
Space-Time Modeling, Discretization and Solution of Coupled
Problems in Incompressible Flow, Fluid-Structure Interaction

and Porous Media

Thomas Wick

Institut für Angewandte Mathematik (IfAM)
Leibniz Universität Hannover, Germany

International Research Training Group 2657 Hannover Paris-Saclay
Université Paris-Saclay, France

Dec 05, 2023
Hot topics workshop:

Recent Progress in Deterministic and Stochastic Fluid-Structure Interaction, Dec 4-8, 2023
Berkeley, California, United States

Thomas Wick (Hannover) Space-Time Modeling, Discretization, Error Control, Simulations 1



Overview
1 Motivation

2 Space-time modeling
Space-time modeling of heat equation and Biot’s system
Galerkin finite element discretization
Space-time modeling of fluid-structure interaction
Galerkin finite element discretization of FSI

3 Space-time a posteriori goal-oriented error control

4 A posteriori goal-oriented error-controlled reduced-order modeling
Reduced-order modeling
The MORe DWR method

5 Numerical tests

6 Space-time variational material modeling (ongoing work)

7 Conclusions

Thomas Wick (Hannover) Space-Time Modeling, Discretization, Error Control, Simulations 2



Collaborators in this work

• Jan Philipp Thiele, WIAS, Berlin, Germany (space-time adaptivity Navier-Stokes)

• Julian Roth, Hannover, Germany (space-time model order reduction, Navier-Stokes)

• Hendrik Fischer, Hannover, Germany (space-time model order reduction)

• Thomas Richter, Magdeburg, Germany (space-time multirate schemes)

• Amélie Fau, ENS Paris-Saclay, France (space-time model order reduction)

• Ludovic Chamoin, ENS Paris-Saclay, France (space-time model order reduction)

• Mary F. Wheeler, Austin, USA (porous media discussions)

• Lukas Failer, Siemens, Germany (time adaptivity fluid-structure interaction)

• Philipp Junker, Hannover, Germany (space-time variational material modeling)

Thomas Wick (Hannover) Space-Time Modeling, Discretization, Error Control, Simulations 3



Motivation I: Interest
1 Elegant mathematical descriptions and similar discretizations in space and time

(generically implicit, A-stable schemes, numerical stability) with the typical concepts at
hand well-known from finite elements in space

2 Concerning temporal discretization, the integral form allows natural information on the
entire time interval Im rather than only at discrete time points tm−1 and tm as for finite
differences

3 Flexible discretization when using suitable FE libraries, i.e. no special treatment needed for
higher temporal order if implemented as a weak form

4 Higher-order basis functions; and natural higher order regularity specifically when using
splines such as in isogeometric analysis

5 Typical Galerkin-based best approximation results, interpolation error estimates, and
resulting a priori and a posteriori error estimates

6 Space-time adaptivity

7 Global ‘viewpoint’ allows for (parallel) space-time solution via multigrid
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Motivation II: Shortcomings

1 Heavy notation

2 More error-prone (in comparison to finite differences; specifically for dG in time) when
implemented the first time

3 Higher cost in men/women power to derive schemes (by hand), which may become very
technical, including sustainable implementations and documentation towards re-usable
research software developments1

4 Without good (linear) solvers, costly to solve

1Thiele, 2023; https://github.com/instatdealii/idealii
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Motivation III: Methodology

1 Describe spatial and temporal domains in a common setting

2 Apply similar discretizations, i.e., Galerkin FEM

3 FEM: geometry (elements), simple functions, set of degrees of freedom

4 cG(s): continuous Galerkin, FEM polynomial degree s ∈ N0

5 dG(r): discontinuous Galerkin, FEM polynomial degree r ∈ N0, more expensive than cG
because more degrees of freedom

6 For certain polynomials degrees, relation to well-known finite difference schemes (later more
details):

• r = 0: variant of backward Euler, θ = 1
• s = 1: variant of Crank-Nicolson, θ = 0.5
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Model problem statement

1 Find u : Ω̄ × Ī → Rd̃ such that

∂tu +A(u) = f in Ω × I,
u = uD on ΓD × I,

B(u) = gN on ΓN × I,

u = u0 in Ω × {0},

(1)

with possibly nonlinear spatial operator A, boundary operator B and sufficiently regular
right-hand side f .
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Examples of PDEs and PDE systems

1 Heat equation: ∂tu − ∆xu = f in Ω × I

2 Elastodynamics equation: ∂ttu −∇x · σ(u) = 0 in Ω × I

3 Biot system in porous media:

∂t(cp + α(∇x · u))− 1
ν
∇x · (K∇xp) = 0 in Ω × I,

−∇x · σ(u) + α∇xp = 0 in Ω × I,
(2)

1 with the isotropic stress tensor σ(u) := µ(∇xu + (∇xu)T) + λ(∇x · u)I,

2 (constrained specific) storage coefficient c ≥ c∗ > 0, may depend on space, i.e., c(x), and is linked
to the compressibility M > 0,

3 Biot-Willis constant α ∈ [0, 1],

4 the permeability tensor K, fluid’s viscosity ν,

5 Lamé parameters λ, µ > 0.
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Discretization in time (heat equation) I
1 dG(r) with polynomial degree r ≥ 0 (r = 0 variant of backward Euler)

2 Why dG? Implicit, A-stable, finite element error estimates, ‘global’ view,

3 Let Tk := {Im := (tm−1, tm) | 1 ≤ m ≤ M} be a partitioning of time, i.e. Ī = [0, T] =
⋃M

m=1 Īm.

4 Broken continuous level function spaces

X̃(Tk, V(Ω)) := {v ∈ L2(I, L2(Ω)) | v|Im
∈ X(Im, V(Ω)) ∀Im ∈ Tk}

5 Due to these discontinuities, we define the limits of f at time tm from above and from below
for a function f as

f±m := lim
ϵ↘0

f (tm ± ϵ),

6 Jump of the function value of f at time tm as

[f ]m := f+m − f−m .

Thomas Wick (Hannover) Space-Time Modeling, Discretization, Error Control, Simulations 11



Discretization in time (heat equation) II

Formulation (Time-discontinuous variational formulation of the heat equation)

Find u ∈ X̃(Tk, V(Ω)) such that

Ã(u)(φ) = F̃(φ) ∀φ ∈ X̃(Tk, V(Ω)),

where

Ã(u)(φ) :=
M

∑
m=1

∫
Im
(∂tu, φ) + (∇xu,∇x φ) dt +

M−1

∑
m=1

([u]m, φ+
m) + (u+

0 , φ+
0 ),

F̃(φ) := ((f , φ)) + (u0, φ+
0 ).
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Fully discrete space-time system (heat)

Formulation
Find ukh ∈ XdG(r)

k (Tk, Vs
h) such that

Ã(ukh)(φkh) = F̃(φkh) ∀φkh ∈ XdG(r)
k (Tk, Vs

h)

where

Vs
h := Vs

h(Th) :=
{

v ∈ C(Ω̄)
∣∣∣v|K ∈ Qs(K) ∀K ∈ Th

}
Recall:

1 Benefit from space-time formulation allows for consistent space-time a posteriori error
estimation

→ Numerical examples later in this talk.
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Fluids and solids in their standard systems

Equations for fluid flows (Navier Stokes) - Eulerian

∂tv + (v · ∇v)−∇ · σ(v, p) = 0, ∇ · v = 0, in Ωf × I, +bc and initial conditions

with Cauchy stress tensor σ(v, p) = −pI + ρf νf (∇v +∇vT).

Equations for (nonlinear) elasticity - Lagrangian

∂2
t û − ∇̂ · (F̂Σ̂(û)) = 0 in Ω̂s × I, +bc and initial conditions

with the stress F̂Σ̂(û) = 2µsÊ + λstrace(Ê)I, the strain Ê = (F̂F̂T − I) and F̂ = I + ∇̂û.

Coupling conditions on Γi, Γ̂i

vf = v̂s and σ(v, p)nf = F̂Σ̂(û)n̂s. Ω̂s

Ωf

Γi
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Function spaces (I)
1 For the function spaces in the (fixed) reference domains Ω̂, Ω̂f , Ω̂s, we define spaces for spatial

discretization first.

2 First we define
V̂ := H1(Ω̂)d, V̂0 := H1

0(Ω̂)d.

3 Next, in the fluid domain, we define further:

L̂f := L2(Ω̂f ),

L̂0
f := L2(Ω̂f )/R,

V̂0
f := {v̂f ∈ H1(Ω̂f )

d : v̂f = 0 on Γ̂in ∪ Γ̂D},

V̂0
f ,û := {ûf ∈ H1(Ω̂f )

d : ûf = ûs on Γ̂i, ûf = 0 on Γ̂in ∪ Γ̂D ∪ Γ̂out},

V̂0
f ,û,Γ̂i

:= {ψ̂f ∈ H1(Ω̂f )
d : ψ̂f = 0 on Γ̂i ∪ Γ̂in ∪ Γ̂D ∪ Γ̂out}.

4 In the solid domain, we use

L̂s := L2(Ω̂s)
d, V̂0

s := {ûs ∈ H1(Ω̂s)
d : ûs = 0 on Γ̂D}.
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Function spaces (II)

1 As trial spaces for a space-time model, we define

X̂ = {U = (v̂, ûf , ûs, p̂f )| v̂ ∈ L2(I, {v̂D + V̂0}), ∂tv̂ ∈ L2(I, H(Ω̂)∗d), ûf ∈ L2(I, {ûD
f + V̂0

f ,û}),
∂tûf ∈ L2(I, H(Ω̂f )

∗
d), ûs ∈ L2(I, {ûD

s + V̂0
s }), ∂tûs ∈ L2(I, H(Ω̂s)

∗
d), p̂f ∈ L2(I, L̂0

f )}

2 As test spaces for a space-time model, we use

X̂0 = {U = (v̂, ûf , ûs, p̂f )| v̂ ∈ L2(I, V̂0), ∂tv̂ ∈ L2(I, H(Ω̂)∗d), ûf ∈ L2(I, V̂0
f ,û,Γ̂i

),

∂tûf ∈ L2(I, H(Ω̂f )
∗
d), ûs ∈ L2(I, V̂0

s ), ∂tûs ∈ L2(I, H(Ω̂s)
∗
d), p̂f ∈ L2(I, L̂0

f )}
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ALE: arbitrary Lagrangian-Eulerian
ALE:

1 Use ALEfx: arbitrary Lagrangian Eulerian, where fluid equations (incompressible
Navier-Stokes) is transformed to a fixed (arbitrary) reference domain Ω̂

2 Construct mesh motion model to extend displacements to flow domain Ω̂f in order to realize
ALE transformation: A(x̂, t) : Ω̂f → Ωf

3 Deformation gradient F̂ := ∇̂A(x̂, t) and determinant Ĵ := det(F̂).

Variational-monolithic coupling:

1 Realize coupling conditions in an implicit way on the continuous level:

v̂f = v̂s on Γ̂ (built into function spaces!)

⟨Ĵσ̂f F̂−Tn̂f , φ⟩Γ̂ + ⟨F̂Σ̂n̂s, φ⟩Γ̂ = 0 ∀φ ∈ V

2 Geometric condition due to ALE:

ûf = ûs on Γ̂ (built into function spaces!)
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A space-time fluid-structure interaction model

Proposition (Variational-monolithic space-time ALE-FSI in Ω̂)
Find a global vector-valued velocity, vector-valued displacements and a scalar-valued fluid pressure, i.e., Û := (v̂, ûf , ûs , p̂f ) ∈ X̂ such that

Fluid/solid momentum


∫

I

(
(Ĵϱ̂f ∂tv̂, ψ̂v)Ω̂f

+ (ϱ̂f Ĵ(F̂−1(v̂ − ŵ) · ∇̂)v̂), ψ̂v)Ω̂f
+ (Ĵσ̂f F̂−T , ∇̂ψ̂v)Ω̂f

−⟨ϱ̂f νf Ĵ(F̂−T∇̂v̂T n̂f )F̂−T , ψ̂v⟩Γ̂out
+ (ϱ̂s∂tv̂, ψ̂v)Ω̂s

+ (F̂Σ̂, ∇̂ψ̂v)Ω̂s

)
dt

+(Ĵϱ̂f (v̂(0)− v̂0), ψ̂v(0))Ω̂f
+ ϱ̂s(v̂(0)− v̂0, ψ̂v(0))Ω̂s

= 0

Fluid mesh motion
{∫

I(σ̂mesh, ∇̂ψ̂u
f )Ω̂f

dt = 0

Solid momentum, 2nd eq.
{∫

I

(
ϱ̂s(∂tûs − v̂|Ω̂s

, ψ̂u
s )Ω̂s

)
dt + ϱ̂s(ûs(0)− ûs,0, ψ̂u

s (0)) = 0

Fluid mass conservation
{∫

I

(
(d̂iv (ĴF̂−1 v̂), ψ̂

p
f )Ω̂f

)
dt = 0

for all Ψ̂ = (ψ̂v , ψ̂u
f , ψ̂u

s , ψ̂
p
f ) ∈ X̂0 . In compact form, the above problem reads: Find Û ∈ X̂ such that

Â(Û)(Ψ̂) = 0 ∀Ψ̂ ∈ X̂0

where the FSI equations are combined in the semi-linear form Â(Û)(Ψ̂).
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Equivalent formulation - start for space-time discretization

Proposition

Find Û := (v̂, ûf , ûs, p̂f ) ∈ X̂ such that∫
I
(Ĵϱ̂f ∂tv̂, ψ̂v)Ω̂f

dt +
∫

I
(ϱ̂s∂tv̂, ψ̂v)Ω̂s

dt +
∫

I
(ϱ̂s∂tûs, ψ̂u

s )Ω̂s
dt

+ Ânotimeder(Û)(Ψ̂)

+ (Ĵϱ̂f (v̂(0)− v̂0), ψ̂v(0))Ω̂f
+ ϱ̂s(v̂(0)− v̂0, ψ̂v(0))Ω̂s

+ ϱ̂s(ûs(0)− ûs,0, ψ̂u
s (0))

where Ânotimeder(Û)(Ψ̂) (here notimeder stands for ‘no time derivatives’) contains all terms from the
previous proposition that are not initial conditions and contain no time derivatives.
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Galerkin in time discretization (I)
1 Let

Ī = {0} ∪ I1 ∪ . . . ∪ IM

2 Half-open subintervals Im := (tm−1, tm] and the time step size, i.e., temporal discretization
parameter, km := tm − tm−1 for m = 1, . . . , M

3 The time points (i.e., temporal edges in the FEM context) are

0 = t0 < . . . < tm < . . . tM = T.

4 Let r ∈ N0 be the temporal polynomial degree. We define the semi-discrete space

X̃r
k := {Ûk ∈ X̂| Uk|Im ∈ Pr(Im, X̂), Ûk(0) ∈ L2(Ω̂)},

where k stands for the temporal discretization parameter

5 For setting up the dG(r) method, we need to account for the jumps and introduce further for
Ûk ∈ X̃r

k:
Û±

k,m := lim
s→0

Ûk(tm ± s), [Ûk]m := Û+
k,m − Û−

k,m.
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Galerkin in time discretization (II)

Proposition (dG(r) semi-discretization of FSI)

Find Uk ∈ X̃r
k such that

M

∑
m=1

∫
Im
(Ĵϱ̂f ∂tv̂k, ψ̂v)Ω̂f

+ (ϱ̂s∂tv̂k, ψ̂v)Ω̂s
+ (ϱ̂s∂tûk,s, ψ̂u

s )Ω̂s
dt

+ Ânotimeder(Ûk)(Ψ̂)

+
M−1

∑
m=0

(Ĵϱ̂f [v̂k]m, ψ̂v,+
m )Ω̂f

+ (ϱ̂s[v̂k]m, ψ̂v,+
m )Ω̂s

+ (ϱ̂s[ûk]m, ψ̂u,+
m )Ω̂s

+ (Ĵϱ̂f v̂−k,0, ψ̂v,−
0 )Ω̂f

+ (ϱ̂sv̂−k,0, ψ̂v,−
0 )Ω̂s

+ (ϱ̂sû−
k,0, ψ̂u,−

0 )Ω̂s

= (Ĵϱ̂f v̂0, ψ̂v,−
0 )Ω̂f

+ (ϱ̂sv̂0, ψ̂v,−
0 )Ω̂s

+ (ϱ̂sû0, ψ̂u,−
0 )Ω̂s

for all Ψ̂ ∈ X̃r
k and where Ânotimeder(Û)(Ψ̂) is defined as before.
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Galerkin in time discretization (III)

1 Temporal discretization: Due to the dG test functions, the schemes will decouple to each
time interval Im and known time-stepping schemes are obtained:

• dG(0) vs. backward Euler, θ = 1: For r = 0, we deal with the dG(0) scheme, first order in time,
which is a variant of the backward Euler scheme (see below) for θ = 1.

• cG(1) vs. Crank-Nicolson, θ = 0.5: Using cG(1) trial functions and dG(0) test functions, yields a
scheme similar to the Crank-Nicolson scheme, which is actually used in computations with
dynamics since dG(0) is strongly A-stable and will damp physical oscillations.

2 Spatial discretization: based on classical continuous cG finite elements ; here at tm:
(v̂, û, p̂f ) ∈ Q2

c × Q2
2 × Q1

c (Taylor-Hood due to LBB for the flow part)
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Goal functional and optimization problem

1 Let a goal functional2 J : X̃(Tk, V(Ω)) → R of the form

J(u) =
∫ T

0
J1(u(t)) dt + J2(u(T)), (3)

be given, which represents some physical quantity of interest (QoI).

2 Here, T denotes the end time as before.

3 Objective: reduce the difference between the quantity of interest of some (unknown) solution
and some numerical approximation:

min J(u)− J(ũ), subject to the given PDE(s) A(·)(·) = F(·) (4)

4 A(·)(·): space-time weak form, e.g., heat, porous media, Navier-Sokes, FSI

5 F(·): given right hand side data, e.g., forces, boundary data, initial data

2Becker, Rannacher, 1996/2001; Bangerth, Rannacher, 2003; Schmich, Vexler, 2008
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Overall interest and specifications
Overall interest in a posteriori error estimation:

⇒ A robust, time-adaptive, procedure to calculate functionals of interest with sufficient
accuracy allowing for the automated adjustment of time step sizes where necessary.

⇒ A (global) error estimator and not only an error indicator. Therefore, we obtain a guess η
about the unknown true error J(u)− J(ũ). Consequently, we know to which accuracy we
have computed a certain physical quantity without knowing its exact (analytical) value J(u).

Specific interest in this talk:

1 full discretization estimates for heat, Navier-Stokes, i.e.,

min J(u)− J(ukh)

2 temporal error control for FSI, i.e.,
min J(u)− J(uk)

3 model error control for heat, porous media (Biot system), i.e.,

min J(ufine)− J(ucourse)
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Lagrangian and optimality system
1 Formulate Lagrangian, compute stationary points, yielding primal and adjoint solutions

2 Lagrangian:

L□ : XdG(0)
k (Tk, V□

h )× XdG(0)
k (Tk, V□

h ) → R,

(U□, Z□) 7→ J(U□)− A(U□)(Z□) + F(Z□)

with □ ∈ {exact, discrete}.

3 Optimality system:
L′
□ = 0

4 Primal problem:

L′
□,Z(U

□, Z□)(δZ□) = −A(U□)(δZ□) + F(δZ□) = 0 ∀δZ□ ∈ XdG(0)
k , □ ∈ {exact, discrete}.

5 Adjoint problem:

L′
□,U(U

□, Z□)(δU□) = J′U(U
□)(δU□)− A(δU□)(Z□) = 0

∀δU□ ∈ XdG(0)
k (Tk, V□

h ), □ ∈ {exact, discrete}.
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Error representation and error estimator
1 Adjoint problem (heat), linear (always!), primal solution enters, running backwards in time:

Find z ∈ XdG(r)
k (Tk, Vh) such that

M

∑
m=1

∫
Im
(δu,−∂tz) + (∇xδu,∇xz) dt −

M−1

∑
m=1

(δu−
m , [z]m) + (δu−

M, z−M) = J′u(u)(δu).

2 It holds (based on Becker, Rannacher, 2001):

J(u)− J(ũ) = −Ã(ũ)(z − ihz) + F̃(z − ihz) + R(2).

3 A posteriori error estimator

η := −Ã(ũ)(z − ihz) + F̃(z − ihz).

4 Quality measure by effectivity index:

Ieff :=
∣∣∣∣ η

J(u)− J(ũ)

∣∣∣∣
5 Ideally Ieff ∼ 1 (rigorous reliability and efficiency for discretization errors Endtmayer, Langer,

Wick; SISC, 2020; key tool in the proof: saturation assumption on goal functional )
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Failer/Wick (JCP, 2018): Adaptive time step control
1 J(U) can be a point value, deformation, drag, lift, temperature evaluation etc. but not

necessarily in the entire domain!

Proposition (Goal-oriented error estimator with primal part)

Let Û ∈ X the unknown, exact, solution and Ûkh ∈ Xr,s
kh the space-time fully discrete solution. Furthermore,

let Ẑ the exact adjoint solution and Ẑkh ∈ Xr,s
kh the discrete adjoint. It holds the a posteriori error estimate

J(Û)− J(Ûkh) =
1
2

ρ(Ûkh)(Ẑ − Ẑkh) + R(2),

where
ρ(Ûkh)(Ẑ − Ẑkh) := −A(Ûkh)(Ẑ − Ẑkh)

where A(Ûkh)(Ẑ − Ẑkh) is our space-time FSI formulation.

2 Idea of the proof: take Lagrangian, use trapezoidal rule, insert continuous and disdrete
problem statements

3 Difficulty: Ẑ still unknown; use higher-order approximation Ẑhigh.
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Adaptive time step control: error estimator
• We want to use global error estimator for steering algorithms during computations

Proposition

The localized error estimator readsfor M time intervals (only temporal part Uk!)

J(Û)− J(Ûk) ≈ η :=
M

∑
m=1

ηm =
1
2

(
−A(Ûk, Ẑ(2)

k − Ẑ(1)
k )
)
+ R̃(2)

• Idea of the proof: follows naturally from the dG properties or alternatively from a
partition-of-unity (see next slide)

• As just before, check by computing the effectivity index (now w.r.t. temporal error):

Ieff =
η

J(Û)− J(Ûk)

where η is a computable error estimator and J(Û)− J(Ûk) is the true error for some known
‘exact’ solution Û
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Full space-time error control: partition-of-unity localication 3

1 Now: space-time localization techniques to localize error contributions in time as well as
space:

η =
M

∑
m=1

N

∑
n=1

ηmn,

where M number of temporal elements and N number of spatial elements.

Proposition (PU)

Let VPU a discrete finite element space. For a function χ ∈ VPU, it holds

M

∑
m=1

N

∑
n=1

χmn ≡ 1. (5)

Proof: Follows immediately from the properties of the finite element functions.

3Thiele, Wick; J. Sci. Comput. 2023; in revised review
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Full space-time error control: heat equation
Proposition (Primal joint error estimator for the heat equation)

For the space-time formulation of the heat equation, we have the following a posteriori joint error estimator
with partition-of-unity localization:

|J(u)− J(ukh)| ≤|ηjoint| :=

∣∣∣∣∣∑m ηm
kh

∣∣∣∣∣ , with ηm
kh := ∑

i∈T m
h

ηi,m
kh , (6)

with the error indicators

ηi,m
kh :=

∫
Im

(f , (z̃ − zkh)χi,m)H dt −
∫
Im

(∇ukh,∇((z̃ − zkh)χi,m))H dt

−
∫
Im

(∂tukh, (z̃ − zkh)χi,m)H dt − ([ukh]m−1, (z̃+(tm−1)− z+kh(tm−1))χi,m)H.
(7)

Proof: Thiele, Wick, 2023: use main error theorem, use space-time weak forms, plug-in PU,
seperate temporal and spatial error contributions, apply triangle inequality.
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Motivation: Reduced order modeling

1 Another method to significantly reduce computational cost, when problem must be run
numerous times (100x, 1000x, ...)

→ Parameter estimation (Bayesian inversion), optimal control, optimal experimental design

2 Complementary to parallel computing and adaptivity

3 Idea4:

• Compute full-order model (everything we had before),
• select snapshots based on SVD (singular value decomposition), here POD (proper orthogonal

decomposition),
• construct reduced (finite element) basis

4 Our contribution: let goal-oriented error estimator decide on enrichment of reduced basis in
order to obtain a desired accuracy in J(ukh)

4e.g., P. Benner and A. Cohen and M. Ohlberger and K. Willcox; Model Reduction and Approximation: Theory and
Algorithms, SIAM, 2015
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Goal functional and optimization problem

1 Let a time-distributed goal functional J : X̃(Tk, V(Ω)) → R of the form

J(u) =
∫ T

0
J1(u(t)) dt, (8)

be given, which represents some physical quantity of interest (QoI).

2 Here, T denotes the end time as before.

3 Objective: reduce the difference between the quantity of interest of a fine solution ufine and a
coarse solution ucoarse, i.e.,

min J(ufine)− J(ucoarse), subject to the given PDE(s) Ã(·)(·) = F̃(·) (9)

4 Enrichment5 of the reduced basis depending on the temporal evolution of the goal
functional6

5Fischer, Roth et al. 2023a, 2023b on arXiv
6For coarsening, see Meyer/Matthies; Comp. Mech. 2003
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Tensor-product space-time POD-ROM

1 General spatial FEM space Vh is replaced by a problem-specific low-dimensional space
VN = span{φ1

N, . . . , φN
N}

2 Use (incremental) POD.

3 Variational formulation:

Formulation
Find uN ∈ X̃(Tk, VN) such that

Ã(uN)(φ) = F̃(φ) ∀φ ∈ X̃(Tk, VN).
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Slabwise assemply I (FOM tensor-product space-time modeling)
1 Define (time) slabs:

Sn
l := Ω ×

(
n⋃

m=l

Im

)
,

where 1 ≤ l ≤ n ≤ M

2 Space-time basis by tensor-product ansatz φkh(t, x) = φk(t)φh(x)

3 Full-order solution on slab Sn
l is given by

A 0
B A

B A
. . . . . .

0 B A




Ul

Ul+1
Ul+2

...
Un

 =


Fl − BUl−1

Fl+1
Fl+2

...
Fn

 (10)

4 Idea to formulate ‘big’ space-time system matrix inspired by Gander, Neumüller, SISC, 2016,
who developed space-time multigrid solvers.
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Slabwise assemply II (ROM)
1 The reduced basis matrix can be formed by the concatenation of the reduced basis vectors,

viz.

ZN =
[
φ1

N . . . φN
N
]
∈ R#DoFs(Th)×N. (11)

2 Subsequently, the slabwise discretization for the space-time slab Sn
l with n − l + 1 time

intervals is obtained in analogy to the full-order model

3 We arrive at 
AN 0
BN AN

BN AN
. . . . . .

0 BN AN




UNl

UNl+1
UNl+2

...
UNn

 =


FNl − BNUNl−1

FNl+1
FNl+2

...
FNn

 (12)

4 In brevity ANUN,Sn
l
= FN,Sn

l

5 Reduced components

AN = ZT
NAZN, BN = ZT

NBZN, FNi = ZT
NFi, l ≤ i ≤ n. (13a)

and MN = ZT
NMZN and KN = ZT

NKZN.Thomas Wick (Hannover) Space-Time Modeling, Discretization, Error Control, Simulations 40



Incremental POD
1 Update already existing truncated SVD

2 According to modifications in the snapshot matrix

3 Append additional snapshots to the initial snapshot matrix

→ Additive rank-b modification of the SVD7

7M. Brand; 2006 and 2006; Kühl, Fischer, Hinze, Rung; 2023
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MORe DWR algorithm I
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MORe DWR algorithm I: two consecutive parent slabs
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MORe DWR algorithm II
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Schäfer, Turek, 2D-3 benchmark in incompressible flow around a
cylinder: spatial and temporal refinement

(a) t = 3.01058 s

(b) t = 5.00529 s

(c) t = 6.01058 s

0 8

Figure: Left: spatial refinement. Right: temporal refinement.
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Drag and lift evaluations
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Figure: Left: drag evaluation. Right: lift evaluation. Little oscillations are due to dynamic mesh refinement
with non-robustness of pressure (Besier, Wollner, 2011) and treated with additional projections.
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Performance studies

Figure: Performance of adaptive refinements in terms of error reductions, estimator behavior and effectivity
indices. Results from Roth, Thiele, Köcher, Wick, CMAM, 2023.
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Adaptive time step control in FSI: computations 8

• Code verification: test code with the help of a manufactured solution (rarely possible!) or
with a computationally-obtained referenced solution Ûref =: Û.

• In this work: up to 1 444 384 time steps are used to obtain a numerically-obtained U; wall
clock time > 31 days (serial computation in time and space)

• Numerical test: FSI-2 benchmark (Hron/Turek, 2006)

• Elastic beam immersed in a fluid (Navier-Stokes)

8Failer, Wick, JCP, 2018.
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Adaptive time step control in FSI: results
• Goal functional: J(Û) :=

∫
I

∫
Γ̂i∪Γ̂cyl

−σ̂f n̂e1 dx̂ dt

• Time step refinements after selected refinement rounds:

• Computation of effectivity indices:

M 1128 1482 2322 4176 5844 10518
J(Ûkh) 2.896 · 103 3.048 · 103 3.117 · 103 3.130 · 103 3.129 · 103 3.129 · 103

J(Ûkh)− J(Ûref ) 2.3 · 102 8.1 · 101 1.2 · 101 7.0 · 10−1 7.4 · 10−1 4.6 · 10−1

Ieff 1.01 1.01 1.00 0.97 1.02 1.04

Table: Effectivity indices Ieff for DWR time discretization error estimator with respect to J(U) on
adaptively refined time grids.
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2+1D heat equation 9

1 Spatial domain Ω = (0, 1)2 and temporal domain I = (0, 10)

2 Moving heat source of oscillating temperature that rotates around the midpoint of the spatial
domain Ω

3 For this, we use the right-hand side function

f (t, x) :=

{
sin(4πt) if (x1 − p1)

2 + (x2 − p2)
2 < r2,

0 else,

with x = (x1, x2), midpoint p = (p1, p2) = ( 1
2 + 1

4 cos(2πt), 1
2 + 1

4 sin(2πt)) and radius of the
trajectory r = 0.125.

4 Goal functional (distributed in time):

J(u) :=
1

10

∫ 10

0

∫
Ω

u(t, x)2 dx dt

9Fischer, Roth, Wick, Chamoin, Fau, 2023, arXiv.
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FOM solution

Figure: Full-order solution snapshots for the 2+1D heat equation.
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Goal functional evolution, error estimator, true error
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Figure: Temporal evolution of the time interval-wise relative error estimator compared to the true error for
the 2+1D heat equation.
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Summary of performances

Tolerance Relative error Speedup FOM solves Basis size Prediction Effectivity
0.1% 0.0019% 7.7 150 92 | 78 0 | 35 | 0 | 2013 0.7524
1% 0.0017% 27.5 80 55 | 44 0 | 1 | 0 | 2047 0.2771
2% 0.0628% 29.6 66 47 | 36 0 | 9 | 0 | 2039 3.9181
5% 0.9162% 44.8 44 33 | 25 0 | 1 | 0 | 2047 1.2254
10% 0.9243% 50.0 38 31 | 23 79 | 28 | 17 | 1924 1.5474

Table: Incremental reduced-order modeling summary for the 2+1D heat equation depending on the
tolerance in the goal functional.

1 Column 5: POD basis sizes for the primal and dual problem

2 Column 6: (sorted according to the severity; first bad, ..., fourth best)

error > tol ∧ estimate < tol | error < tol ∧ estimate > tol |
error > tol ∧ estimate > tol | error < tol ∧ estimate < tol.
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Footing problem in a 3D porous medium (Biot equations)

Parameter Value
M 1.75 × 107 Pa
c 1/M
α 1 Pa m
ν 1 × 10−3 m2 s−1

K 1 × 10−13 m2

ρ 1 kg m−3

t̄ 1 × 107 Pa m
µ 1 × 108

λ 2
3 × 108

Table: Parameters in
Mandel’s problem.

Goal functional:

J(U) :=
∫

I

∫
Γcompression

p dx dt.

Initial and boundary conditions:

p(0) = p0 = 0 in Ω × {0},

u(0) = u0 = 0 in Ω × {0},

K
ν
∇xp · n = 0 on ∂Ω \ Γbottom × I,

σ(u) · n = −t̄ez on Γcompression × I,

σ(u) · n = 0 on Γtop \ Γcompression × I,

p = 0 on Γbottom × I,

u = 0 on Γbottom × I,

σ(u) · n = 0 on Γwall × I.
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Summary of performances 10

TOLrel [%] erel [%] speedup FOM solves ROM size Ieff Iind
0.1 0.0971 8.6 220 4 / 55 + 53 / 28 0.999 1.207
0.5 0.5333 21.2 80 4 / 19 + 38 / 27 1.068 3.441
1 0.579 22.4 78 4 / 18 + 38 / 26 1.084 3.378
2 0.579 21.7 78 4 / 18 + 38 / 26 1.084 3.378
5 0.579 22.2 78 4 / 18 + 38 / 26 1.084 3.378

10 8.49 22.4 76 4 / 17 + 38 / 26 1.008 1.099
20 19.9 26.2 66 3 / 13 + 33 / 24 1.005 1.031

Table: Performance of MORe DWR method for the 3D footing problem, depending on the tolerance in the
goal functional.

1 Column 5: primal (displacements, pressure) and adjoint (displacements, pressure)

10Fischer, Roth, Fau, Chamoin, Wheeler, Wick, 2023, arXiv.
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Hamilton principle resulting into space-time modeling
1 Thermodynamically consistent Hamilton functional

2 Hamilton principle yields thermo-mechanically coupled models

3 State variables: displacements u, (velocities) v, internal variables α, and temperature θ

4 Specifically internal variables α are parts of new material models

5 Holistic space-time Hamilton principle yields direct (formal) mathematically consistent
space-time settings

→ Unifying framework for wave propagation, visco-elasticity, elasto-plasticity,
gradient-enhanced damage / fracture11

→ Time t does not have a specified direction; seems to contradict causality

→ u(0) = u0 and v(0) = v0 become to v(0) = v0 and v(T) = vT (assumption mechanical
equilibrium; acceleration zero)

6 Current work (interest in this workshop): incompressible flow, thixotropy (time-dependent
shear thinning property)

11Junker, Wick, Comp. Mech., 2023
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Space-time system: stationarity conditions of extended Hamilton
functional

∫
I

(∫
Ω

∂Ψ
∂ε

: δε dx −
∫

Ω
b∗ · δu dx −

∫
∂Ω

t∗ · δu dx
)

dt

−
∫

I

∫
Ω

ρ∂tu · ∂tδu dx dt −
∫

I

∫
∂ΩD,u

cu(u − u∗)δu ds dt +
∫

∂I

∫
Ω

ρ∂tu∗ · ∂u dx ds = 0 ∀δu∫
I

(∫
Ω

∂Ψ
∂α

· δα dx +
∫

Ω

∂Ψ
∂∇α

: δ∇α dx +
∫

Ω
pdiss,∗ · δα dx

)
dt

−
∫

I

∫
∂ΩD,α

cα(α − α∗) · δα ds dt −
∫

Ω
r̃(α − α∗0) · δα dx|t=0 = 0 ∀δα

∫
I

∫
Ω

∫ 1
θ

(
κ∂tθ +∇ · q∗ − θ

∂2Ψ
∂θ∂ε(u)

: ∂tε(u) +
(

∂Ψ
∂α

− θ
∂2Ψ
∂θ∂α

)
· ∂tα

)
δθ dt dx dt

−
∫

I

∫
∂ΩD,θ

cθ(θ − θ∗)δθ dx dt −
∫

Ω
κ(θ − θ∗0 )δθ dx|t=0

−
∫

I

∫
∂ΩN,θ

∫ 1
θ

nq∗δθ dt ds dt = 0 ∀δθ
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Strong form to ‘see something’ I

1 Find u : Ω × I → Rd, v : Ω × I → Rd such that

ρ∂tv −∇ · pdiss,∗ −∇ · ∂Ψf

∂(∇u +∇uT)
+∇p = b∗ in Ω × I,

ρ∂tu − ρv − ∂Ψf

∂v
−∇ · ∂Ψf

∂(∇v +∇vT)
= 0.

2 Non-conservative forces and dissipation function:

pdiss,∗ =
∂∆diss

∂(∇v +∇vT)
, ∆diss =

1
2

µ∥(∇v +∇vT)∥2 +
1
2

λ(∇ · v)2

3 Free energy density: Ψf := Ψf (∇u,∇v, γ,∇γ, θ)
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Strong form to ‘see something’ II: two models
1 Model 1 (classical Navier-Stokes). Set Ψf = 0. Find u : Ω × I → Rd, v : Ω × I → Rd such that

ρ∂tv −∇ · (µ(∇v +∇vT) + λ∇ · vI) +∇p = b∗ in Ω × I,
ρ∂tu − ρv = 0 in Ω × I.

2 Model 2. Let the fluid potential be given by

Ψf = µγe−γ d
dt

1
2
∥(∇u +∇uT)∥2 +

1
2

cγ2

and the dissipation function as

∆diss =
1
2

µ∥(∇v +∇vT)∥2 +
1
2

λ(∇ · v)2 +
1
2

η(∂tγ)
2.

Find u : Ω × I → Rd, v : Ω × I → Rd and the internal variable, i.e., viscosity parameter,
γ : Ω × I → R such that

ρ∂tv −∇ · ((µ+µγe−γ)(∇v +∇vT) + λ∇ · vI) +∇p = b∗ in Ω × I,

ρ∂tu − ρv+∇ · (µγe−γ(∇u +∇uT)) = 0 in Ω × I,

η∂tγ − µγe−γ d
dt

1
2
∥(∇u +∇uT)∥2 + cγ = 0 in I.
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First numerical simulations

Figure: Model 1: left x-velocity, right pressure.

Figure: Model 2: left x-velocity vx, middle pressure p, and viscosity γ at time t = 100 (top row) and t = 400
(bottom row).
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Current questions from us (Junker, Wick)

1 Relevance of this model?

2 Relationship to known non-Newtonian flow models?

3 Correct functional framework / function spaces?

4 Sign +∇ · (µγe−γ(∇u +∇uT))?
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Conclusions
Conclusions

1 Space-time formulations of single PDEs and coupled systems

2 Space-time Galerkin finite element discretizations

3 A posteriori goal-oriented error control with the dual-weighted residual method for time-distributed functionals (quantities of interest)

4 Incremental POD model order reduction by refining POD basis with previous error estimator

5 Variational material modeling
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The end

Thank you very much!
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