}} \mathrm{H}^{N-1}(X(K^{\rho})_{\overline{\mathbb{Q}}_{p}}, \mathbb{Z}_{\lambda}). \end{split}$$

Let $\widetilde{X}(K^p)$ be the moduli problem over \mathbb{Q}_{q^2} parameterizing pairs of objects $(A_1,i_1,\lambda_1,\eta_1^p)$ and $(A_2,i_2,\lambda_2,\eta_2^p)$ of $X(K^p)$ together with a compatible isogeny $\psi\colon A_1\to A_2$ such that $\ker\psi[p^\infty]$ is a Lagrangian subgroup of $A_1[\mathfrak{p}]$. Then we have an involution i of $\widetilde{X}(K^p)$ switching $(A_1,i_1,\lambda_1,\eta_1^p)$ and $(A_2,i_2,\lambda_2,\eta_2^p)$; and a morphism $f\colon\widetilde{X}(K^p)\to X(K^p)_{\mathbb{Q}_{q^2}}$ that remembers $(A_1,i_1,\lambda_1,\eta_1^p)$, which is finite étale.

From now on, we assume $\ell \nmid q \prod_{i=1}^{N} (1 - (-q)^i)$. By the previous proposition, we have the composite map

$$\begin{split} \beta_{N} \colon \mathrm{H}^{N-1}(X(K^{p})_{\overline{\mathbb{Q}}_{p}}, \Omega^{1}_{N, \lambda}) &\hookrightarrow \mathrm{H}^{N-1}(X(K^{p})_{\overline{\mathbb{Q}}_{p}}, \mathsf{Ind}_{\mathcal{P}}^{\mathcal{K}} \mathbb{Z}_{\lambda}) \\ &= \mathrm{H}^{N-1}(\widetilde{X}(K^{p})_{\overline{\mathbb{Q}}_{p}}, \mathbb{Z}_{\lambda}) \xrightarrow{f_{*} \circ i_{*}} \mathrm{H}^{N-1}(X(K^{p})_{\overline{\mathbb{Q}}_{p}}, \mathbb{Z}_{\lambda}). \end{split}$$

Denote by $\mathbb{T}_N^?$ the abstract spherical unitary Hecke algebra over F/F^+ of rank N away from ?. Fix a finite set Σ of prime numbers not containing p, away from which K^p is hyperspecial. Then $\mathbb{T}_N^{\Sigma \cup \{p\}}$ acts on $X(K^p)$ via Hecke correspondences which are finite étale. Put $\mathbb{T}_{N,\lambda}^? := \mathbb{T}_N^? \otimes \mathbb{Z}_\lambda$.

Let $\widetilde{X}(K^p)$ be the moduli problem over \mathbb{Q}_{q^2} parameterizing pairs of objects $(A_1,i_1,\lambda_1,\eta_1^p)$ and $(A_2,i_2,\lambda_2,\eta_2^p)$ of $X(K^p)$ together with a compatible isogeny $\psi\colon A_1\to A_2$ such that $\ker\psi[p^\infty]$ is a Lagrangian subgroup of $A_1[\mathfrak{p}]$. Then we have an involution i of $\widetilde{X}(K^p)$ switching $(A_1,i_1,\lambda_1,\eta_1^p)$ and $(A_2,i_2,\lambda_2,\eta_2^p)$; and a morphism $f\colon\widetilde{X}(K^p)\to X(K^p)_{\mathbb{Q}_{q^2}}$ that remembers $(A_1,i_1,\lambda_1,\eta_1^p)$, which is finite étale.

From now on, we assume $\ell \nmid q \prod_{i=1}^{N} (1 - (-q)^i)$. By the previous proposition, we have the composite map

$$\begin{split} \beta_{N} \colon \mathrm{H}^{N-1}(X(K^{p})_{\overline{\mathbb{Q}}_{p}}, \Omega^{1}_{N, \lambda}) &\hookrightarrow \mathrm{H}^{N-1}(X(K^{p})_{\overline{\mathbb{Q}}_{p}}, \mathsf{Ind}_{\mathcal{P}}^{\mathcal{K}} \mathbb{Z}_{\lambda}) \\ &= \mathrm{H}^{N-1}(\widetilde{X}(K^{p})_{\overline{\mathbb{Q}}_{p}}, \mathbb{Z}_{\lambda}) \xrightarrow{f_{*} \circ i_{*}} \mathrm{H}^{N-1}(X(K^{p})_{\overline{\mathbb{Q}}_{p}}, \mathbb{Z}_{\lambda}). \end{split}$$

Denote by \mathbb{T}_N^7 the abstract spherical unitary Hecke algebra over F/F^+ of rank N away from ?. Fix a finite set Σ of prime numbers not containing p, away from which K^p is hyperspecial. Then $\mathbb{T}_N^{\Sigma \cup \{p\}}$ acts on $X(K^p)$ via Hecke correspondences which are finite étale. Put $\mathbb{T}_{N,\lambda}^2 := \mathbb{T}_N^2 \otimes \mathbb{Z}_{\lambda}$.

Conjecture

Let $\mathfrak m$ be a maximal ideal of $\mathbb T^\Sigma_{N,\lambda}$ that is "non-Eisenstein" such that the Satake parameters mod $\mathfrak m$ at $\mathfrak p$ contain q at most once. Then the map β_N is surjective after localizing at $\mathfrak m \cap \mathbb T^{\Sigma \cup \{p\}}_{N,\lambda}$

Relation with level raising

Relation with level raising

Theorem (L.–Tian–Xiao)

Suppose that p is odd and q=p. Then for every maximal ideal $\mathfrak m$ of $\mathbb T_{N,\lambda}^{\Sigma\cup\{p\}}$, the surjectivity of $(\beta_N)_{\mathfrak m}$ implies the surjectivity of $(\alpha_N)_{\mathfrak m}$.

Theorem (L.–Tian–Xiao)

Suppose that p is odd and q=p. Then for every maximal ideal $\mathfrak m$ of $\mathbb T_{N,\lambda}^{\Sigma\cup\{p\}}$, the surjectivity of $(\beta_N)_{\mathfrak m}$ implies the surjectivity of $(\alpha_N)_{\mathfrak m}$.

The assumption that p is odd and q = p is purely for technical reasons; one should be able to remove them.

Theorem (L.–Tian–Xiao)

Suppose that p is odd and q=p. Then for every maximal ideal \mathfrak{m} of $\mathbb{T}_{N,\lambda}^{\Sigma\cup\{p\}}$, the surjectivity of $(\beta_N)_{\mathfrak{m}}$ implies the surjectivity of $(\alpha_N)_{\mathfrak{m}}$.

The assumption that p is odd and q=p is purely for technical reasons; one should be able to remove them.

Theorem (LTXZZ+LTX)

Consider a prime \mathfrak{p}^\dagger of F^+ inert in F and a maximal ideal \mathfrak{m}^\dagger of $\mathbb{T}_{N,\lambda}^{\Sigma\setminus\{\rho^\dagger\}}$ satisfying

Theorem (L.–Tian–Xiao)

Suppose that p is odd and q=p. Then for every maximal ideal \mathfrak{m} of $\mathbb{T}_{N,\lambda}^{\Sigma\cup\{p\}}$, the surjectivity of $(\beta_N)_{\mathfrak{m}}$ implies the surjectivity of $(\alpha_N)_{\mathfrak{m}}$.

The assumption that p is odd and q=p is purely for technical reasons; one should be able to remove them.

Theorem (LTXZZ+LTX)

Consider a prime \mathfrak{p}^{\dagger} of F^+ inert in F and a maximal ideal \mathfrak{m}^{\dagger} of $\mathbb{T}_{N.\lambda}^{\Sigma\setminus\{p^{\dagger}\}}$ satisfying

• $F_{\mathfrak{p}^{\dagger}}^{+}=\mathbb{Q}_{\mathfrak{p}^{\dagger}}$ for an odd prime number \mathfrak{p}^{\dagger} unramified in F;

Theorem (L.–Tian–Xiao)

Suppose that p is odd and q=p. Then for every maximal ideal \mathfrak{m} of $\mathbb{T}_{N,\lambda}^{\Sigma\cup\{p\}}$, the surjectivity of $(\beta_N)_{\mathfrak{m}}$ implies the surjectivity of $(\alpha_N)_{\mathfrak{m}}$.

The assumption that p is odd and q=p is purely for technical reasons; one should be able to remove them.

Theorem (LTXZZ+LTX)

Consider a prime \mathfrak{p}^\dagger of F^+ inert in F and a maximal ideal \mathfrak{m}^\dagger of $\mathbb{T}_{N}^{\Sigma\setminus\{\rho^\dagger\}}$ satisfying

- $F_{\mathfrak{p}^{\dagger}}^{+}=\mathbb{Q}_{p^{\dagger}}$ for an odd prime number p^{\dagger} unramified in F;
- V is not split at \mathfrak{p}^{\dagger} (\Rightarrow $p^{\dagger} \in \Sigma$) but splits at other p^{\dagger} -adic places of F^+ ;

12 / 16

Theorem (L.–Tian–Xiao)

Suppose that p is odd and q=p. Then for every maximal ideal \mathfrak{m} of $\mathbb{T}_{N,\lambda}^{\Sigma\cup\{p\}}$, the surjectivity of $(\beta_N)_{\mathfrak{m}}$ implies the surjectivity of $(\alpha_N)_{\mathfrak{m}}$.

The assumption that p is odd and q=p is purely for technical reasons; one should be able to remove them.

Theorem (LTXZZ+LTX)

Consider a prime \mathfrak{p}^\dagger of F^+ inert in F and a maximal ideal \mathfrak{m}^\dagger of $\mathbb{T}_{N}^{\Sigma\setminus\{\rho^\dagger\}}$ satisfying

- $F_{\mathfrak{p}^{\dagger}}^{+}=\mathbb{Q}_{p^{\dagger}}$ for an odd prime number p^{\dagger} unramified in F;
- V is not split at \mathfrak{p}^{\dagger} (\Rightarrow $p^{\dagger} \in \Sigma$) but splits at other p^{\dagger} -adic places of F^+ ;
- m[†] is "non-Eisenstein";

Theorem (L.–Tian–Xiao)

Suppose that p is odd and q=p. Then for every maximal ideal \mathfrak{m} of $\mathbb{T}_{N,\lambda}^{\Sigma\cup\{p\}}$, the surjectivity of $(\beta_N)_{\mathfrak{m}}$ implies the surjectivity of $(\alpha_N)_{\mathfrak{m}}$.

The assumption that p is odd and q=p is purely for technical reasons; one should be able to remove them.

Theorem (LTXZZ+LTX)

Consider a prime \mathfrak{p}^\dagger of F^+ inert in F and a maximal ideal \mathfrak{m}^\dagger of $\mathbb{T}_{N}^{\Sigma\setminus\{\rho^\dagger\}}$ satisfying

- $F_{\mathfrak{p}^{\dagger}}^{+}=\mathbb{Q}_{p^{\dagger}}$ for an odd prime number p^{\dagger} unramified in F;
- V is not split at \mathfrak{p}^{\dagger} (\Rightarrow $p^{\dagger} \in \Sigma$) but splits at other p^{\dagger} -adic places of F^+ ;
- m[†] is "non-Eisenstein";
- the Satake parameters $\mod \mathfrak{m}^\dagger$ at \mathfrak{p} contain p at most once and do not contain -1;

Theorem (L.–Tian–Xiao)

Suppose that p is odd and q = p. Then for every maximal ideal \mathfrak{m} of $\mathbb{T}_{N,\lambda}^{\Sigma \cup \{p\}}$, the surjectivity of $(\beta_N)_{\mathfrak{m}}$ implies the surjectivity of $(\alpha_N)_{\mathfrak{m}}$.

The assumption that p is odd and q=p is purely for technical reasons; one should be able to remove them.

Theorem (LTXZZ+LTX)

Consider a prime \mathfrak{p}^\dagger of F^+ inert in F and a maximal ideal \mathfrak{m}^\dagger of $\mathbb{T}_N^{\Sigma\setminus\{\rho^\dagger\}}$ satisfying

- $F_{\mathfrak{p}^{\dagger}}^{+}=\mathbb{Q}_{p^{\dagger}}$ for an odd prime number p^{\dagger} unramified in F;
- V is not split at \mathfrak{p}^{\dagger} (\Rightarrow $p^{\dagger} \in \Sigma$) but splits at other p^{\dagger} -adic places of F^+ ;
- m[†] is "non-Eisenstein";
- the Satake parameters $\mod \mathfrak{m}^{\dagger}$ at \mathfrak{p} contain p at most once and do not contain -1;
- the Satake parameters $\mod \mathfrak{m}^{\dagger}$ at \mathfrak{p}^{\dagger} contain p^{\dagger} exactly once and do not contain -1;

Theorem (L.–Tian–Xiao)

Suppose that p is odd and q=p. Then for every maximal ideal \mathfrak{m} of $\mathbb{T}_{N,\lambda}^{\Sigma\cup\{p\}}$, the surjectivity of $(\beta_N)_{\mathfrak{m}}$ implies the surjectivity of $(\alpha_N)_{\mathfrak{m}}$.

The assumption that p is odd and q=p is purely for technical reasons; one should be able to remove them.

Theorem (LTXZZ+LTX)

Consider a prime \mathfrak{p}^\dagger of F^+ inert in F and a maximal ideal \mathfrak{m}^\dagger of $\mathbb{T}_{N,\lambda}^{\Sigma\setminus\{\rho^\dagger\}}$ satisfying

- $F_{\mathfrak{p}^{\dagger}}^{+}=\mathbb{Q}_{p^{\dagger}}$ for an odd prime number p^{\dagger} unramified in F;
- V is not split at \mathfrak{p}^{\dagger} (\Rightarrow $p^{\dagger} \in \Sigma$) but splits at other p^{\dagger} -adic places of F^+ ;
- m[†] is "non-Eisenstein";
- the Satake parameters $\mod \mathfrak{m}^{\dagger}$ at \mathfrak{p} contain p at most once and do not contain -1;
- the Satake parameters $\mod \mathfrak{m}^{\dagger}$ at \mathfrak{p}^{\dagger} contain p^{\dagger} exactly once and do not contain -1;
- some other technical conditions ...

Theorem (L.–Tian–Xiao)

Suppose that p is odd and q=p. Then for every maximal ideal \mathfrak{m} of $\mathbb{T}_{N,\lambda}^{\Sigma\cup\{p\}}$, the surjectivity of $(\beta_N)_{\mathfrak{m}}$ implies the surjectivity of $(\alpha_N)_{\mathfrak{m}}$.

The assumption that p is odd and q=p is purely for technical reasons; one should be able to remove them.

Theorem (LTXZZ+LTX)

Consider a prime \mathfrak{p}^\dagger of F^+ inert in F and a maximal ideal \mathfrak{m}^\dagger of $\mathbb{T}_{N}^{\Sigma\setminus\{\rho^\dagger\}}$ satisfying

- $F_{\mathfrak{p}^{\dagger}}^{+}=\mathbb{Q}_{p^{\dagger}}$ for an odd prime number p^{\dagger} unramified in F;
- V is not split at \mathfrak{p}^{\dagger} (\Rightarrow $p^{\dagger} \in \Sigma$) but splits at other p^{\dagger} -adic places of F^+ ;
- m[†] is "non-Eisenstein";
- the Satake parameters $\mod \mathfrak{m}^{\dagger}$ at \mathfrak{p} contain p at most once and do not contain -1;
- the Satake parameters $\mod \mathfrak{m}^{\dagger}$ at \mathfrak{p}^{\dagger} contain p^{\dagger} exactly once and do not contain -1;
- some other technical conditions ...

Put $\mathfrak{m} := \mathfrak{m}^{\dagger} \cap \mathbb{T}_{N,\lambda}^{\Sigma \cup \{p\}}$. Then $(\beta_N)_{\mathfrak{m}}$ is surjective; hence $(\alpha_N)_{\mathfrak{m}}$ is surjective as well.

The heuristic reason why $\Omega^1_{N,\lambda}$ is the factor that is responsible for the surjectivity of the map α_N is the following proposition, previously proved in [LTXZZ].

The heuristic reason why $\Omega^1_{N,\lambda}$ is the factor that is responsible for the surjectivity of the map α_N is the following proposition, previously proved in [LTXZZ].

Recall that N=2r is even and $\mathcal K$ is a hyperspecial maximal subgroup of $\mathrm{U}(V)(F_p^+)$ with $\mathcal P\subseteq \mathcal K$ a Siegel parahoric subgroup. Similarly, write $\mathcal K'$ for a special maximal subgroup of $\mathrm{U}(V')(F_p^+)$.

The heuristic reason why $\Omega^1_{N,\lambda}$ is the factor that is responsible for the surjectivity of the map α_N is the following proposition, previously proved in [LTXZZ].

Recall that N=2r is even and $\mathcal K$ is a hyperspecial maximal subgroup of $\mathrm{U}(V)(F_\mathfrak p^+)$ with $\mathcal P\subseteq\mathcal K$ a Siegel parahoric subgroup. Similarly, write $\mathcal K'$ for a special maximal subgroup of $\mathrm{U}(V')(F_\mathfrak p^+)$.

Write $\Omega^j_{N,\mathbb{C}}$ for the corresponding factor of $\mathbb{C}[\mathcal{P} \setminus \mathcal{K}]$ with complex coefficients for $0 \leqslant j \leqslant r$.

The heuristic reason why $\Omega^1_{N,\lambda}$ is the factor that is responsible for the surjectivity of the map α_N is the following proposition, previously proved in [LTXZZ].

Recall that N=2r is even and $\mathcal K$ is a hyperspecial maximal subgroup of $\mathrm{U}(V)(F_{\mathfrak p}^+)$ with $\mathcal P\subseteq \mathcal K$ a Siegel parahoric subgroup. Similarly, write $\mathcal K'$ for a special maximal subgroup of $\mathrm{U}(V')(F_{\mathfrak p}^+)$.

Write $\Omega^j_{N,\mathbb{C}}$ for the corresponding factor of $\mathbb{C}[\mathcal{P} \setminus \mathcal{K}]$ with complex coefficients for $0 \leqslant j \leqslant r$.

Proposition

Define

• S to be the set of isomorphism classes of (complex) irreducible admissible representations π of $\mathrm{U}(V)(F_{\mathfrak{p}}^+)$ such that $\pi|_{\mathcal{K}}$ contains $\Omega^1_{N,\mathbb{C}}$ (hence π is semistable) and that the Satake parameters of π contain q;

The heuristic reason why $\Omega^1_{N,\lambda}$ is the factor that is responsible for the surjectivity of the map α_N is the following proposition, previously proved in [LTXZZ].

Recall that N=2r is even and $\mathcal K$ is a hyperspecial maximal subgroup of $\mathrm{U}(V)(F_\mathfrak p^+)$ with $\mathcal P\subseteq\mathcal K$ a Siegel parahoric subgroup. Similarly, write $\mathcal K'$ for a special maximal subgroup of $\mathrm{U}(V')(F_\mathfrak p^+)$.

Write $\Omega^j_{N,\mathbb{C}}$ for the corresponding factor of $\mathbb{C}[\mathcal{P}\backslash\mathcal{K}]$ with complex coefficients for $0\leqslant j\leqslant r$.

Proposition

Define

- S to be the set of isomorphism classes of (complex) irreducible admissible representations π of $\mathrm{U}(V)(F_\mathfrak{p}^+)$ such that $\pi|_{\mathcal{K}}$ contains $\Omega^1_{N,\mathbb{C}}$ (hence π is semistable) and that the Satake parameters of π contain q;
- S' to be the set of isomorphism classes of (complex) irreducible admissible representations π' of $\mathrm{U}(V')(F_\mathfrak{p}^+)$ such that $\pi'|_{\mathcal{K}'}$ contains the trivial representation.

The heuristic reason why $\Omega^1_{N,\lambda}$ is the factor that is responsible for the surjectivity of the map α_N is the following proposition, previously proved in [LTXZZ].

Recall that N=2r is even and $\mathcal K$ is a hyperspecial maximal subgroup of $\mathrm{U}(V)(F_\mathfrak p^+)$ with $\mathcal P\subseteq\mathcal K$ a Siegel parahoric subgroup. Similarly, write $\mathcal K'$ for a special maximal subgroup of $\mathrm{U}(V')(F_\mathfrak p^+)$.

Write $\Omega^j_{N,\mathbb{C}}$ for the corresponding factor of $\mathbb{C}[\mathcal{P} \setminus \mathcal{K}]$ with complex coefficients for $0 \leqslant j \leqslant r$.

Proposition

Define

- S to be the set of isomorphism classes of (complex) irreducible admissible representations π of $\mathrm{U}(V)(F_\mathfrak{p}^+)$ such that $\pi|_{\mathcal{K}}$ contains $\Omega^1_{N,\mathbb{C}}$ (hence π is semistable) and that the Satake parameters of π contain q;
- \mathcal{S}' to be the set of isomorphism classes of (complex) irreducible admissible representations π' of $\mathrm{U}(V')(\mathsf{F}_{\mathtt{p}}^+)$ such that $\pi'|_{\mathcal{K}'}$ contains the trivial representation.

Then there is a unique bijection between S and S' such that π and π' correspond if and only if $BC(\pi) \simeq BC(\pi')$.

The surjectivity of $(\alpha_N)_{\mathfrak{m}}$ can provide a (second) explicit reciprocity law for the diagonal cycle on the Shimura variety associated with $U_n \times U_{n+1}$, which is the arithmetic avatar of the Rankin–Selberg integral.

The surjectivity of $(\alpha_N)_{\mathfrak{m}}$ can provide a (second) explicit reciprocity law for the diagonal cycle on the Shimura variety associated with $U_n \times U_{n+1}$, which is the arithmetic avatar of the Rankin–Selberg integral.

Consider a hermitian space V_n over F/F^+ as before but of rank n. Put $V_{n+1} := V_n \oplus F$.e with e of length 1. We have corresponding unitary groups G_n and G_{n+1} , with a natural embedding $G_n \hookrightarrow G_{n+1}$ as the stabilizer of e.

The surjectivity of $(\alpha_N)_m$ can provide a (second) explicit reciprocity law for the diagonal cycle on the Shimura variety associated with $U_n \times U_{n+1}$, which is the arithmetic avatar of the Rankin–Selberg integral.

Consider a hermitian space V_n over F/F^+ as before but of rank n. Put $V_{n+1} := V_n \oplus F$ e with e of length 1. We have corresponding unitary groups G_n and G_{n+1} , with a natural embedding $G_n \hookrightarrow G_{n+1}$ as the stabilizer of e. Fix a pair of open compact subgroups (K_n^p, K_{n+1}^p) satisfying $K_n^p \subseteq K_{n+1}^p \cap G_n(\mathbb{A}^{\infty,p})$. Then we have a natural morphism

$$\sigma_X \colon X(K_n^p) \to X(K_{n+1}^p)$$

over \mathbb{Z}_{q^2} , which is finite.

The surjectivity of $(\alpha_N)_m$ can provide a (second) explicit reciprocity law for the diagonal cycle on the Shimura variety associated with $U_n \times U_{n+1}$, which is the arithmetic avatar of the Rankin–Selberg integral.

Consider a hermitian space V_n over F/F^+ as before but of rank n. Put $V_{n+1} := V_n \oplus F$ e with e of length 1. We have corresponding unitary groups G_n and G_{n+1} , with a natural embedding $G_n \hookrightarrow G_{n+1}$ as the stabilizer of e. Fix a pair of open compact subgroups (K_n^p, K_{n+1}^p) satisfying $K_n^p \subseteq K_{n+1}^p \cap G_n(\mathbb{A}^{\infty,p})$. Then we have a natural morphism

$$\sigma_X \colon X(K_n^p) \to X(K_{n+1}^p)$$

over \mathbb{Z}_{q^2} , which is finite. Denote by $\Delta X(K_n^p)$ the graph of σ_X , and by

$$\mathbb{I}_{\Delta X(K_n^p)} \in \mathrm{H}^{2n}(X(K_n^p)_{\mathbb{Q}_{q^2}} \times X(K_{n+1}^p)_{\mathbb{Q}_{q^2}}, \mathbb{Z}_{\lambda}(n))$$

the absolute cycle class of $\Delta X(K_n^p)_{\mathbb{Q}_{a^2}}$.

The surjectivity of $(\alpha_N)_m$ can provide a (second) explicit reciprocity law for the diagonal cycle on the Shimura variety associated with $U_n \times U_{n+1}$, which is the arithmetic avatar of the Rankin–Selberg integral.

Consider a hermitian space V_n over F/F^+ as before but of rank n. Put $V_{n+1} := V_n \oplus F$ e with e of length 1. We have corresponding unitary groups G_n and G_{n+1} , with a natural embedding $G_n \hookrightarrow G_{n+1}$ as the stabilizer of e. Fix a pair of open compact subgroups (K_n^p, K_{n+1}^p) satisfying $K_n^p \subseteq K_{n+1}^p \cap G_n(\mathbb{A}^{\infty,p})$. Then we have a natural morphism

$$\sigma_X \colon X(K_n^p) \to X(K_{n+1}^p)$$

over \mathbb{Z}_{q^2} , which is finite. Denote by $\Delta X(K_n^p)$ the graph of σ_X , and by

$$\mathbb{I}_{\Delta X(K_n^p)} \in \mathrm{H}^{2n}(X(K_n^p)_{\mathbb{Q}_{q^2}} \times X(K_{n+1}^p)_{\mathbb{Q}_{q^2}}, \mathbb{Z}_{\lambda}(n))$$

the absolute cycle class of $\Delta X(K_n^p)_{\mathbb{Q}_{a^2}}$.

Assume *n* odd from now on for simplicity. Then there is a natural map

$$\sigma_S \colon S(K_n^p) \to S(K_{n+1}^p)$$

of Shimura sets as well, compatible with σ_X under basic correspondences. (When n is even, one has to replace σ_S by a finite correspondence.)

The surjectivity of $(\alpha_N)_m$ can provide a (second) explicit reciprocity law for the diagonal cycle on the Shimura variety associated with $U_n \times U_{n+1}$, which is the arithmetic avatar of the Rankin–Selberg integral.

Consider a hermitian space V_n over F/F^+ as before but of rank n. Put $V_{n+1} := V_n \oplus F$ e with e of length 1. We have corresponding unitary groups G_n and G_{n+1} , with a natural embedding $G_n \hookrightarrow G_{n+1}$ as the stabilizer of e. Fix a pair of open compact subgroups (K_n^p, K_{n+1}^p) satisfying $K_n^p \subseteq K_{n+1}^p \cap G_n(\mathbb{A}^{\infty,p})$. Then we have a natural morphism

$$\sigma_X \colon X(K_n^p) \to X(K_{n+1}^p)$$

over \mathbb{Z}_{q^2} , which is finite. Denote by $\Delta X(K_n^p)$ the graph of σ_X , and by

$$\mathbb{I}_{\Delta X(K_n^p)} \in \mathrm{H}^{2n}(X(K_n^p)_{\mathbb{Q}_{a^2}} \times X(K_{n+1}^p)_{\mathbb{Q}_{a^2}}, \mathbb{Z}_{\lambda}(n))$$

the absolute cycle class of $\Delta X(K_n^p)_{\mathbb{Q}_{a^2}}$.

Assume n odd from now on for simplicity. Then there is a natural map

$$\sigma_S \colon S(K_n^p) \to S(K_{n+1}^p)$$

of Shimura sets as well, compatible with σ_X under basic correspondences. (When n is even, one has to replace σ_S by a finite correspondence.) Denote by $\Delta S(K_n^p)$ the graph of σ_S , and by

$$\mathbb{1}_{\Delta S(K_n^p)} \in \mathbb{Z}_{\lambda}[S(K_n^p) \times S(K_{n+1}^p)]$$

the characteristic function of $\Delta S(K_n^p)$.

Consider maximal ideals \mathfrak{m}_n and \mathfrak{m}_{n+1} of $\mathbb{T}_{n,\lambda}^{\Sigma}$ and $\mathbb{T}_{n+1,\lambda}^{\Sigma}$, and ideals \mathfrak{n}_n and \mathfrak{n}_{n+1} of $\mathbb{T}_{n,\lambda}^{\Sigma \cup \{\rho\}}$ and $\mathbb{T}_{n+1,\lambda}^{\Sigma \cup \{\rho\}}$ containing some positive powers of $\mathfrak{m}_n \cap \mathbb{T}_{n,\lambda}^{\Sigma \cup \{\rho\}}$ and $\mathfrak{m}_{n+1} \cap \mathbb{T}_{n+1,\lambda}^{\Sigma \cup \{\rho\}}$, respectively.

Consider maximal ideals \mathfrak{m}_n and \mathfrak{m}_{n+1} of $\mathbb{T}_{n,\lambda}^{\Sigma}$ and $\mathbb{T}_{n+1,\lambda}^{\Sigma}$, and ideals \mathfrak{n}_n and \mathfrak{n}_{n+1} of $\mathbb{T}_{n,\lambda}^{\Sigma\cup\{\rho\}}$ and $\mathbb{T}_{n+1,\lambda}^{\Sigma\cup\{\rho\}}$ containing some positive powers of $\mathfrak{m}_n\cap\mathbb{T}_{n,\lambda}^{\Sigma\cup\{\rho\}}$ and $\mathfrak{m}_{n+1}\cap\mathbb{T}_{n+1,\lambda}^{\Sigma\cup\{\rho\}}$, respectively.

Theorem (Second explicit reciprocity law)

Suppose that

• p is odd and q = p;

Consider maximal ideals \mathfrak{m}_n and \mathfrak{m}_{n+1} of $\mathbb{T}_{n,\lambda}^{\Sigma}$ and $\mathbb{T}_{n+1,\lambda}^{\Sigma}$, and ideals \mathfrak{n}_n and \mathfrak{n}_{n+1} of $\mathbb{T}_{n,\lambda}^{\Sigma\cup\{\rho\}}$ and $\mathbb{T}_{n+1,\lambda}^{\Sigma\cup\{\rho\}}$ containing some positive powers of $\mathfrak{m}_n\cap\mathbb{T}_{n,\lambda}^{\Sigma\cup\{\rho\}}$ and $\mathfrak{m}_{n+1}\cap\mathbb{T}_{n+1,\lambda}^{\Sigma\cup\{\rho\}}$, respectively.

Theorem (Second explicit reciprocity law)

- p is odd and q = p;
- $\ell \nmid p(p^2-1);$

Consider maximal ideals \mathfrak{m}_n and \mathfrak{m}_{n+1} of $\mathbb{T}_{n,\lambda}^{\Sigma}$ and $\mathbb{T}_{n+1,\lambda}^{\Sigma}$, and ideals \mathfrak{n}_n and \mathfrak{n}_{n+1} of $\mathbb{T}_{n,\lambda}^{\Sigma\cup\{\rho\}}$ and $\mathbb{T}_{n+1,\lambda}^{\Sigma\cup\{\rho\}}$ containing some positive powers of $\mathfrak{m}_n\cap\mathbb{T}_{n,\lambda}^{\Sigma\cup\{\rho\}}$ and $\mathfrak{m}_{n+1}\cap\mathbb{T}_{n+1,\lambda}^{\Sigma\cup\{\rho\}}$, respectively.

Theorem (Second explicit reciprocity law)

- p is odd and q = p;
- $\ell \nmid p(p^2 1)$;
- both \mathfrak{m}_n and \mathfrak{m}_{n+1} are "non-Eisenstein";

Consider maximal ideals \mathfrak{m}_n and \mathfrak{m}_{n+1} of $\mathbb{T}^{\Sigma}_{n,\lambda}$ and $\mathbb{T}^{\Sigma}_{n+1,\lambda}$, and ideals \mathfrak{n}_n and \mathfrak{n}_{n+1} of $\mathbb{T}^{\Sigma\cup\{\rho\}}_{n,\lambda}$ and $\mathbb{T}^{\Sigma\cup\{\rho\}}_{n+1,\lambda}$ containing some positive powers of $\mathfrak{m}_n\cap\mathbb{T}^{\Sigma\cup\{\rho\}}_{n,\lambda}$ and $\mathfrak{m}_{n+1}\cap\mathbb{T}^{\Sigma\cup\{\rho\}}_{n+1,\lambda}$, respectively.

Theorem (Second explicit reciprocity law)

- p is odd and q = p;
- $\ell \nmid p(p^2 1)$;
- both \mathfrak{m}_n and \mathfrak{m}_{n+1} are "non-Eisenstein";
- the Satake parameters $\mod \mathfrak{m}_n$ at \mathfrak{p} contain 1 exactly once;

Consider maximal ideals \mathfrak{m}_n and \mathfrak{m}_{n+1} of $\mathbb{T}^{\Sigma}_{n,\lambda}$ and $\mathbb{T}^{\Sigma}_{n+1,\lambda}$, and ideals \mathfrak{n}_n and \mathfrak{n}_{n+1} of $\mathbb{T}^{\Sigma\cup\{\rho\}}_{n,\lambda}$ and $\mathbb{T}^{\Sigma\cup\{\rho\}}_{n+1,\lambda}$ containing some positive powers of $\mathfrak{m}_n\cap\mathbb{T}^{\Sigma\cup\{\rho\}}_{n,\lambda}$ and $\mathfrak{m}_{n+1}\cap\mathbb{T}^{\Sigma\cup\{\rho\}}_{n+1,\lambda}$, respectively.

Theorem (Second explicit reciprocity law)

- p is odd and q = p;
- $\ell \nmid p(p^2 1)$;
- both \mathfrak{m}_n and \mathfrak{m}_{n+1} are "non-Eisenstein";
- the Satake parameters $\mod \mathfrak{m}_n$ at \mathfrak{p} contain 1 exactly once;
- the Satake parameters $\mod \mathfrak{m}_{n+1}$ at \mathfrak{p} contain p exactly once;

Consider maximal ideals \mathfrak{m}_n and \mathfrak{m}_{n+1} of $\mathbb{T}^{\Sigma}_{n,\lambda}$ and $\mathbb{T}^{\Sigma}_{n+1,\lambda}$, and ideals \mathfrak{n}_n and \mathfrak{n}_{n+1} of $\mathbb{T}^{\Sigma\cup\{\rho\}}_{n,\lambda}$ and $\mathbb{T}^{\Sigma\cup\{\rho\}}_{n+1,\lambda}$ containing some positive powers of $\mathfrak{m}_n\cap\mathbb{T}^{\Sigma\cup\{\rho\}}_{n,\lambda}$ and $\mathfrak{m}_{n+1}\cap\mathbb{T}^{\Sigma\cup\{\rho\}}_{n+1,\lambda}$, respectively.

Theorem (Second explicit reciprocity law)

- p is odd and q = p;
- $\ell \nmid p(p^2 1)$;
- both \mathfrak{m}_n and \mathfrak{m}_{n+1} are "non-Eisenstein";
- the Satake parameters $\mod \mathfrak{m}_n$ at \mathfrak{p} contain 1 exactly once;
- the Satake parameters $\mod \mathfrak{m}_{n+1}$ at \mathfrak{p} contain p exactly once;
- the Satake parameters $\mod \mathfrak{m}_n \boxtimes \mathfrak{m}_{n+1}$ at \mathfrak{p} contain p exactly once.

Consider maximal ideals \mathfrak{m}_n and \mathfrak{m}_{n+1} of $\mathbb{T}_{n,\lambda}^{\Sigma}$ and $\mathbb{T}_{n+1,\lambda}^{\Sigma}$, and ideals \mathfrak{n}_n and \mathfrak{n}_{n+1} of $\mathbb{T}_{n,\lambda}^{\Sigma\cup\{\rho\}}$ and $\mathbb{T}_{n+1,\lambda}^{\Sigma\cup\{\rho\}}$ containing some positive powers of $\mathfrak{m}_n\cap\mathbb{T}_{n,\lambda}^{\Sigma\cup\{\rho\}}$ and $\mathfrak{m}_{n+1}\cap\mathbb{T}_{n+1,\lambda}^{\Sigma\cup\{\rho\}}$, respectively.

Theorem (Second explicit reciprocity law)

Suppose that

- p is odd and q = p;
- $\ell \nmid p(p^2 1)$;
- both \mathfrak{m}_n and \mathfrak{m}_{n+1} are "non-Eisenstein";
- the Satake parameters $\mod \mathfrak{m}_n$ at \mathfrak{p} contain 1 exactly once;
- the Satake parameters $\mod \mathfrak{m}_{n+1}$ at \mathfrak{p} contain p exactly once;
- the Satake parameters $\mod \mathfrak{m}_n \boxtimes \mathfrak{m}_{n+1}$ at \mathfrak{p} contain p exactly once.

Then

$$\begin{split} \exp_{\lambda} \left(\mathbbm{1}_{\Delta X(K_n^\rho)}, \mathrm{H}^{2n}(X(K_n^\rho)_{\mathbb{Q}_{q^2}} \times X(K_{n+1}^\rho)_{\mathbb{Q}_{q^2}}, \mathbb{Z}_{\lambda}(n)) / (\mathfrak{n}_n, \mathfrak{n}_{n+1}) \right) \\ \leqslant \exp_{\lambda} \left(\mathbbm{1}_{\Delta S(K_n^\rho)}, \mathbb{Z}_{\lambda}[S(K_n^\rho) \times S(K_{n+1}^\rho)] / (\mathfrak{n}_n, \mathfrak{n}_{n+1}) \right) \end{split}$$

holds. Here, for a torsion \mathbb{Z}_{λ} -module M and $m \in M$, $\exp_{\lambda}(m, M)$ denotes the smallest nonnegative integer e such that $\lambda^e m = 0$.

Consider maximal ideals \mathfrak{m}_n and \mathfrak{m}_{n+1} of $\mathbb{T}^{\Sigma}_{n,\lambda}$ and $\mathbb{T}^{\Sigma}_{n+1,\lambda}$, and ideals \mathfrak{n}_n and \mathfrak{n}_{n+1} of $\mathbb{T}^{\Sigma \cup \{\rho\}}_{n,\lambda}$ and $\mathbb{T}^{\Sigma \cup \{\rho\}}_{n+1,\lambda}$ containing some positive powers of $\mathfrak{m}_n \cap \mathbb{T}^{\Sigma \cup \{\rho\}}_{n,\lambda}$ and $\mathfrak{m}_{n+1} \cap \mathbb{T}^{\Sigma \cup \{\rho\}}_{n+1,\lambda}$, respectively.

Theorem (Second explicit reciprocity law)

Suppose that

- p is odd and q = p;
- $\ell \nmid p(p^2 1)$;
- both \mathfrak{m}_n and \mathfrak{m}_{n+1} are "non-Eisenstein";
- the Satake parameters $\mod \mathfrak{m}_n$ at \mathfrak{p} contain 1 exactly once;
- the Satake parameters $\mod \mathfrak{m}_{n+1}$ at \mathfrak{p} contain p exactly once;
- the Satake parameters $\mod \mathfrak{m}_n \boxtimes \mathfrak{m}_{n+1}$ at \mathfrak{p} contain p exactly once.

Then

$$\begin{split} \exp_{\lambda} \left(\mathbb{1}_{\Delta X(K_{n}^{p})}, \mathrm{H}^{2n}(X(K_{n}^{p})_{\mathbb{Q}_{q^{2}}} \times X(K_{n+1}^{p})_{\mathbb{Q}_{q^{2}}}, \mathbb{Z}_{\lambda}(n)) / (\mathfrak{n}_{n}, \mathfrak{n}_{n+1}) \right) \\ \leqslant \exp_{\lambda} \left(\mathbb{1}_{\Delta S(K_{n}^{p})}, \mathbb{Z}_{\lambda}[S(K_{n}^{p}) \times S(K_{n+1}^{p})] / (\mathfrak{n}_{n}, \mathfrak{n}_{n+1}) \right) \end{split}$$

holds. Here, for a torsion \mathbb{Z}_{λ} -module M and $m \in M$, $\exp_{\lambda}(m, M)$ denotes the smallest nonnegative integer e such that $\lambda^e m = 0$.

Furthermore, if $\alpha_{n+1}/\mathfrak{n}_{n+1}$ is an **isomorphism**, then the above inequality is an equality.

Shouwu, Happy Birthday!!