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Motivation I: Interest

1 Elegant mathematical descriptions and similar discretizations in space and time
(generically implicit, A-stable schemes, numerical stability) with the typical concepts at
hand well-known from finite elements in space

2 Concerning temporal discretization, the integral form allows natural information on the
entire time interval I, rather than only at discrete time points ¢,,_; and t,, as for finite
differences

3 Flexible discretization when using suitable FE libraries, i.e. no special treatment needed for
higher temporal order if implemented as a weak form

4 Higher-order basis functions; and natural higher order regularity specifically when using
splines such as in isogeometric analysis

5 Typical Galerkin-based best approximation results, interpolation error estimates, and
resulting a priori and a posteriori error estimates

6 Space-time adaptivity
7 Global ‘viewpoint’ allows for (parallel) space-time solution via multigrid



Motivation II: Shortcomings

1 Heavy notation

2 More error-prone (in comparison to finite differences; specifically for dG in time) when
implemented the first time

3 Higher cost in men/women power to derive schemes (by hand), which may become very
technical, including sustainable implementations and documentation towards re-usable
research software developments!

4 Without good (linear) solvers, costly to solve

IThiele, 2023; https://github.com/instatdealii/idealii



Motivation III: Methodology

Describe spatial and temporal domains in a common setting

Apply similar discretizations, i.e., Galerkin FEM

FEM: geometry (elements), simple functions, set of degrees of freedom
¢G(s): continuous Galerkin, FEM polynomial degree s € INj

dG(r): discontinuous Galerkin, FEM polynomial degree r € N, more expensive than cG
because more degrees of freedom

For certain polynomials degrees, relation to well-known finite difference schemes (later more
details):

® r = 0: variant of backward Euler, 6§ = 1

® s — 1: variant of Crank-Nicolson, § = 0.5
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Model problem statement

1 Find u: O x T — R? such that

o+ A(u) =f inQxI,
u=1up onl'p x1I,
@

B(u)=gny onTyxI,

u=u’ in Q x {0},

with possibly nonlinear spatial operator A, boundary operator B and sufficiently regular

right-hand side f.



Examples of PDEs and PDE systems
D Heat equation: d;u — Ayu = f nQxI
2 Elastodynamics equation: dyu — V- o(u) =0 inQxI

3 Biot system in porous media:

A T ) — %vx (KVap) =0  inQxI,
—Vy-o(u)+aVyp =0 nQxI,

@

1 with the isotropic stress tensor (1) := pu(Vyu + (Vxu)T) + A(Vy - )],

2 (constrained specific) storage coefficient ¢ > ¢* > 0, may depend on space, i.e., c(x), and is linked
to the compressibility M > 0,

3 Biot-Willis constant « € [0,1],
4 the permeability tensor K, fluid’s viscosity v,

5 Lamé parameters A, u > 0.
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Discretization in time (heat equation) I

1 dG(r) with polynomial degree r > 0 (r = 0 variant of backward Euler)

2 Why dG? Implicit, A-stable, finite element error estimates, ‘global’ view,

s Let Ty := {In := (ty_1,tm) | 1 < m < M} be a partitioning of time, i.e. T = [0, T] = UM, L.
4 Broken continuous level function spaces

X(Te v(Q) = {v € XL L2(Q)) | v|, € X(Im, V(Q)) VIw € T}

5 Due to these discontinuities, we define the limits of f at time t,, from above and from below
for a function f as

fnj1E = l{f(‘]f(tm te),

6 Jump of the function value of f at time t;, as
[lm = fox —fm-



Discretization in time (heat equation) II

Formulation (Time-discontinuous variational formulation of the heat equation)

Find u € X(Ty, V(Q)) such that
A(u)(9) =F(p) Vo € X(T,, V(Q)),
where
5 M M-1
AW(¢)i= 1 [ Qutg)-+ (T Vg) dt+ 1 (il ) + 45 ),

m=1
E(¢) = (f. o) + (u°, ¢7)-



Fully discrete space-time system (heat)

Formulation
Find uy, € X,fG(r) (Tx, V3,) such that

A(uwa) (@) = F(omn) Vi € ch(r)(ﬁ, i)
where

S = VS(T;) = {v c C(Q)‘U|K € Q,(K) VK¢ n}

Recall:

1 Benefit from space-time formulation allows for consistent space-time a posteriori error
estimation

— Numerical examples later in this talk.
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Fluids and solids in their standard systems
Equations for fluid flows (Navier Stokes) - Eulerian

0w+ (v-Vo) =V -0o(v,p) =0, V-0=0, inQrxI, +bcand initial conditions

with Cauchy stress tensor o(v,p) = —pl + psvs(Vo + Vol ).
Equations for (nonlinear) elasticity - Lagrangian

%1 — V- (FE(#)) =0 inQsx I, -+bcand initial conditions

with the stress F.(i1) = 25 E + Astrace(E)I, the strain E = (FFT —I) and F = I + Vi..

Coupling conditions on I';, I %

v =05 and o(v,p)nf = (@) s




Function spaces (I)

1 For the function spaces in the (fixed) reference domains ﬁ, ﬁf, ﬁs, we define spaces for spatial
discretization first.

2 First we define R R
V.=H'(Q), V°:=H} Q).

3 Next, in the fluid domain, we define further:
f‘f = Lz(ﬁf),
L2 := 12(Oy) /R,
VJQ = {?Aff S Hl(ﬁf)d : i)f =0on f'jn Uf'D},
Vo = {ﬁf € Hl(ﬁf)d : ﬁf = {lg on fi/ ﬁf =0on fin U fD U fout}/

fii
Af,ﬁ,f"i = {lﬁf € Hl (ﬁf)d : lpf =0on 1ﬁ‘i ) 1,;in U i—\D U Iﬁ'out}-

4 In the solid domain, we use

Ls:=12(0s)4, V0:= {1, € H{(OQs)*: s =00nTp}.



Function spaces (II)

1 As trial spaces for a space-time model, we define

X = {U = (0,11, pr)| 0 € LP(1,{0° + V°}), 010 € L2(L H(QV)}), iy € LX(I {aif + VP, }),
drily € L2(LH(Qy);), s € LA(I {0l + V1), 041 € L2(1,H(O)}), by € L2(I £}
2 As test spaces for a space-time model, we use
= {U = (8,11, 115, py)| & € L*(I, V°), 000 € L2(I, H(QY}), it € L*(1, vour)
iy € L2(LH(Cy);), s € L2(1,V0), 05 € LX(LH(Q)3), pr € (L £D)}



ALE: arbitrary Lagrangian-Eulerian
ALE:

1 Use ALEp,: arbitrary Lagrangian Eulerian, where fluid equations (incompressible
Navier-Stokes) is transformed to a fixed (arbitrary) reference domain Q

2 Construct mesh motion model to extend displacements to flow domain ﬁf in order to realize
ALE transformation: A(%, ) : Qf — O
3 Deformation gradient F := V A(%,t) and determinant ] := det(F).
Variational-monolithic coupling:
1 Realize coupling conditions in an implicit way on the continuous level:
0 =0s on ['  (built into function spaces!)
(JofFThy, )¢ + (Fifs, @) =0 Vo €V
2 Geometric condition due to ALE:

il =i on [ (built into function spaces!)



A space-time fluid-structure interaction model

Proposition (Variational-monolithic space-time ALE-FSI in (2)

Find a global vector-valued velocity, vector-valued displacements and a scalar-valued fluid pressure, i.e., U := (5, ily, f1s, pr) € X such that
9)0), ), + UoF T, 99)g,

a0, %), + (FE, T )ﬁs) dt

f,(quaw,tpv + (o E (0 -)-
@

’”’Tﬁf)f: R s

Fluid/solid momentum —(gfl/f](
+(J (9(0) — 90), $7(0) (y+%(()—%#7wn
Fluid mesh motion {f, leesh,Vle) dt =0
Solid momentum, 2nd eq. {fl (és(atus - v|f1 P )ﬁ ) dt + 05(115(0) — f50, 4 (0)) =0

Fluid mass conservation { I ( (div (JE 1o f) ) =0

(* [/ lﬁf) € XO. In compact form, the above problem reads: Find U € X such that

forall ¥ = (¢
A (¥) =0 V¥ eX°

where the FSI equations are combined in the semi-linear form A(U)(¥)



Equivalent formulation - start for space-time discretization

Proposition
Find U := (0, iy, its, fy) € X such that

[Gaie, %), dt+ [(0200,8°),dt+ [(@duis, i),

+ Anotimeder(a) (IIAI)
+ (Jar (9(0) — 0o), $°(0))q, + 5(2(0) — 20, $°(0))q, + &s(#5(0) — hs0, ¥5'(0))

where A,opimeder (U) (¥) (here notimeder stands for ‘no time derivatives’) contains all terms from the
previous proposition that are not initial conditions and contain no time derivatives.
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Galerkin in time discretization (I)

Let
I={0}ULU...Uly

Half-open subintervals I, := (t,,—1, ] and the time step size, i.e., temporal discretization
parameter, ky;, =ty —ty,_1 form=1,..., M

The time points (i.e., temporal edges in the FEM context) are

O=ty<...<tp<...tpm=T.

Let r € INj be the temporal polynomial degree. We define the semi-discrete space
= {Ux € X| Ukly, € Pr(Im, X), Ux(0) € LX)},
where k stands for the temporal discretization parameter

For setting up the dG(r) method, we need to account for the jumps and introduce further for
Uk S Xr
U =Lm Uy (ty £5), [Ulw =0 — U

M 550 km km*



Galerkin in time discretization (II)

Proposition (dG(r) semi-discretization of FSI)
Find Uy € X, such that

3 [ i g, + (010 §), + (@i g,

+ Anotimeder (Gp) ()

+ mZ_:O Jog[Oclm, 9 gy, + (@s[oilm, B )y, + (@slitelm P gy,
+ (Jortro B0~ Jo, (@sf’k_,or P g, T (0sieo 907 g,

= (Jordo, Py _)Qf (8500, § g, + (0stto, Py g,

forall ¥ € X! and where Apotimeder (U (¥) is defined as before.



Galerkin in time discretization (III)

1 Temporal discretization: Due to the dG test functions, the schemes will decouple to each
time interval I,;, and known time-stepping schemes are obtained:

® dG(0) vs. backward Euler, 8 = 1: For r = 0, we deal with the dG(0) scheme, first order in time,
which is a variant of the backward Euler scheme (see below) for 6 = 1.

® ¢G(1) vs. Crank-Nicolson, § = 0.5: Using ¢G(1) trial functions and dG(0) test functions, yields a
scheme similar to the Crank-Nicolson scheme, which is actually used in computations with
dynamics since dG(0) is strongly A-stable and will damp physical oscillations.

2 Spatial discretization: based on classical continuous cG finite elements ; here at ,,:
(0,2,pr) € Q? x Q2 x Q! (Taylor-Hood due to LBB for the flow part)



3 Space-time a posteriori goal-oriented error control



Goal functional and optimization problem

1 Leta goal functional?® | : X(7, V(Q)) — R of the form

T
J(u) = /0 T2 (u(t)) dt + L (u(T)), ®)

be given, which represents some physical quantity of interest (Qol).
2 Here, T denotes the end time as before.

3 Objective: reduce the difference between the quantity of interest of some (unknown) solution
and some numerical approximation:

minJ(u) —J(it), subject to the given PDE(s) A(-)(-) = F(-) 4)

4 A(-)(+): space-time weak form, e.g., heat, porous media, Navier-Sokes, FSI

5 F(-): given right hand side data, e.g., forces, boundary data, initial data

2Becker, Rannacher, 1996,/2001; Bangerth, Rannacher, 2003; Schmich, Vexler, 2008
~ ThomasWick (Hannover) =~ Space-Time Modeling, Discretization, Error Control, Simulations



Overall interest and specifications
Overall interest in a posteriori error estimation:

= A robust, time-adaptive, procedure to calculate functionals of interest with sufficient
accuracy allowing for the automated adjustment of time step sizes where necessary.

= A (global) error estimator and not only an error indicator. Therefore, we obtain a guess 7
about the unknown true error J(u) — J(it). Consequently, we know to which accuracy we
have computed a certain physical quantity without knowing its exact (analytical) value J(u).

Specific interest in this talk:

1 full discretization estimates for heat, Navier-Stokes, i.e.,
min J(u) — ] (i)
2 temporal error control for FSL, i.e.,
min [ (u) — J ()
3 model error control for heat, porous media (Biot system), i.e.,

m-ln](uﬁne) _ I(ucourse)



Lagrangian and optimality system
1 Formulate Lagrangian, compute stationary points, yielding primal and adjoint solutions
2 Lagrangian:
Lo X0 (7, vy x k1O (7, vD) S R,
(U=, Z5) = J(U") - A(UP)(Z7) + F(Z7)
with O € {exact, discrete}.

3 Optimality system:

4 Primal problem:
Lh,UP,7)(627) = —AUD)(627) +F(628) =0 ¥572 e X390, O € {exact, discrete}
5 Adjoint problem:
LU, Z27)(6U) = Jy(U)(eu™) — A(UT)(27) =0
veu- e XgG(O) (Te, V), O € {exact, discrete}.



Error representation and error estimator

1 Adjoint problem (heat), linear (always!), primal solution enters, running backwards in time:
Find z € leG(r) (Tx, Vi) such that

M M—1
Zl /Im (0u, —0sz) + (Vyou, Vyz) dt — Zl (61t [2m) + (Supg, zhg) = Ji(u) (Su0).

2 It holds (based on Becker, Rannacher, 2001):
J(u) = J(it) = —A(i1) (z — iyz) + F(z — iyz) + R,
3 A posteriori error estimator
n:= —A(@1)(z — iyz) + F(z — iy2).
4 Quality measure by effectivity index:

_n

J(u) =] (@)

5 Ideally I5 ~ 1 (rigorous reliability and efficiency for discretization errors Endtmayer, Langer,
Wick; SISC, 2020; key tool in the proof: saturation assumption on goal functional )

Ieﬁ =



Failer /Wick (JCP, 2018): Adaptive time step control

1 J(U) can be a point value, deformation, drag, lift, temperature evaluation etc. but not
necessarily in the entire domain!

Proposition (Goal-oriented error estimator with primal part)

Let U € X the unknown, exact, solution and l:Ikh S X,r(hs the space-time fully discrete solution. Furthermore,
let 7. the exact adjoint solution and Z, € X}, the discrete adjoint. It holds the a posteriori error estimate

J() — J(Uy) = %P(akh)(z — Zy) +R®@,

where
o(Un)(Z = Zyy) := =AU ) (Z = Zpa)
where A(Uyy,)(Z — Zyy,) is our space-time FSI formulation.
2 Idea of the proof: take Lagrangian, use trapezoidal rule, insert continuous and disdrete
problem statements

3 Difficulty: Z still unknown; use higher-order approximation Z"".

Thomas Wick (Hannover) Space-Time Modeling, Discretization, Error Control, Simulations



Adaptive time step control: error estimator
® We want to use global error estimator for steering algorithms during computations
Proposition

The localized error estimator readsfor M time intervals (only temporal part Uy!)

~ N 1 PN A =
J@) = 1@~ =Y 1 =5 (-A0 22 —Z)) + R

¢ Idea of the proof: follows naturally from the dG properties or alternatively from a
partition-of-unity (see next slide)

® Asjust before, check by computing the effectivity index (now w.r.t. temporal error):
I = =
J(U) = J(Ug)
where 77 is a computable error estimator and ] ( 1) - J(G
‘exact’ solution U

k) is the true error for some known

Thomas Wick (Hannover) Space-Time Modeling, Discretization, Error Control, Simulations



Full space-time error control: partition-of-unity localication 3

1 Now: space-time localization techniques to localize error contributions in time as well as
space:

= 2 Z’?mnr

m=1n=

where M number of temporal elements and N number of spatial elements.

Proposition (PU)
Let Vpyy a discrete finite element space. For a function x € Vpyy, it holds

Z Zan — ik ®)

m=1n=

Proof: Follows immediately from the properties of the finite element functions.

3Thiele, Wick; J. Sci. Comput. 2023; in revised review



Full space-time error control: heat equation
Proposition (Primal joint error estimator for the heat equation)

For the space-time formulation of the heat equation, we have the following a posteriori joint error estimator
with partition-of-unity localization:

with ny =Y 17;;’;,", (6)
€T

() = JCuae) | <|joint| ==

with the error indicators

’711'{;1 = /(f — Zih) Xim)H At — /(V”khrv((zfzkh)Xi,m))H dt
Iﬂ’l

— /(atukhr (& —zin) Xim)mr At — (i1, BT (Bn1) — 25, (1)) Xim ) B1-
I

@)

Proof: Thiele, Wick, 2023: use main error theorem, use space-time weak forms, plug-in PU,

seperate temporal and spatial error contributions, apply triangle inequality.
Thomas Wick (Hannover) Space-Time Modeling, Discretization, Error Control, Simulations



4 A posteriori goal-oriented error-controlled reduced-order modeling
Reduced-order modeling
The MORe DWR method



Motivation: Reduced order modeling

1 Another method to significantly reduce computational cost, when problem must be run
numerous times (100x, 1000, ...)

— Parameter estimation (Bayesian inversion), optimal control, optimal experimental design
2 Complementary to parallel computing and adaptivity
3 Idea*:

¢ Compute full-order model (everything we had before),

® select snapshots based on SVD (singular value decomposition), here POD (proper orthogonal
decomposition),

® construct reduced (finite element) basis

2 Our contribution: let goal-oriented error estimator decide on enrichment of reduced basis in
order to obtain a desired accuracy in J (1)

4e.g., P. Benner and A. Cohen and M. Ohlberger and K. Willcox; Model Reduction and Approximation: Theory and
Algorithms, SIAM, 2015

Thomas Wick (Hannover) Space-Time Modeling, Discretization, Error Control, Simulations



Goal functional and optimization problem

1 Let a time-distributed goal functional | : X(7;, V(Q)) — R of the form

Jw = [ n)a, ®

be given, which represents some physical quantity of interest (Qol).
2 Here, T denotes the end time as before.

3 Objective: reduce the difference between the quantity of interest of a fine solution #"® and a
coarse solution u°3s€ je.,

min](uﬁne) — J(uc®?"¢),  subject to the given PDE(s) A(-)(-) = F(+) 9)

2 Enrichment® of the reduced basis depending on the temporal evolution of the goal
functional®

5Fischer, Roth et al. 2023a, 2023b on arXiv
®For coarsening, see Meyer/Matthies; Comp. Mech. 2003
~ ThomasWick (Hannover) =~ Space-Time Modeling, Discretization, Error Control, Simulations 3
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Tensor-product space-time POD-ROM

1 General spatial FEM space V}, is replaced by a problem-specific low-dimensional space
Vi = span{gy, ..., pN}

2 Use (incremental) POD.
3 Variational formulation:
Formulation

Find uy € X(Ty, V) such that

A(un)(¢) =F(p) Yo € X(Tx, Vn).



Slabwise assemply I (FOM tensor-product space-time modeling)

n
1 =0Qx (Ulm>,
m=l

2 Space-time basis by tensor-product ansatz @, (t,x) = @ (t) @ (x)

1 Define (time) slabs:

wherel <I<n<M

3 Full-order solution on slab S}’ is given by

A 0\ / U F,— BU,_,
B A Ui Fria

B A Uz | = Fiio (10)
0 B A u, Fy

4 Idea to formulate ‘big’ space-time system matrix inspired by Gander, Neumtdiller, SISC, 2016,
who developed space-time multigrid solvers.



Slabwise assemply II (ROM)

1 The reduced basis matrix can be formed by the concatenation of the reduced basis vectors,
Viz.

Zy =g} ... o] € RFOFS(TxN, 11

2 Subsequently, the slabwise discretization for the space-time slab S} with n — 1 +1 time
intervals is obtained in analogy to the full-order model

3 We arrive at

AN 0 uNl FNZ - BNuNl_l
By An Un,., FNpy
Bn An Ui, | = Fni, (12)
0 By An UN, Fn,

4 In brevity AN”N,S? = FN,SZ"
5 Reduced components

AN =ZLAZy, Bn=Z\BZy, Fn.=ZLF, 1<i<n (13a)
© ThomasWick(Hammover)  Space-Time Modeling Discretization, Error Control, Simulations g



Incremental POD
1 Update already existing truncated SVD
2 According to modifications in the snapshot matrix
3 Append additional snapshots to the initial snapshot matrix

— Additive rank-b modification of the SVD’

u(t;) € R" u(ter) € B
' _ Y [V ults) _ Y [Y ultiv1) R TEe! « SVD(Y)
u(t;) €R" uftis) €RT

Y = vse”? UEE! +— iSVD(V, £, P, u(ts))

UED7T  iSVD(T, L, &, u(tiy,) —r zo?

7M. Brand; 2006 and 2006; Kiihl, Fischer, Hinze, Rung; 2023
~ ThomasWick (Hannover) =~ Space-Time Modeling, Discretization, Error Control, Simulations 4
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MORe DWR algorithm I

Algorithm 2 1100 DWI o0l

Input: luitial condition Uy = Ulfo). primal and dual reduced basis matrices ¥}, and U7, . energy
threshold ¢ € [0,1] and error tolerance tol > 0. ’

Output: Primal and dual reduced basis matrices ¥, and ¥4 and reduced primal solutions U, .
forall 1< m <M. :

1 for k=12, ¢ do & Loop over parent slabs
2 while fmar “ tol do

3 fori=12....Ldo o Primal ROM on k-th parent slab
& Solve reduced primal system (®): Ax, Uy, 5,

50 for {=LL-1...1do & Dual ROM on #-th parent slab
P Solve reduced dual system (25) .

[ fori=12,...,Ldo & Error estimates on k-th parent slab
8 Compute error estimate: 1/ (Un‘,,. st Enist, )

9 Thmaz = s ‘
10- i 1 > ol then
11 iy
<isL
120 Solve pllms_l full-order system (3): AU
13: Update primal reduced basis: ¥% = 1POD(\]/". z:\ ,[Us» e () Vgt (tr41)),€)
142 Solve dual full-order systeum (24): A’ Zgmas = Jgipas '
15: Update dual reduced basis: W, = POV, X [Zgpe- (0) -0 (tre1)],2)
160 Update reduced system components and error estimator w.r.t (9)
17— Validation loop ——— > This is an optional validation of the model.

b Primal ROM on whole temporal domain

21: for k=K, K~1,... . 1do & Dual ROM on whole temporal domain
2 forl=L L1, .1d
23 Solve dnal edieed systems A Ly, =

2: for k=1,2,....K do b Error estimates on whole temporal domain
35 forl .Ldo

26: Compute slab estimate: 15, O, s, Zagsy,)




MORe DWR algorithm I: two consecutive parent slabs

Parent slab P,

Primal ROM
for
Sk St S

Dual ROM Dual FOM on slab $jz

+
Enrich ‘]/“w‘ by iPOD

for
SE.SETN. ... Sh

Parent slab P,

Error estimates on Py

- ) Primal ROM
. Primal FOM on slab S

for
Shyr Sy

Foe = arg max 1)’ o ‘
<i<L i

+
Enrich \]/F’V’ by iPOD

5%,

Dual ROM

Dual FOM on slab Si;:“

or
L gi-1
Sk SE

,
8k

5
Eurich ¥, by iPOD

Error estimates on i Primal FOM on slab Si5™
+

Le = argmax
e

|

Enrich ¥, by iPOD
]7””’ enrich

tolF—==---=---+ ----

Pl P2




MORe DWR algorithm II

Primal ROM for I, I, . .. ,IM}\

Dual FOM on /.
+
Enrich dual RB

[Dual ROM for Ins, Iyit ... ,Ilj

Error estimates for n1,n2,...,n0 Primal FOM on I,,
Localize mp,y ;= arg max 7" e
1<m<M +
Enrich primal RB




5 Numerical tests



Schéfer, Turek, 2D-3 benchmark in incompressible flow around a
cylinder: spatial and temporal refinement

(c)t=6.01058's

velocity magnitude
0,000e+00 05 1 15 2,000+00

LU HHHHHHHHHHH R
0 8

Figure: Left: spatial refinement. Right: temporal refinement.




Drag and lift evaluations
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Figure: Left: drag evaluation. Right: lift evaluation. Little oscillations are due to dynamic mesh refinement
with non-robustness of pressure (Besier, Wollner, 2011) and treated with additional projections.




Performance studies

#DoF(primal)  #DoF(adjoint) M Nk nn n JWU) - J(Ukn) et
17,800 96,600 20 -9.3298-107° 3.8542-10"" 3.8541-10"" 5.5752-10" 0.69
63,454 350,922 36 -1.4015-1077 2.6505-10""  2.6505-10" 2.6642-10"  0.99

230,032 1,294,482 64 8.9182-107* -1.2571-102 1.1679-107% 1.2586-10""  0.09
828,744 4,706,883 113  -1.1615-10"" 7.6888-1072  3.9265-1072 2.5449-1072 154
3,004,686 17,251,722 199 4.3194- 103 1.9094-1072  2.3414-1072  1.9674-102 1.19

Table 12: Adaptive refinement of mixed order on dynamic meshes for Navier-Stokes 2D-3 with divergence-free L? projection.

#DoF(primal)  #DoF(adjoint) M Nk N n JU) - J(Ukn) Letf
17,800 96,600 20 -9.1676-10°°  3.8548.10"" 3.8547-10"" 5.5768-10"" 0.69

63,690 352,278 36 1.4710-10°%  2.6493-10"" 2.6493-10" 2.6667-107" 0.9
234,878 1,322502 64  7.5795-10% -4.4232-1073 3.6653-1073 1.2633-10~" 0.03
834,710 4,741,881 113 -2.3546-1073 -7.6972-102 7.9327-102 1.9651-102 4.04
3,044,708 17,485,449 199 3.0977-107  9.0900-1073 1.2188-1072 6.5227-107 1.87

Table 13: Adaptive refinement of mixed order on dynamic meshes for Navier-Stokes 2D-3 with divergence-free H]) projection.

Figure: Performance of adaptive refinements in terms of error reductions, estimator behavior and effectivity
indices. Results from Roth, Thiele, Kocher, Wick, CMAM, 2023.



Adaptive time step control in FSI: computations 8

® Code verification: test code with the help of a manufactured solution (rarely possible!) or
with a computationally-obtained referenced solution U,ef =3 (U,

¢ In this work: up to 1444 384 time steps are used to obtain a numerically-obtained U; wall
clock time > 31 days (serial computation in time and space)

® Numerical test: FSI-2 benchmark (Hron/Turek, 2006)

® Elastic beam immersed in a fluid (Navier-Stokes)

—

-

8Failer, Wick, JCP, 2018.



Adaptive time step control in FSI: results

* Goal functional: J(U) := [; fr Uty | —Oyfiey dx dt

¢ Time step refinements after selected refinement rounds:

102 102 102
3 3 3
25 2 2
20 1 1
15 L, . 0 AJI_‘ L el
5 10 5 10 5 10
time 7[5] time 7[s] time f[s]

Fig. 8. Section 6.3.2: time step size ky, plotted over time ¢ after 1 (left), 3 (middle) and 6 (right) adaptive refinements for the FSI-3 benchmark using the
DWR time discretization error estimator with respect to Js

¢ Computation of effectivity indices:

M 1128 1452 2] 76 5544 10518
1(Ug,) 2896103 | 3048-103 | 3117-10° | 3130-10° [ 3129-10° [ 3.129-103
J(Wgy) =T (Uyep) 23.102 8.1-10% 1.2-10! 70-1071 74-1071 46-101
lg 1.01 1.01 1.00 0.97 1.02 1.04

Table: Effectivity indices 4 for DWR time discretization error estimator with respect to J(U) on
adaptively refined time grids.




2+1D heat equation ’

1 Spatial domain Q) = (0,1)? and temporal domain I = (0, 10)

2 Moving heat source of oscillating temperature that rotates around the midpoint of the spatial
domain O

3 For this, we use the right-hand side function

g g . 2 _ 2 2
£t x) = sin(4rtt) if (x —p1)°+ (x2 —p2)* <17,
0 else,

with x = (x1,x2), midpoint p = (p1,p2) = (3 + § cos(27t), § + 1 sin(27tt)) and radius of the
trajectory r = 0.125.

4 Goal functional (distributed in time):

10
J(u) == %/0 /Qu(t‘,x)2 dx dt

9Fischer, Roth, Wick, Chamoin, Fau, 2023, arXiv.
~ ThomasWick (Hannover) =~ Space-Time Modeling, Discretization, Error Control, Simulations 5



FOM solution
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Figure: Full-order solution snapshots for the 2+1D heat equation.




Goal functional evolution, error estimator, true error

u
IJ(u»-)AJ(u.v)\/‘J(w "

i
!
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Figure: Temporal evolution of the time interval-wise relative error estimator compared to the true error for
the 2+1D heat equation.



Summary of performances

Tolerance Relative error Speedup FOM solves Basis size Prediction Effectivity
0.1% 0.0019% 7.7 150 92178 01351 012013 | 0.7524
1% 0.0017% 27.5 80 55 | 44 0l 11 012047 | 0.2771
2% 0.0628% 29.6 66 47 1 36 0l 91 012039 | 3.9181
5% 0.9162% 44.8 44 33125 0l 11 012047 | 1.2254
10% 0.9243% 50.0 38 31123 79128117 11924 | 1.5474

Table: Incremental reduced-order modeling summary for the 2+1D heat equation depending on the
tolerance in the goal functional.

1 Column 5: POD basis sizes for the primal and dual problem

2 Column 6: (sorted according to the severity; first bad, ..., fourth best)

error > tol A estimate < tol | error < tol A estimate > tol |
error > tol A estimate > tol | error < tol A estimate < tol.



Footing problem in a 3D porous medium (Biot equations)

. Thottom

Parameter

Value

>R YD RS RO Z

1.75 x 10” Pa
1/M

1Pam
1x103m2s !
1x 10783 m?2
1kgm™3

1 x 10’ Pam
1% 108

% x 108

Goal functional:
U := / /
Jw=[ [

Initial and boundary conditions:
p(0)=p"=0 inQx {0},
u(0) =u’ =0 inQx {0},

p dx dt.

compression

K
;pr ‘n=0 ondQ\ Tpottom X L,
U(u) n = —zez on l—‘compression x I,
oc(u)-n=0 on Ttop \ Tcompression X I,
p=0 onTIpottom X I,

u=0 onI'pottom X I,
oc(u) - n=0 onTy, xL



Summary of performances °

TOL™ [%] || e [%] speedup | FOM solves ROM size L o
0.1 0.0971 8.6 220 4/55+53/28 | 0999 | 1.207
0.5 0.5333 21.2 80 4/19+38/27 | 1.068 | 3.441
1 0.579 22.4 78 4/18+38 /26 | 1.084 | 3.378
2 0.579 21.7 78 4/18+38 /26 | 1.084 | 3.378
5 0.579 22.2 78 4/18+38/26 | 1.084 | 3.378
10 8.49 224 76 4/17+38/26 | 1.008 | 1.099
20 19.9 26.2 66 3/13+33 /24| 1.005 | 1.031

Table: Performance of MORe DWR method for the 3D footing problem, depending on the tolerance in the
goal functional.

1 Column 5: primal (displacements, pressure) and adjoint (displacements, pressure)

10Fischer, Roth, Fau, Chamoin, Wheeler, Wick, 2023, arXiv.
~ ThomasWick (Hannover) =~ Space-Time Modeling, Discretization, Error Control, Simulations 5



6 Space-time variational material modeling (ongoing work)



Hamilton principle resulting into space-time modeling
1 Thermodynamically consistent Hamilton functional
2 Hamilton principle yields thermo-mechanically coupled models
3 State variables: displacements u, (velocities) v, internal variables &, and temperature 6

4 Specifically internal variables a are parts of new material models

MJunker, Wick, Comp. Mech., 2023



Hamilton principle resulting into space-time modeling
Thermodynamically consistent Hamilton functional
Hamilton principle yields thermo-mechanically coupled models
State variables: displacements u, (velocities) v, internal variables &, and temperature 6
Specifically internal variables « are parts of new material models

Holistic space-time Hamilton principle yields direct (formal) mathematically consistent
space-time settings

Unifying framework for wave propagation, visco-elasticity, elasto-plasticity,
gradient-enhanced damage / fracture!!

Time ¢ does not have a specified direction; seems to contradict causality

u(0) = up and v(0) = vy become to v(0) = vy and v(T) = vr (assumption mechanical
equilibrium; acceleration zero)

Current work (interest in this workshop): incompressible flow, thixotropy (time-dependent
shear thinning property)

Myunker, Wick, Comp. Mech., 2023



Space-time system: stationarity conditions of extended Hamilton
functional

/( aa\: (5£dx—/b* (Sudx—/ t* (Sudx> dt

—// patu-atéudxdt—// cu(u—u*)éudsdt—l—/ / posu™ - dudxds =0 Voéu
1Ja 1Jaop, a1 JO

a_l}f a_‘{’ diss,x
/I(/Q dwdx+ Qaw.(svmﬁ/ap Sadx ) d
—// ca(oc—oc*)-(Socdsdt—/ Pl —ap) - dadx|j—o =0 Vou

aQDa

*Y oY | *Y
/// <Kate+v 7"~ O sgea) ats(u)+(aa 9a9a> ata>(56dtdxdt

- 6 — 6)50d dt—/ 6 — 63)08 dx|,_
S L, 0@ @)00axat— [ k(0 )30 )

—// /lnq*(sedtdsdtzo )
1oy, J 0
A T



Strong form to ‘see something’” I

1 Findu:QxI—R%,v:Q xI— R?such that
oY/

_ L qdiss,x . — B s
00—V - p \Y% —B(Vu+VuT)+vP b* inQxI,
oY/ oY/
P —po =5 =V S ver)

2 Non-conservative forces and dissipation function:

diss,* __ aAdiss

; 1 1
diss _ — TV(N2 o = L \2
p BECZER 70k A 2y||(Vv+VU ) +2A(V v)

s Free energy density: ¥/ := ¥/ (Vu, Vv,7, V1, 0)



Strong form to ‘see something’ II: two models

1 Model 1 (classical Navier-Stokes). Set ¥/ = 0. Find u : Q x I — R%, v : Q x I — R such that
0010 — V- (W(Vo+ Vol ) + AV -0) + Vp=b* inQ x],
pdiu —pv =0 inQxL

2 Model 2. Let the fluid potential be given by
dl 1
of — —p & = T2 1 2 a2
Y = e dt2||(Vu+Vu )N°+ 5¢Y
and the dissipation function as
) 1 1 1
A%iss — §y|| (Vo+ Vol)|? + E)\(V 0)2 4 Eq(an)?

Findu:QxI— le,v : Q) x I — R? and the internal variable, i.e., viscosity parameter,
v : QO X I = R such that
0910 — V - ((p+pye” ") (Vo + Vol ) + AV -0) + Vp = b* inQ x1,
00U — pv+V (pye”"(Vu+Vul)) =0 inQxI,

Moy — pye ”MH(VHW DIP+cy=0 inl
~ ThomasWick (Hannover) =~ Space-Time Modeling, Discretization, Error Control, Simulations @



First numerical simulations

15
10
B
20 40 60 50

Figure: Model 1: left x-velocity, right pressure.
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Figure: Model 2: left x-velocity vy, middle pressure p, and viscosity <y at time ¢t = 100 (top row) and t = 400

b



8

Current questions from us (Junker, Wick)

Relevance of this model?
Relationship to known non-Newtonian flow models?
Correct functional framework / function spaces?

Sign +V - (uye”7(Vu+ Vul))?



7 Conclusions



Conclusions

Conclusions

1

2

3

4

6

Space-time formulations of single PDEs and coupled systems

Space-time Galerkin finite element discretizations

A posteriori goal-oriented error control with the dual-weighted residual method for time-distributed functionals (quantities of interest)
Incremental POD model order reduction by refining POD basis with previous error estimator

Variational material modeling
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The end

Thank you very much!



