Joint unlikely almost intersections on ordinary Siegel spaces

Congling Qiu

Yale University

Apr 28, 2023

Congling Qiu (Yale University)

Apr 28, 2023 1 / 24

- Motivations
- Unlikely almost intersections
- Ax-Lindemann principle
- Perfectoid approach to unlikely almost intersections

Motivations

Image: A match a ma

André–Oort vs André–Pink

• Let S be a Shimura variety and $V \subset S$ a closed subvariety.

André-Oort vs André-Pink

• Let S be a Shimura variety and $V \subset S$ a closed subvariety.

Conjecture (André-Oort)

Let ${\rm CM}$ denote the set of CM points. If $V\cap {\rm CM}$ is Zariski dense in V. Then V is a "Shimura subvariety".

 Proved by Pila, Shankar and Tsimerman based on many previous works. • Let S be a Shimura variety and $V \subset S$ a closed subvariety.

Conjecture (André-Oort)

Let ${\rm CM}$ denote the set of CM points. If $V\cap {\rm CM}$ is Zariski dense in V. Then V is a "Shimura subvariety".

• Proved by Pila, Shankar and Tsimerman based on many previous works.

Conjecture (André-Pink)

Let $O \subset S$ be a Hecke orbit. If $V \cap O$ is Zariski dense in V. Then V is weakly special.

• Over \mathbb{C} , weakly special = totally geodesic (by Moonen).

→ Ξ →

• Let S be a Shimura variety and $V \subset S$ a closed subvariety.

Conjecture (André-Oort)

Let ${\rm CM}$ denote the set of CM points. If $V\cap {\rm CM}$ is Zariski dense in V. Then V is a "Shimura subvariety".

• Proved by Pila, Shankar and Tsimerman based on many previous works.

Conjecture (André-Pink)

Let $O \subset S$ be a Hecke orbit. If $V \cap O$ is Zariski dense in V. Then V is weakly special.

- Over \mathbb{C} , weakly special = totally geodesic (by Moonen).
- Progress by Pink, Edixhoven-Yafaev, Orr, Richard-Yafaev.

• • = • • =

• For abelian varieties, "Mordell-Lang + Bogomolov" was proved by Poonen, and independently by S. Zhang.

- For abelian varieties, "Mordell-Lang + Bogomolov" was proved by Poonen, and independently by S. Zhang.
- ϵ -neighborhoods of division points of a lattice in the height topology.

- For abelian varieties, "Mordell-Lang + Bogomolov" was proved by Poonen, and independently by S. Zhang.
- \bullet $\epsilon\text{-neighborhoods}$ of division points of a lattice in the height topology.
- A uniform version by Ge.

- For abelian varieties, "Mordell–Lang + Bogomolov" was proved by Poonen, and independently by S. Zhang.
- ϵ -neighborhoods of division points of a lattice in the height topology.
- A uniform version by Ge.
- How to include a distance on Shimura varieties using heights?

- For abelian varieties, "Mordell–Lang + Bogomolov" was proved by Poonen, and independently by S. Zhang.
- ϵ -neighborhoods of division points of a lattice in the height topology.
- A uniform version by Ge.
- How to include a distance on Shimura varieties using heights?
- No direct way.

- For abelian varieties, "Mordell-Lang + Bogomolov" was proved by Poonen, and independently by S. Zhang.
- ϵ -neighborhoods of division points of a lattice in the height topology.
- A uniform version by Ge.
- How to include a distance on Shimura varieties using heights?
- No direct way.
- But for any variety over a valued field, ℝ-valued distance from points to a subvariety is defined. E.g., local heights.

We use *p*-adic distance.

We use *p*-adic distance.

Theorem (Q)

Let S be a Siegel modular variety and V_{ϵ} the p-adic ϵ -neighborhood of V in S $(\overline{\mathbb{Q}_p})$. Let CM_{ord} denote the set of CM points that are ordinary p. Then $V_{\epsilon} \cap CM_{ord} = V \cap CM_{ord}$ for ϵ small enough.

• It in fact holds at the level of *p*-adic formal schemes.

We use *p*-adic distance.

Theorem (Q)

Let S be a Siegel modular variety and V_{ϵ} the p-adic ϵ -neighborhood of V in S $(\overline{\mathbb{Q}_p})$. Let CM_{ord} denote the set of CM points that are ordinary p. Then $V_{\epsilon} \cap CM_{ord} = V \cap CM_{ord}$ for ϵ small enough.

- It in fact holds at the level of *p*-adic formal schemes.
- Habegger proved the case of product of modular curves. The original Tate–Voloch Conjecture for abelian varieties were proved by Scanlon.

We use *p*-adic distance.

Theorem (Q)

Let S be a Siegel modular variety and V_{ϵ} the p-adic ϵ -neighborhood of V in S $(\overline{\mathbb{Q}_p})$. Let CM_{ord} denote the set of CM points that are ordinary p. Then $V_{\epsilon} \cap CM_{ord} = V \cap CM_{ord}$ for ϵ small enough.

- It in fact holds at the level of *p*-adic formal schemes.
- Habegger proved the case of product of modular curves. The original Tate–Voloch Conjecture for abelian varieties were proved by Scanlon.
- An application when V is a divisor: bound arithmetic intersection numbers with CM points.

A D F A B F A B F A B

We use *p*-adic distance.

Theorem (Q)

Let S be a Siegel modular variety and V_{ϵ} the p-adic ϵ -neighborhood of V in S $(\overline{\mathbb{Q}_p})$. Let CM_{ord} denote the set of CM points that are ordinary p. Then $V_{\epsilon} \cap CM_{ord} = V \cap CM_{ord}$ for ϵ small enough.

- It in fact holds at the level of *p*-adic formal schemes.
- Habegger proved the case of product of modular curves. The original Tate–Voloch Conjecture for abelian varieties were proved by Scanlon.
- An application when V is a divisor: bound arithmetic intersection numbers with CM points.
- Want an analog for Hecke orbit (though the exact analog may fail).

< □ > < 同 > < 回 > < 回 > < 回 >

Theorem (Q)

Let $S = \prod S_i$ be a product of modular curves with good reduction at p, and $V \subset S$ a curve but not geodesic. Let $O = \prod O_i$ where $O_i \subset S_i$ is CM or a Hecke orbit. Then $V_{\epsilon} \cap O$ has a finite set of reduction at p, if the p-adic distance ϵ is small enough.

Unlikely almost intersections

Let k = 𝔽_p, F a complete DVF of characteristic 0 with residue field k, and F° ⊂ F valuation ring.

- Let k = 𝔽_p, F a complete DVF of characteristic 0 with residue field k, and F° ⊂ F valuation ring.
- Let S/F° be an ordinary Siegel formal moduli scheme of maximal level at p.

- Let k = 𝔽_p, F a complete DVF of characteristic 0 with residue field k, and F° ⊂ F valuation ring.
- Let S/F° be an ordinary Siegel formal moduli scheme of maximal level at p.
- Serre-Tate theory: for x ∈ S(k), the formal completion (residue disc)
 S_x at x is naturally a formal torus over F°.

- Let k = 𝔽_p, F a complete DVF of characteristic 0 with residue field k, and F° ⊂ F valuation ring.
- Let S/F° be an ordinary Siegel formal moduli scheme of maximal level at p.
- Serre-Tate theory: for x ∈ S(k), the formal completion (residue disc)
 S_x at x is naturally a formal torus over F°.
- A locally closed formal subscheme V ⊂ S is weakly linear at x if V_x is a finite union of translated formal subtori of S_x.

- Let k = 𝔽_p, F a complete DVF of characteristic 0 with residue field k, and F° ⊂ F valuation ring.
- Let S/F° be an ordinary Siegel formal moduli scheme of maximal level at p.
- Serre-Tate theory: for x ∈ S(k), the formal completion (residue disc)
 S_x at x is naturally a formal torus over F°.
- A locally closed formal subscheme V ⊂ S is weakly linear at x if V_x is a finite union of translated formal subtori of S_x.
- This should be the analog of "geodesic" (observed by Moonen).

- Let k = 𝔽_p, F a complete DVF of characteristic 0 with residue field k, and F° ⊂ F valuation ring.
- Let S/F° be an ordinary Siegel formal moduli scheme of maximal level at p.
- Serre-Tate theory: for x ∈ S(k), the formal completion (residue disc)
 S_x at x is naturally a formal torus over F°.
- A locally closed formal subscheme V ⊂ S is weakly linear at x if V_x is a finite union of translated formal subtori of S_x.
- This should be the analog of "geodesic" (observed by Moonen).
- Noot proved "weakly special ⇒ weakly linear".
 Moonen proved the converse, assuming algebraicity and that the translated formal subtori are torsion translates.

< □ > < 同 > < 回 > < Ξ > < Ξ

• Let $O \subset S(\overline{F}^{\circ})$ be a Hecke orbit.

► < ∃ ►</p>

- Let $O \subset S(\overline{F}^{\circ})$ be a Hecke orbit.
- Is the analog of André–Pink for $\mathcal{V}(\overline{F}^{\circ}) \cap O$ true?

- Let $O \subset S(\overline{F}^{\circ})$ be a Hecke orbit.
- Is the analog of André–Pink for $\mathcal{V}(\overline{\mathcal{F}}^{\circ}) \cap O$ true?
- Bad news: analog of Mordell-Lang for formal groups fails (by Serban).

- Let $O \subset S(\overline{F}^{\circ})$ be a Hecke orbit.
- Is the analog of André–Pink for $\mathcal{V}(\overline{\mathcal{F}}^{\circ}) \cap O$ true?
- Bad news: analog of Mordell-Lang for formal groups fails (by Serban).
- My answer: not sure.

Let O_ε be the union of p-adic ε-neighborhoods of points in O.
 André–Pink type statement with V(F[°]) ∩ O_ε is obviously wrong.

- Let O_ε be the union of p-adic ε-neighborhoods of points in O.
 André–Pink type statement with V(F[°]) ∩ O_ε is obviously wrong.
- Let V_ϵ ⊂ S(F[◦]) be the *p*-adic ϵ-neighborhood of V. Tate–Voloch may fail for O, i.e., V_ϵ ∩ O ⊄ V for ϵ small enough.

- Let O_ϵ be the union of p-adic ϵ-neighborhoods of points in O.
 André–Pink type statement with V(F[◦]) ∩ O_ϵ is obviously wrong.
- Let V_ϵ ⊂ S(F[◦]) be the *p*-adic ϵ-neighborhood of V. Tate–Voloch may fail for O, i.e., V_ϵ ∩ O ⊄ V for ϵ small enough.
- But both V(F
 [°]) ∩ O_ε and V_ε ∩ O have reductions in V_k. (The latter one has larger reduction.)

Conjecture (Unlikely almost intersections)

If \mathcal{V} is reduced and flat over F° , and the reduction of $\mathcal{V}_{\epsilon} \cap O$ is Zariski dense in \mathcal{V}_k for all $\epsilon > 0$, then \mathcal{V} is weakly linear.

Naive joint unlikely intersections

Congling Qiu (Yale University)

э

Conjecture (André–Oort + André–Pink)

Let S_1, S_2 be Shimura varieties. Let $V \subset S_1 \times S_2$ be a closed subvariety. If $V \cap (CM_1 \times O_2)$ is Zariski dense in V. Then V is weakly special. Here $CM_1 \subset S_1$ is the set of CM points and $O_2 \subset S_2$ a Hecke orbit.

Conjecture (André–Oort + André–Pink)

Let S_1, S_2 be Shimura varieties. Let $V \subset S_1 \times S_2$ be a closed subvariety. If $V \cap (CM_1 \times O_2)$ is Zariski dense in V. Then V is weakly special. Here $CM_1 \subset S_1$ is the set of CM points and $O_2 \subset S_2$ a Hecke orbit.

Apr 28, 2023

12 / 24

• Special case of the Zilber-Pink conjecture.
Congling Qiu (Yale University)

• A weakly special subvariety of a Shimura variety S is itself some (component of a) Shimura variety.

- A weakly special subvariety of a Shimura variety S is itself some (component of a) Shimura variety.
- Define a weakly special subset of *S* to be the set of the CM points on a weakly special subvariety.

- A weakly special subvariety of a Shimura variety S is itself some (component of a) Shimura variety.
- Define a weakly special subset of *S* to be the set of the CM points on a weakly special subvariety.

Conjecture

Let O be the Hecke saturation of a weakly special subset of S. Let $V \subset S$ be a closed subvariety. If $V \cap O$ is Zariski dense in V. Then V is weakly special.

- A weakly special subvariety of a Shimura variety S is itself some (component of a) Shimura variety.
- Define a weakly special subset of *S* to be the set of the CM points on a weakly special subvariety.

Conjecture

Let O be the Hecke saturation of a weakly special subset of S. Let $V \subset S$ be a closed subvariety. If $V \cap O$ is Zariski dense in V. Then V is weakly special.

• Is this a special case of the Zilber-Pink conjecture?

• Unlikely almost intersections conjecture has an obvious joint version.

- Unlikely almost intersections conjecture has an obvious joint version.
- Partial progress

Theorem (Q)

Let $O \subset S(\overline{F}^{\circ})$ be the saturation under prime-to-p Hecke action and (forward and backward) Frobenius action of a weakly special subset of $S(\overline{F}^{\circ})$. Assume that the reduction of $\mathcal{V}_{\epsilon} \cap O$ is Zariski dense in \mathcal{V}_k for all $\epsilon > 0$. Then there is a nonempty open subscheme of \mathcal{V}_k such that for every x of its k-points, \mathcal{V}_x contains a translated formal subtorus of \mathcal{S}_x .

- Unlikely almost intersections conjecture has an obvious joint version.
- Partial progress

Theorem (Q)

Let $O \subset S(\overline{F}^{\circ})$ be the saturation under prime-to-p Hecke action and (forward and backward) Frobenius action of a weakly special subset of $S(\overline{F}^{\circ})$. Assume that the reduction of $\mathcal{V}_{\epsilon} \cap O$ is Zariski dense in \mathcal{V}_k for all $\epsilon > 0$. Then there is a nonempty open subscheme of \mathcal{V}_k such that for every x of its k-points, \mathcal{V}_x contains a translated formal subtorus of \mathcal{S}_x .

 The Frobenius endomorphism on S_k admits the "canonical lifting" to S. It is a p-primary Hecke action.

- Unlikely almost intersections conjecture has an obvious joint version.
- Partial progress

Theorem (Q)

Let $O \subset S(\overline{F}^{\circ})$ be the saturation under prime-to-p Hecke action and (forward and backward) Frobenius action of a weakly special subset of $S(\overline{F}^{\circ})$. Assume that the reduction of $\mathcal{V}_{\epsilon} \cap O$ is Zariski dense in \mathcal{V}_k for all $\epsilon > 0$. Then there is a nonempty open subscheme of \mathcal{V}_k such that for every x of its k-points, \mathcal{V}_x contains a translated formal subtorus of \mathcal{S}_x .

- The Frobenius endomorphism on S_k admits the "canonical lifting" to S. It is a p-primary Hecke action.
- In fact, can allow "partial Frobenii". E.g., if S is replaced by a product of modular curves, O is a product CM's and Hecke orbits.

< □ > < □ > < □ > < □ > < □ > < □ >

Image: A matrix and A matrix

 $\mathsf{Over}\ \mathbb{C}$

Over F° .

Congling Qiu (Yale University)

≣ ▶ ४ ≣ ▶ ≣ ∽ ९.० Apr 28, 2023 16 / 24

イロト イヨト イヨト イヨ

 $\mathsf{Over}\ \mathbb{C}$

• Complex uniformization of Shimura varieties. E.g., the Siegel moduli $\mathbb{H}_g \to A_{g,\mathbb{C}}$.

Over F° .

► < ∃ ►</p>

- Complex uniformization of Shimura varieties. E.g., the Siegel moduli $\mathbb{H}_g \to A_{g,\mathbb{C}}$.
- Ax-Lindemann principle: Zariski closure of the image of an algebraic subvariety should be weakly special (=totally geodesic).

Over F° .

- Complex uniformization of Shimura varieties. E.g., the Siegel moduli $\mathbb{H}_g \to A_{g,\mathbb{C}}$.
- Ax-Lindemann principle: Zariski closure of the image of an algebraic subvariety should be weakly special (=totally geodesic).
- Analytic analog of Ax-Lindemann by Ullmo and Yafaev.

Over F° .

- Complex uniformization of Shimura varieties. E.g., the Siegel moduli $\mathbb{H}_g \to A_{g,\mathbb{C}}$.
- Ax-Lindemann principle: Zariski closure of the image of an algebraic subvariety should be weakly special (=totally geodesic).

Apr 28, 2023

16 / 24

• Analytic analog of Ax-Lindemann by Ullmo and Yafaev.

Over F° .

• Period map $\mathbb{A}^{g(g+1)/2} \xleftarrow{\log} S_x \to S$.

- Complex uniformization of Shimura varieties. E.g., the Siegel moduli $\mathbb{H}_g \to A_{g,\mathbb{C}}$.
- Ax-Lindemann principle: Zariski closure of the image of an algebraic subvariety should be weakly special (=totally geodesic).
- Analytic analog of Ax-Lindemann by Ullmo and Yafaev.

Over F° .

• Period map $\mathbb{A}^{g(g+1)/2} \xleftarrow{\log} S_x \to S$.

Conjecture (Weakly linear Ax–Lindemann)

Let $x \in \mathcal{V}(k)$ and $\mathcal{T} \subset \mathcal{V}_x$ a translated formal subtorus of \mathcal{S}_x . If \mathcal{T} is schematically dense in \mathcal{V} , then \mathcal{V} is weakly linear everywhere.

(日) (四) (日) (日) (日)

Congling Qiu (Yale University)

イロト イヨト イヨト

• Partial progress

Theorem

Assume that \mathcal{V} is connected and flat over F° such that \mathcal{V}_k is unibranch and has no embedded points.

Theorem

Assume that \mathcal{V} is connected and flat over F° such that \mathcal{V}_k is unibranch and has no embedded points.

(1) Weakly linear Ax–Lindemann holds if T contains a torsion point.

Theorem

Assume that \mathcal{V} is connected and flat over F° such that \mathcal{V}_k is unibranch and has no embedded points.

- (1) Weakly linear Ax–Lindemann holds if T contains a torsion point.
- (2) If \mathcal{V} is weakly linear at one point, then it is weakly linear everywhere.

Theorem

Assume that V is connected and flat over F° such that V_k is unibranch and has no embedded points.

- (1) Weakly linear Ax–Lindemann holds if T contains a torsion point.
- (2) If \mathcal{V} is weakly linear at one point, then it is weakly linear everywhere.
 - Proof of (1). A characterization of formal subtori in a formal torus in terms of Frobenius stability (due to de Jong).

Theorem

Assume that V is connected and flat over F° such that V_k is unibranch and has no embedded points.

- (1) Weakly linear Ax–Lindemann holds if T contains a torsion point.
- (2) If \mathcal{V} is weakly linear at one point, then it is weakly linear everywhere.
 - Proof of (1). A characterization of formal subtori in a formal torus in terms of Frobenius stability (due to de Jong).
 - And Frobenius is globally defined on \mathcal{S} .

Theorem

Assume that V is connected and flat over F° such that V_k is unibranch and has no embedded points.

- (1) Weakly linear Ax–Lindemann holds if T contains a torsion point.
- (2) If \mathcal{V} is weakly linear at one point, then it is weakly linear everywhere.
 - Proof of (1). A characterization of formal subtori in a formal torus in terms of Frobenius stability (due to de Jong).
 - And Frobenius is globally defined on S.
 - Proof of (2). A global toric action on an Igusa scheme.

Congling Qiu (Yale University)

Let *M*/*F*[°] be the deformation space of (polarized) ordinary *p*-divisible groups of height 2*g*, i.e., *M* := {(*G*, *G_k* ≃ G^g_m ⊕ (Q_p/Z_p)^g}.

- Let *M*/*F*[°] be the deformation space of (polarized) ordinary *p*-divisible groups of height 2*g*, i.e., *M* := {(*G*, *G_k* ≃ G^g_m ⊕ (Q_p/Z_p)^g}.
- Induces polarized $0 \to \widehat{\mathbb{G}}_m^g \to G \to (\mathbb{Q}_p/\mathbb{Z}_p)^g \to 0.$

- Let *M*/*F*[°] be the deformation space of (polarized) ordinary *p*-divisible groups of height 2*g*, i.e., *M* := {(*G*, *G_k* ≃ G^g_m ⊕ (Q_p/Z_p)^g}.
- Induces polarized $0 \to \widehat{\mathbb{G}}_m^g \to G \to (\mathbb{Q}_p/\mathbb{Z}_p)^g \to 0.$
- $\mathcal{M} \cong \widehat{\mathbb{G}}_m^{g(g+1)/2}$, group law is Baer sum of extensions.

- Let *M*/*F*[°] be the deformation space of (polarized) ordinary *p*-divisible groups of height 2*g*, i.e., *M* := {(*G*, *G_k* ≃ G^g_m ⊕ (Q_p/Z_p)^g}.
- Induces polarized $0 \to \widehat{\mathbb{G}}_m^g \to G \to (\mathbb{Q}_p/\mathbb{Z}_p)^g \to 0.$
- $\mathcal{M} \cong \widehat{\mathbb{G}}_m^{g(g+1)/2}$, group law is Baer sum of extensions.
- Serre–Tate: $\mathcal{M} \cong \mathcal{S}_{x}$. But not canonical.

- Let *M*/*F*[°] be the deformation space of (polarized) ordinary *p*-divisible groups of height 2*g*, i.e., *M* := {(*G*, *G_k* ≃ G^g_m ⊕ (Q_p/Z_p)^g}.
- Induces polarized $0 \to \widehat{\mathbb{G}}_m^g \to G \to (\mathbb{Q}_p/\mathbb{Z}_p)^g \to 0.$
- $\mathcal{M} \cong \widehat{\mathbb{G}}_m^{g(g+1)/2}$, group law is Baer sum of extensions.
- Serre–Tate: $\mathcal{M} \cong \mathcal{S}_{x}$. But not canonical.
- Igusa scheme: a pro-finite-étale cover of S,

 $\mathcal{I} := \{A \in \mathcal{S}, \text{ and polarized } 0 \to \widehat{\mathbb{G}}_m^g \to A[p^\infty] \to (\mathbb{Q}_p/\mathbb{Z}_p)^g \to 0\}.$

- Let *M*/*F*[°] be the deformation space of (polarized) ordinary *p*-divisible groups of height 2*g*, i.e., *M* := {(*G*, *G_k* ≃ G^g_m ⊕ (Q_p/Z_p)^g}.
- Induces polarized $0 \to \widehat{\mathbb{G}}_m^g \to G \to (\mathbb{Q}_p/\mathbb{Z}_p)^g \to 0.$
- $\mathcal{M} \cong \widehat{\mathbb{G}}_m^{g(g+1)/2}$, group law is Baer sum of extensions.
- Serre–Tate: $\mathcal{M} \cong \mathcal{S}_{x}$. But not canonical.
- Igusa scheme: a pro-finite-étale cover of S,

 $\mathcal{I} := \{A \in \mathcal{S}, \text{ and polarized } 0 \to \widehat{\mathbb{G}}_m^g \to A[p^\infty] \to (\mathbb{Q}_p/\mathbb{Z}_p)^g \to 0\}.$

• Then $\mathcal{M} \cong \mathcal{I}_y$ canonically by the choice of y.

- Let *M*/*F*[°] be the deformation space of (polarized) ordinary *p*-divisible groups of height 2*g*, i.e., *M* := {(*G*, *G_k* ≃ G^g_m ⊕ (Q_p/Z_p)^g}.
- Induces polarized $0 \to \widehat{\mathbb{G}}_m^g \to G \to (\mathbb{Q}_p/\mathbb{Z}_p)^g \to 0.$
- $\mathcal{M} \cong \widehat{\mathbb{G}}_m^{g(g+1)/2}$, group law is Baer sum of extensions.
- Serre–Tate: $\mathcal{M} \cong \mathcal{S}_{x}$. But not canonical.
- Igusa scheme: a pro-finite-étale cover of S,

 $\mathcal{I} := \{A \in \mathcal{S}, \text{ and polarized } 0 \to \widehat{\mathbb{G}}_m^g \to A[p^\infty] \to (\mathbb{Q}_p/\mathbb{Z}_p)^g \to 0\}.$

- Then $\mathcal{M} \cong \mathcal{I}_y$ canonically by the choice of y.
- $\mathcal{M} \curvearrowright \mathcal{I}$ by Baer sum of extensions and so on (Liu, S. Zhang, W. Zhang).

- Let *M*/*F*[°] be the deformation space of (polarized) ordinary *p*-divisible groups of height 2*g*, i.e., *M* := {(*G*, *G_k* ≃ G^g_m ⊕ (Q_p/Z_p)^g}.
- Induces polarized $0 \to \widehat{\mathbb{G}}_m^g \to G \to (\mathbb{Q}_p/\mathbb{Z}_p)^g \to 0.$
- $\mathcal{M} \cong \widehat{\mathbb{G}}_m^{g(g+1)/2}$, group law is Baer sum of extensions.
- Serre–Tate: $\mathcal{M} \cong \mathcal{S}_{x}$. But not canonical.
- Igusa scheme: a pro-finite-étale cover of S,

 $\mathcal{I} := \{A \in \mathcal{S}, \text{ and polarized } 0 \to \widehat{\mathbb{G}}_m^g \to A[p^\infty] \to (\mathbb{Q}_p/\mathbb{Z}_p)^g \to 0\}.$

- Then $\mathcal{M} \cong \mathcal{I}_y$ canonically by the choice of y.
- $\mathcal{M} \curvearrowright \mathcal{I}$ by Baer sum of extensions and so on (Liu, S. Zhang, W. Zhang).
- On \mathcal{I}_y , the action is just group multiplication.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Let *M*/*F*[°] be the deformation space of (polarized) ordinary *p*-divisible groups of height 2*g*, i.e., *M* := {(*G*, *G_k* ≃ G^g_m ⊕ (Q_p/Z_p)^g}.
- Induces polarized $0 \to \widehat{\mathbb{G}}_m^g \to G \to (\mathbb{Q}_p/\mathbb{Z}_p)^g \to 0.$
- $\mathcal{M} \cong \widehat{\mathbb{G}}_m^{g(g+1)/2}$, group law is Baer sum of extensions.
- Serre–Tate: $\mathcal{M} \cong \mathcal{S}_{x}$. But not canonical.
- Igusa scheme: a pro-finite-étale cover of S,

 $\mathcal{I} := \{A \in \mathcal{S}, \text{ and polarized } 0 \to \widehat{\mathbb{G}}_m^g \to A[p^\infty] \to (\mathbb{Q}_p/\mathbb{Z}_p)^g \to 0\}.$

- Then $\mathcal{M} \cong \mathcal{I}_y$ canonically by the choice of y.
- $\mathcal{M} \curvearrowright \mathcal{I}$ by Baer sum of extensions and so on (Liu, S. Zhang, W. Zhang).
- On \mathcal{I}_y , the action is just group multiplication.
- Use $\mathcal{M} \curvearrowright \mathcal{I}$ to extend local properties, e.g., linearity.

A D F A B F A B F A B

Perfectoid approach to U.A.I.

< □ > < 同 > < 三</p>

• Original problem: study $\mathcal{V}_{\epsilon} \cap O$ on \mathcal{S} .

Image: A mathematical states of the state

- Original problem: study $\mathcal{V}_{\epsilon} \cap O$ on \mathcal{S} .
- Reduction tool: $\mathcal{M} \curvearrowright \mathcal{I} \to \mathcal{S}$ (and other technical results).

→ ∢ ∃
- Original problem: study $\mathcal{V}_{\epsilon} \cap O$ on \mathcal{S} .
- Reduction tool: $\mathcal{M} \curvearrowright \mathcal{I} \to \mathcal{S}$ (and other technical results).
- New problem: study W_ϵ ∩ can (I (k)) on I.
 Here W is a translate of the pullback of V to I.

- Original problem: study $\mathcal{V}_{\epsilon} \cap O$ on \mathcal{S} .
- Reduction tool: $\mathcal{M} \curvearrowright \mathcal{I} \to \mathcal{S}$ (and other technical results).
- New problem: study W_ϵ ∩ can (I (k)) on I.
 Here W is a translate of the pullback of V to I.
- Canonical lifting

$$\mathcal{I}(F^{\circ}) \cap \mathrm{CM} \xleftarrow{\mathrm{can}}{\mathcal{I}(k)}$$
identity of $\mathcal{I}_y \longleftrightarrow y.$

• Igusa scheme in [Caraiani-Scholze, 2017]

$$\mathcal{I}^{\mathrm{perf}} := \{ A \in \mathcal{S}, \text{ and polarized } A[p^{\infty}] \cong \widehat{\mathbb{G}}_{m}^{g} \times (\mathbb{Q}_{p}/\mathbb{Z}_{p})^{g} \}.$$

Image: Image:

• Igusa scheme in [Caraiani–Scholze, 2017]

$$\mathcal{I}^{\mathrm{perf}} := \{ A \in \mathcal{S}, \text{ and polarized } A[p^{\infty}] \cong \widehat{\mathbb{G}}_{m}^{g} \times (\mathbb{Q}_{p}/\mathbb{Z}_{p})^{g} \}.$$

• Facts: let $C = \widehat{\overline{\mathbb{Q}_p}}$, which is perfected with tilt $C^{\flat} = \widehat{\overline{k((t))}}$, then

• Igusa scheme in [Caraiani-Scholze, 2017]

$$\mathcal{I}^{\mathrm{perf}} := \{ A \in \mathcal{S}, \text{ and polarized } A[p^{\infty}] \cong \widehat{\mathbb{G}}_{m}^{g} \times (\mathbb{Q}_{p}/\mathbb{Z}_{p})^{g} \}.$$

Facts: let C = Ωp, which is perfected with tilt C^b = k((t)), then

 *I*_k^{perf} is the perfection of *I*_k;
 *C*_k^{perf} is perfected with tilt *I*_{k,C^b}^{perf};

• Igusa scheme in [Caraiani-Scholze, 2017]

$$\mathcal{I}^{\mathrm{perf}} := \{ A \in \mathcal{S}, \text{ and polarized } A[p^{\infty}] \cong \widehat{\mathbb{G}}_{m}^{g} \times (\mathbb{Q}_{p}/\mathbb{Z}_{p})^{g} \}.$$

• Tilting bijection

$$\rho: \mathcal{I}^{\mathrm{perf}}(\mathcal{C}^{\diamond}) \cong \mathcal{I}^{\mathrm{perf}}_{k}\left(\mathcal{C}^{\flat \diamond}\right)$$
$$\mathcal{P} \mapsto \mathcal{P}^{\flat}$$

if
$$P/p = P^{\flat}/t$$
 (under $C^{\circ}/p \cong C^{\flat \circ}/t$).

• An enhancement of can. Precisely,

commutes, where we recall

 $\mathcal{I} := \{ A \in \mathcal{S}, \text{ and polarized } 0 \to \widehat{\mathbb{G}}_m^g \to A[p^\infty] \to (\mathbb{Q}_p/\mathbb{Z}_p)^g \to 0 \}.$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• An enhancement of can. Precisely,

commutes, where we recall

 $\mathcal{I} := \{ A \in \mathcal{S}, \text{ and polarized } 0 \to \widehat{\mathbb{G}}_m^g \to A[p^\infty] \to (\mathbb{Q}_p/\mathbb{Z}_p)^g \to 0 \}.$

And the diagram respects Frobenii.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Scholze's approximation lemma, Xie

Apr 28, 2023 23 / 24

Scholze's approximation lemma, Xie

• Want to lift the Frobenius stability of $\mathcal{W}_k(\mathcal{C}^{\flat\circ})$ to \mathcal{W} .

Lemma

Let
$$\Lambda_n \subset \mathcal{I}_k(k)$$
 such that $\mathcal{W}_k \subset \Lambda_n^{\operatorname{Zar}}$. If $\operatorname{can}(\Lambda_n) \subset \mathcal{W}_{1/n}$ for all n , then
 $\pi\left(\rho^{-1}\left(\mathcal{W}_k\left(\mathcal{C}^{\flat\circ}\right)\right) \subset \mathcal{W}(\mathcal{C}^\circ\right).$

The End Thank you

Congling Qiu (Yale University)

▲ 클 ▷ 클 ♡ ९ (° Apr 28, 2023 24 / 24

Image: A match a ma