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André–Oort vs André–Pink

Let S be a Shimura variety and V ⊂ S a closed subvariety.

Conjecture (André–Oort)

Let CM denote the set of CM points. If V ∩ CM is Zariski dense in V .
Then V is a “Shimura subvariety”.

Proved by Pila, Shankar and Tsimerman based on many previous
works.

Conjecture (André–Pink)

Let O ⊂ S be a Hecke orbit. If V ∩ O is Zariski dense in V . Then V is
weakly special.

Over C, weakly special = totally geodesic (by Moonen).

Progress by Pink, Edixhoven–Yafaev, Orr, Richard–Yafaev.
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André–Oort vs André–Pink
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Let CM denote the set of CM points. If V ∩ CM is Zariski dense in V .
Then V is a “Shimura subvariety”.

Proved by Pila, Shankar and Tsimerman based on many previous
works.

Conjecture (André–Pink)
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Distance

For abelian varieties, “Mordell–Lang + Bogomolov” was proved by
Poonen, and independently by S. Zhang.

ε-neighborhoods of division points of a lattice in the height topology.

A uniform version by Ge.

How to include a distance on Shimura varieties using heights?

No direct way.

But for any variety over a valued field, R-valued distance from points
to a subvariety is defined. E.g., local heights.
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Tate–Voloch Conjecture for Siegel spaces

We use p-adic distance.

Theorem (Q)

Let S be a Siegel modular variety and Vε the p-adic ε-neighborhood of V
in S

(
Qp

)
. Let CMord denote the set of CM points that are ordinary p.

Then Vε ∩ CMord = V ∩ CMord for ε small enough.

It in fact holds at the level of p-adic formal schemes.

Habegger proved the case of product of modular curves.
The original Tate–Voloch Conjecture for abelian varieties were proved
by Scanlon.

An application when V is a divisor: bound arithmetic intersection
numbers with CM points.

Want an analog for Hecke orbit (though the exact analog may fail).
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Sample theorem

Theorem (Q)

Let S =
∏

Si be a product of modular curves with good reduction at p,
and V ⊂ S a curve but not geodesic. Let O =

∏
Oi where Oi ⊂ Si is CM

or a Hecke orbit. Then Vε ∩ O has a finite set of reduction at p, if the
p-adic distance ε is small enough.
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Unlikely almost intersections
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Analog of “geodesic”

Let k = Fp, F a complete DVF of characteristic 0 with residue field
k , and F ◦ ⊂ F valuation ring.

Let S/F ◦ be an ordinary Siegel formal moduli scheme of maximal
level at p.

Serre–Tate theory: for x ∈ S(k), the formal completion (residue disc)
Sx at x is naturally a formal torus over F ◦.

A locally closed formal subscheme V ⊂ S is weakly linear at x if Vx is
a finite union of translated formal subtori of Sx .

This should be the analog of “geodesic” (observed by Moonen).

Noot proved “weakly special ⇒ weakly linear”.
Moonen proved the converse, assuming algebraicity and that the
translated formal subtori are torsion translates.
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André–Pink revisited

Let O ⊂ S(F
◦
) be a Hecke orbit.

Is the analog of André–Pink for V(F
◦
) ∩ O true?

Bad news: analog of Mordell–Lang for formal groups fails (by Serban).

My answer: not sure.
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Unlikely almost intersections

Let Oε be the union of p-adic ε-neighborhoods of points in O.
André–Pink type statement with V(F

◦
) ∩ Oε is obviously wrong.

Let Vε ⊂ S(F
◦
) be the p-adic ε-neighborhood of V. Tate–Voloch may

fail for O, i.e., Vε ∩ O 6⊂ V for ε small enough.

But both V(F
◦
) ∩ Oε and Vε ∩ O have reductions in Vk . (The latter

one has larger reduction.)

Conjecture (Unlikely almost intersections)

If V is reduced and flat over F ◦, and the reduction of Vε ∩ O is Zariski
dense in Vk for all ε > 0, then V is weakly linear.
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André–Pink type statement with V(F

◦
) ∩ Oε is obviously wrong.

Let Vε ⊂ S(F
◦
) be the p-adic ε-neighborhood of V. Tate–Voloch may

fail for O, i.e., Vε ∩ O 6⊂ V for ε small enough.

But both V(F
◦
) ∩ Oε and Vε ∩ O have reductions in Vk . (The latter

one has larger reduction.)

Conjecture (Unlikely almost intersections)

If V is reduced and flat over F ◦, and the reduction of Vε ∩ O is Zariski
dense in Vk for all ε > 0, then V is weakly linear.

Congling Qiu (Yale University) Apr 28, 2023 11 / 24



Naive joint unlikely intersections

Conjecture (André–Oort + André–Pink)

Let S1, S2 be Shimura varieties. Let V ⊂ S1 × S2 be a closed subvariety. If
V ∩ (CM1 × O2) is Zariski dense in V . Then V is weakly special. Here
CM1 ⊂ S1 is the set of CM points and O2 ⊂ S2 a Hecke orbit.

Special case of the Zilber–Pink conjecture.
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Joint unlikely intersections

A weakly special subvariety of a Shimura variety S is itself some
(component of a) Shimura variety.

Define a weakly special subset of S to be the set of the CM points on
a weakly special subvariety.

Conjecture

Let O be the Hecke saturation of a weakly special subset of S. Let V ⊂ S
be a closed subvariety. If V ∩ O is Zariski dense in V . Then V is weakly
special.

Is this a special case of the Zilber–Pink conjecture?
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Joint unlikely almost intersections

Unlikely almost intersections conjecture has an obvious joint version.

Partial progress

Theorem (Q)

Let O ⊂ S(F
◦
) be the saturation under prime-to-p Hecke action and

(forward and backward) Frobenius action of a weakly special subset of
S(F

◦
). Assume that the reduction of Vε ∩ O is Zariski dense in Vk for all

ε > 0. Then there is a nonempty open subscheme of Vk such that for
every x of its k-points, Vx contains a translated formal subtorus of Sx .

The Frobenius endomorphism on Sk admits the “canonical lifting” to
S. It is a p-primary Hecke action.

In fact, can allow “partial Frobenii”. E.g., if S is replaced by a
product of modular curves, O is a product CM’s and Hecke orbits.
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Ax–Lindemann principle
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Ax–Lindemann principle

Over C

Complex uniformization of Shimura varieties.
E.g., the Siegel moduli Hg → Ag ,C.

Ax–Lindemann principle: Zariski closure of the image of an algebraic
subvariety should be weakly special (=totally geodesic).

Analytic analog of Ax–Lindemann by Ullmo and Yafaev.

Over F ◦.

Period map Ag(g+1)/2 log←−− Sx → S.

Conjecture (Weakly linear Ax–Lindemann)

Let x ∈ V(k) and T ⊂ Vx a translated formal subtorus of Sx . If T is
schematically dense in V, then V is weakly linear everywhere.
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Ax–Lindemann principle

Partial progress

Theorem

Assume that V is connected and flat over F ◦ such that Vk is unibranch
and has no embedded points.

(1) Weakly linear Ax–Lindemann holds if T contains a torsion point.

(2) If V is weakly linear at one point, then it is weakly linear eveywhere.

Proof of (1). A characterization of formal subtori in a formal torus in
terms of Frobenius stability (due to de Jong).

And Frobenius is globally defined on S.

Proof of (2). A global toric action on an Igusa scheme.
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Toric action on Igusa scheme

LetM/F ◦ be the deformation space of (polarized) ordinary p-divisible
groups of height 2g , i.e., M := {(G ,Gk

∼= Ĝg
m ⊕ (Qp/Zp)g}.

Induces polarized 0→ Ĝg
m → G → (Qp/Zp)g → 0.

M∼= Ĝg(g+1)/2
m , group law is Baer sum of extensions.

Serre–Tate: M∼= Sx . But not canonical.

Igusa scheme: a pro-finite-étale cover of S,

I := {A ∈ S, and polarized 0→ Ĝg
m → A[p∞]→ (Qp/Zp)g → 0}.

Then M∼= Iy canonically by the choice of y .

My I by Baer sum of extensions and so on (Liu, S. Zhang, W.
Zhang).

On Iy , the action is just group multiplication.

Use My I to extend local properties, e.g., linearity.
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m → G → (Qp/Zp)g → 0.
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m → A[p∞]→ (Qp/Zp)g → 0}.

Then M∼= Iy canonically by the choice of y .

My I by Baer sum of extensions and so on (Liu, S. Zhang, W.
Zhang).

On Iy , the action is just group multiplication.

Use My I to extend local properties, e.g., linearity.

Congling Qiu (Yale University) Apr 28, 2023 18 / 24



Toric action on Igusa scheme

LetM/F ◦ be the deformation space of (polarized) ordinary p-divisible
groups of height 2g , i.e., M := {(G ,Gk

∼= Ĝg
m ⊕ (Qp/Zp)g}.

Induces polarized 0→ Ĝg
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m ⊕ (Qp/Zp)g}.

Induces polarized 0→ Ĝg
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m → G → (Qp/Zp)g → 0.
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Perfectoid approach to U.A.I.
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Set up

Original problem: study Vε ∩ O on S.

Reduction tool: My I → S (and other technical results).

New problem: study Wε ∩ can (I (k)) on I.
Here W is a translate of the pullback of V to I.

Canonical lifting

I(F ◦) ∩ CM
can←−−I (k)

identity of Iy ←[y .
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Perfectoid Igusa spaces

Igusa scheme in [Caraiani–Scholze, 2017]

Iperf := {A ∈ S, and polarized A[p∞] ∼= Ĝg
m × (Qp/Zp)g}.

Facts: let C = Q̂p, which is perfectoid with tilt C [ = k̂((t)), then

Iperfk is the perfection of Ik ;

IperfC is perfectoid with tilt Iperf
k,C[ ;

Tilting bijection

ρ : Iperf(C ◦) ∼= Iperfk

(
C [◦
)

P 7→ P[

if P/p = P[/t (under C ◦/p ∼= C [◦/t).
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Perfectoid Igusa spaces

An enhancement of can. Precisely,

Iperf(C ◦)

��

Iperfk

(
C [◦
)ρ−1

∼=
oo

∼=
��

I(C ◦) Ik
(
C [◦
)

OO

I(F ◦)

OO

Ik (k)can
oo

OO

commutes, where we recall

I := {A ∈ S, and polarized 0→ Ĝg
m → A[p∞]→ (Qp/Zp)g → 0}.

And the diagram respects Frobenii.
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Scholze’s approximation lemma, Xie

Iperf(C ◦)

π

��

Iperfk

(
C [◦
)ρ−1

∼=
oo

∼=
��

W(C ◦) ⊂ I(C ◦) Ik
(
C [◦
)
⊃ Wk

(
C [◦
)

OO

I(F ◦)

OO

Ik (k)can
oo

OO

Want to lift the Frobenius stability of Wk

(
C [◦
)

to W.

Lemma

Let Λn ⊂ Ik (k) such that Wk ⊂ ΛZar
n . If can(Λn) ⊂ W1/n for all n, then

π
(
ρ−1

(
Wk

(
C [◦
))
⊂ W(C ◦

)
.
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The End
Thank you
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