Space-Time Modeling, Discretization and Solution of Coupled Problems in Incompressible Flow, Fluid-Structure Interaction and Porous Media

Thomas Wick

Institut für Angewandte Mathematik (IfAM) **Leibniz Universität Hannover, Germany** International Research Training Group 2657 Hannover Paris-Saclay **Université Paris-Saclay, France**

Dec 05, 2023

Hot topics workshop: Recent Progress in Deterministic and Stochastic Fluid-Structure Interaction, Dec 4-8, 2023 Berkeley, California, United States

Overview

Motivation

2 Space-time modeling

Space-time modeling of heat equation and Biot's system Galerkin finite element discretization Space-time modeling of fluid-structure interaction Galerkin finite element discretization of FSI

- 3 Space-time a posteriori goal-oriented error control
- 4 A posteriori goal-oriented error-controlled reduced-order modeling Reduced-order modeling The MORe DWR method
- 5 Numerical tests
- 6 Space-time variational material modeling (ongoing work)
- **Conclusions**

Collaborators in this work

- Jan Philipp Thiele, WIAS, Berlin, Germany (space-time adaptivity Navier-Stokes)
- Julian Roth, Hannover, Germany (space-time model order reduction, Navier-Stokes)
- Hendrik Fischer, Hannover, Germany (space-time model order reduction)
- Thomas Richter, Magdeburg, Germany (space-time multirate schemes)
- Amélie Fau, ENS Paris-Saclay, France (space-time model order reduction)
- Ludovic Chamoin, ENS Paris-Saclay, France (space-time model order reduction)
- Mary F. Wheeler, Austin, USA (porous media discussions)
- Lukas Failer, Siemens, Germany (time adaptivity fluid-structure interaction)
- Philipp Junker, Hannover, Germany (space-time variational material modeling)

Motivation I: Interest

- ¹ Elegant mathematical descriptions and **similar discretizations in space and time (generically implicit,** *A***-stable schemes, numerical stability)** with the typical concepts at hand well-known from finite elements in space
- ² Concerning temporal discretization, the integral form allows **natural information on the entire time interval** *I^m* rather than only at discrete time points *tm*−¹ and *t^m* as for finite differences
- ³ **Flexible discretization** when using suitable FE libraries, i.e. no special treatment needed for higher temporal order if implemented as a weak form
- ⁴ **Higher-order basis functions**; and natural higher order regularity specifically when using splines such as in isogeometric analysis
- ⁵ Typical **Galerkin-based best approximation results, interpolation error estimates, and resulting a priori and a posteriori error estimates**
- ⁶ **Space-time adaptivity**
- ⁷ Global 'viewpoint' allows for (parallel) **space-time solution via multigrid**

Motivation II: Shortcomings

- Heavy notation
- ² More error-prone (in comparison to finite differences; specifically for dG in time) when implemented the first time
- ³ Higher cost in men/women power to derive schemes (by hand), which may become very technical, including sustainable implementations and documentation towards re-usable research software developments¹
- Without good (linear) solvers, costly to solve

¹Thiele, 2023; https://github.com/instatdealii/idealii

Motivation III: Methodology

- ¹ Describe spatial and temporal domains in a common setting
- ² Apply similar discretizations, i.e., Galerkin FEM
- ³ FEM: geometry (elements), simple functions, set of degrees of freedom
- ⁴ *cG*(*s*): continuous Galerkin, FEM polynomial degree *s* ∈ **N**⁰
- ⁵ *dG*(*r*): discontinuous Galerkin, FEM polynomial degree *r* ∈ **N**0, more expensive than *cG* because more degrees of freedom
- ⁶ For certain polynomials degrees, relation to well-known finite difference schemes (later more details):
	- $r = 0$: variant of backward Euler, $\theta = 1$
	- $s = 1$: variant of Crank-Nicolson, $\theta = 0.5$

Motivation

2 Space-time modeling

Space-time modeling of heat equation and Biot's system Galerkin finite element discretization Space-time modeling of fluid-structure interaction Galerkin finite element discretization of FSI

- 3 Space-time a posteriori goal-oriented error control
- 4 A posteriori goal-oriented error-controlled reduced-order modeling Reduced-order modeling The MORe DWR method
- 5 Numerical tests
- 6 Space-time variational material modeling (ongoing work)
- **Conclusions**

Model problem statement

1 Find $u : \bar{\Omega} \times \bar{I} \to \mathbb{R}^{\tilde{d}}$ such that

$$
\partial_t u + \mathcal{A}(u) = f \qquad \text{in } \Omega \times I,
$$

\n
$$
u = u_D \qquad \text{on } \Gamma_D \times I,
$$

\n
$$
\mathcal{B}(u) = g_N \qquad \text{on } \Gamma_N \times I,
$$

\n
$$
u = u^0 \qquad \text{in } \Omega \times \{0\},
$$

\n(1)

with possibly nonlinear spatial operator A , boundary operator B and sufficiently regular right-hand side *f*.

Examples of PDEs and PDE systems

- 1 **Heat equation:** $\partial_t u \Delta_x u = f$ in $\Omega \times I$
- 2 **Elastodynamics equation:** $\partial_{tt}u \nabla_x \cdot \sigma(u) = 0$ in $\Omega \times I$
- ³ **Biot system in porous media:**

$$
\partial_t (c p + \alpha (\nabla_x \cdot u)) - \frac{1}{\nu} \nabla_x \cdot (K \nabla_x p) = 0 \quad \text{in } \Omega \times I, -\nabla_x \cdot \sigma(u) + \alpha \nabla_x p = 0 \quad \text{in } \Omega \times I,
$$

- 1 with the isotropic stress tensor $\sigma(u) := \mu(\nabla_x u + (\nabla_x u)^T) + \lambda(\nabla_x \cdot u)I$,
- 2 (constrained specific) storage coefficient $c \ge c^* > 0$, may depend on space, i.e., $c(x)$, and is linked to the compressibility $M > 0$,
- Biot-Willis constant $\alpha \in [0, 1]$,
- ⁴ the permeability tensor *K*, fluid's viscosity *ν*,
- ⁵ Lamé parameters *λ*, *µ* > 0.

(2)

Motivation

2 Space-time modeling

Space-time modeling of heat equation and Biot's system Galerkin finite element discretization

Space-time modeling of fluid-structure interaction Galerkin finite element discretization of FSI

- 3 Space-time a posteriori goal-oriented error control
- 4 A posteriori goal-oriented error-controlled reduced-order modeling Reduced-order modeling The MORe DWR method
- 5 Numerical tests
- 6 Space-time variational material modeling (ongoing work)
- **Conclusions**

Discretization in time (heat equation) I

- 1 $dG(r)$ with polynomial degree $r > 0$ ($r = 0$ variant of backward Euler)
- ² Why *dG*? Implicit, A-stable, finite element error estimates, 'global' view,
- 3 Let $\mathcal{T}_k := \{I_m := (t_{m-1}, t_m) \mid 1 \leq m \leq M\}$ be a partitioning of time, i.e. $\bar{I} = [0, T] = \bigcup_{m=1}^{M} \bar{I}_m$.
- Broken continuous level function spaces

$$
\tilde{X}(\mathcal{T}_k, V(\Omega)) := \{ v \in L^2(I, L^2(\Omega)) \mid v|_{I_m} \in X(I_m, V(\Omega)) \quad \forall I_m \in \mathcal{T}_k \}
$$

⁵ Due to these discontinuities, we define the limits of *f* at time *t^m* from above and from below for a function *f* as

$$
f_m^{\pm} := \lim_{\epsilon \searrow 0} f(t_m \pm \epsilon),
$$

⁶ Jump of the function value of *f* at time *t^m* as

$$
[f]_m:=f_m^+-f_m^-.
$$

Discretization in time (heat equation) II

Formulation (Time-discontinuous variational formulation of the heat equation)

Find $u \in \tilde{X}(\mathcal{T}_k, V(\Omega))$ *such that*

$$
\tilde{A}(u)(\varphi) = \tilde{F}(\varphi) \qquad \forall \varphi \in \tilde{X}(\mathcal{T}_k, V(\Omega)),
$$

where

$$
\tilde{A}(u)(\varphi) := \sum_{m=1}^{M} \int_{I_m} (\partial_t u, \varphi) + (\nabla_x u, \nabla_x \varphi) dt + \sum_{m=1}^{M-1} ([u]_m, \varphi_m^+) + (u_0^+, \varphi_0^+),
$$

$$
\tilde{F}(\varphi) := ((f, \varphi)) + (u^0, \varphi_0^+).
$$

Fully discrete space-time system (heat)

Formulation

Find $u_{kh} \in X_k^{\mathrm{dG}(r)}$ $_{k}^{\mathbf{a}(\mathbf{x}(r))}(\mathcal{T}_{k}, V_{h}^{\mathrm{s}})$ *such that*

$$
\tilde{A}(u_{kh})(\varphi_{kh}) = \tilde{F}(\varphi_{kh}) \quad \forall \varphi_{kh} \in X_k^{\mathrm{dG}(r)}(\mathcal{T}_k, V_h^s)
$$

where

$$
V_h^s := V_h^s(\mathcal{T}_h) := \left\{ v \in C(\bar{\Omega}) \middle| v \right|_K \in \mathcal{Q}_s(K) \quad \forall K \in \mathcal{T}_h \right\}
$$

Recall:

- ¹ Benefit from space-time formulation allows for consistent **space-time a posteriori error estimation**
- \rightarrow Numerical examples later in this talk.

Motivation

2 Space-time modeling

Space-time modeling of heat equation and Biot's system Galerkin finite element discretization Space-time modeling of fluid-structure interaction Galerkin finite element discretization of FSI

- 3 Space-time a posteriori goal-oriented error control
- 4 A posteriori goal-oriented error-controlled reduced-order modeling Reduced-order modeling The MORe DWR method
- 5 Numerical tests
- 6 Space-time variational material modeling (ongoing work)
- **Conclusions**

Fluids and solids in their standard systems

Equations for fluid flows (Navier Stokes) - Eulerian

 $\partial_t v + (v \cdot \nabla v) - \nabla \cdot \sigma(v, p) = 0, \quad \nabla \cdot v = 0, \text{ in } \Omega_f \times I$, +bc and initial conditions

with Cauchy stress tensor $\sigma(v, p) = -pI + \rho_f v_f (\nabla v + \nabla v^T)$.

Equations for (nonlinear) elasticity - Lagrangian

 $\partial_t^2 \hat{u} - \hat{\nabla} \cdot (\hat{F} \hat{\Sigma}(\hat{u})) = 0$ in $\hat{\Omega}_s \times I$, +bc and initial conditions

with the stress $\hat{F}\hat{\Sigma}(\hat{u}) = 2\mu_s \hat{E} + \lambda_s \text{trace}(\hat{E})I$, the strain $\hat{E} = (\hat{F}\hat{F}^T - I)$ and $\hat{F} = I + \hat{\nabla}\hat{u}$.

Coupling conditions on
$$
\Gamma_i
$$
, $\hat{\Gamma}_i$

\n
$$
v_f = \hat{v}_s \quad \text{and} \quad \sigma(v, p)u_f = \hat{F}\hat{\Sigma}(\hat{u})\hat{n}_s.
$$

$$
\begin{array}{c|c}\n\cdot & \mathbf{Q}_{f} \\
\hline\n\end{array}
$$

Function spaces (I)

- 1 For the function spaces in the (fixed) reference domains Ω , Ω_f , Ω_s , we define spaces for spatial diagratics first. discretization first.
- ² First we define

$$
\hat{V} := H^1(\widehat{\Omega})^d, \quad \hat{V}^0 := H^1_0(\widehat{\Omega})^d.
$$

³ Next, in the fluid domain, we define further:

$$
\hat{L}_f := L^2(\hat{\Omega}_f),
$$
\n
$$
\hat{L}_f^0 := L^2(\hat{\Omega}_f)/\mathbb{R},
$$
\n
$$
\hat{V}_f^0 := {\hat{v}_f \in H^1(\hat{\Omega}_f)^d : \hat{v}_f = 0 \text{ on } \hat{\Gamma}_{in} \cup \hat{\Gamma}_D},
$$
\n
$$
\hat{V}_{f,\hat{\mu}}^0 := {\hat{u}_f \in H^1(\hat{\Omega}_f)^d : \hat{u}_f = \hat{u}_s \text{ on } \hat{\Gamma}_i, \quad \hat{u}_f = 0 \text{ on } \hat{\Gamma}_{in} \cup \hat{\Gamma}_D \cup \hat{\Gamma}_{out}},
$$
\n
$$
\hat{V}_{f,\hat{\mu},\hat{\Gamma}_i}^0 := {\hat{\psi}_f \in H^1(\hat{\Omega}_f)^d : \hat{\psi}_f = 0 \text{ on } \hat{\Gamma}_i \cup \hat{\Gamma}_{in} \cup \hat{\Gamma}_{out}}.
$$

⁴ In the solid domain, we use

$$
\hat{L}_s := L^2(\widehat{\Omega}_s)^d, \quad \hat{V}_s^0 := \{\hat{u}_s \in H^1(\widehat{\Omega}_s)^d : \hat{u}_s = 0 \text{ on } \widehat{\Gamma}_D\}.
$$

Function spaces (II)

¹ As **trial spaces** for a space-time model, we define

$$
\hat{X} = \{ U = (\hat{v}, \hat{u}_f, \hat{u}_s, \hat{p}_f) | \hat{v} \in L^2(I, \{\hat{v}^D + \hat{V}^0\}), \partial_t \hat{v} \in L^2(I, H(\hat{\Omega})_d^*), \hat{u}_f \in L^2(I, \{\hat{u}_f^D + \hat{V}_{f, \hat{u}}^0\}), \partial_t \hat{u}_f \in L^2(I, H(\hat{\Omega}_f)_d^*), \hat{u}_s \in L^2(I, \{\hat{u}_s^D + \hat{V}_s^0\}), \partial_t \hat{u}_s \in L^2(I, H(\hat{\Omega}_s)_d^*), \hat{p}_f \in L^2(I, \hat{L}_f^0)\}
$$

² As **test spaces** for a space-time model, we use

$$
\widehat{X}^0 = \{ U = (\widehat{v}, \widehat{u}_f, \widehat{u}_s, \widehat{p}_f) | \widehat{v} \in L^2(I, \widehat{V}^0), \partial_t \widehat{v} \in L^2(I, H(\widehat{\Omega})_d^*), \widehat{u}_f \in L^2(I, \widehat{V}^0_{f, \widehat{u}, \widehat{\Gamma}_i}),
$$

$$
\partial_t \widehat{u}_f \in L^2(I, H(\widehat{\Omega}_f)_d^*), \widehat{u}_s \in L^2(I, \widehat{V}^0_s), \partial_t \widehat{u}_s \in L^2(I, H(\widehat{\Omega}_s)_d^*), \widehat{p}_f \in L^2(I, \widehat{L}_f^0) \}
$$

ALE: arbitrary Lagrangian-Eulerian

ALE:

- ¹ Use *ALEfx*: arbitrary Lagrangian Eulerian, where fluid equations (incompressible Navier-Stokes) is transformed to a fixed (arbitrary) reference domain $\widehat{\Omega}$
- 2 Construct mesh motion model to extend displacements to flow domain Ω_f in order to realize ALE transformation: $\mathcal{A}(\hat{x}, t) : \Omega_f \to \Omega_f$
- 3 Deformation gradient $\hat{F} := \hat{\nabla}A(\hat{x}, t)$ and determinant $\hat{I} := det(\hat{F})$.

Variational-monolithic coupling:

¹ Realize coupling conditions in an implicit way on the continuous level:

 $\hat{v}_f = \hat{v}_s$ on $\hat{\Gamma}$ (built into function spaces!) $\langle \hat{J}\hat{\sigma}_{f}\hat{F}^{-T}\hat{n}_{f},\varphi\rangle_{\hat{\Gamma}} + \langle \hat{F}\hat{\Sigma}\hat{n}_{s},\varphi\rangle_{\hat{\Gamma}} = 0 \quad \forall \varphi \in V$

Geometric condition due to ALE:

$$
\hat{u}_f = \hat{u}_s
$$
 on $\hat{\Gamma}$ (built into function spaces!)

A space-time fluid-structure interaction model

Proposition (Variational-monolithic space-time ALE-FSI in $\hat{\Omega}$)

Find a global vector-valued velocity, vector-valued displacements and a scalar-valued fluid pressure, i.e., $\hat{U} := (\hat{v}, \hat{u}_f, \hat{u}_s, \hat{p}_f) \in \hat{X}$ *such that*

$$
\text{Fluid/solid momentum} \begin{cases} \int_I \left((\hat{J}\hat{\theta}_f \partial_t \hat{\theta}_t \hat{\theta}_t \hat{\theta}_f \hat{\theta}_f) \hat{\Omega}_f + (\hat{\theta}_f f) (\hat{\mathbf{F}}^{-1} (\hat{\theta} - \hat{\mathbf{w}}) \cdot \hat{\nabla}) \hat{\mathbf{p}}_j \right) + (\hat{J}\hat{\theta}_f \hat{\mathbf{F}}^{-T}, \hat{\nabla} \hat{\psi}^v) \hat{\Omega}_f \\ - \langle \hat{\theta}_f \nu_f \hat{J} (\hat{\mathbf{F}}^{-T} \hat{\nabla} \hat{\theta}^T \hat{\mathbf{n}}_f) \hat{\mathbf{F}}^{-T}, \hat{\psi}^v \rangle_{\hat{\Gamma}_{out}} + (\hat{\theta}_s \partial_t \hat{\mathbf{w}} \cdot \hat{\psi}^v) \hat{\Omega}_s + (\hat{\mathbf{F}} \hat{\Sigma}, \hat{\nabla} \hat{\psi}^v) \hat{\Omega}_s \right) dt \\ + (\hat{J}\hat{\theta}_f (\hat{\mathbf{v}}(0) - \hat{\mathbf{v}}_0), \hat{\psi}^v(0)) \hat{\Omega}_f + \hat{\theta}_s (\hat{\mathbf{v}}(0) - \hat{\mathbf{v}}_0, \hat{\psi}^v(0)) \hat{\Omega}_s = 0 \end{cases}
$$
\n
$$
\text{Fluid mesh motion } \left\{ \int_I (\hat{\sigma}_{mesh} \hat{\nabla} \hat{\psi}_f^u) \hat{\Omega}_f dt = 0
$$
\n
$$
\text{Solid momentum, 2nd eq. } \left\{ \int_I \left((\hat{\delta}_s (\hat{\theta}_t \hat{\mathbf{u}}_s - \hat{\theta}) \hat{\mathbf{h}}_s, \hat{\psi}^u_s) \hat{\Omega}_s \right) dt + \hat{\theta}_s (\hat{\mathbf{n}}_s(0) - \hat{\mathbf{n}}_{s,0}, \hat{\psi}^u_s(0)) \right\} = 0
$$
\n
$$
\text{Fluid mass conservation } \left\{ \int_I \left((\hat{\vec{div}} (\hat{\mathbf{f}} \hat{\mathbf{F}}^{-1} \hat{\mathbf{v}}), \hat{\psi}^v_f) \hat{\Omega}_f \right) dt = 0
$$

for all $\hat\Psi=(\hat\psi^v,\hat\psi^u_f,\hat\psi^u_s,\hat\psi^p_f)\in\widehat X^0$. In compact form, the above problem reads: Find $\hat U\in\widehat X$ such that

$$
\hat{A}(\hat{U})(\hat{\Psi}) = 0 \quad \forall \hat{\Psi} \in \widehat{X}^0
$$

where the FSI equations are combined in the semi-linear form $\hat{A}(\hat{U})(\hat{\Psi})$ *.*

Equivalent formulation - start for space-time discretization

Proposition

 $Find \ \hat{U} := (\hat{v}, \hat{u}_f, \hat{u}_s, \hat{p}_f) \in \widehat{X} \ such \ that$ Z $\int_I (\hat{J}\hat{Q}_f \partial_t \hat{v}, \hat{\psi}^v)_{\widehat{\Omega}_f} dt + \int_I$ $\int_I (\hat{\varrho}_s \partial_t \hat{v}, \hat{\psi}^v)_{\widehat{\Omega}_s} dt + \int_I$ \int_I $(\hat{\varrho}_s \partial_t \hat{u}_s, \hat{\psi}_s^u)_{\widehat{\Omega}_s} dt$ $+$ $\hat{A}_{notimeder}(\hat{U})(\hat{\Psi})$ $+ (\hat{J}\hat{Q}_{f}(\hat{v}(0)-\hat{v}_0), \hat{\psi}^v(0))_{\widehat{\Omega}_{f}} + \hat{Q}_{s}(\hat{v}(0)-\hat{v}_0, \hat{\psi}^v(0))_{\widehat{\Omega}_{s}} + \hat{Q}_{s}(\hat{u}_s(0)-\hat{u}_{s,0}, \hat{\psi}^u_s(0))$

 v here $\hat{A}_{notimeter}(\hat{U})(\hat{\Psi})$ (here notimeder stands for 'no time derivatives') contains all terms from the *previous proposition that are not initial conditions and contain no time derivatives.*

Motivation

2 Space-time modeling

Space-time modeling of heat equation and Biot's system Galerkin finite element discretization Space-time modeling of fluid-structure interaction Galerkin finite element discretization of FSI

- 3 Space-time a posteriori goal-oriented error control
- 4 A posteriori goal-oriented error-controlled reduced-order modeling Reduced-order modeling The MORe DWR method
- 5 Numerical tests
- 6 Space-time variational material modeling (ongoing work)
- **Conclusions**

Galerkin in time discretization (I)

¹ Let

$$
\bar{I} = \{0\} \cup I_1 \cup \ldots \cup I_M
$$

- 2 Half-open subintervals $I_m := (t_{m-1}, t_m]$ and the time step size, i.e., temporal discretization p arameter, $k_m := t_m - t_{m-1}$ for $m = 1, ..., M$
- ³ The time points (i.e., temporal edges in the FEM context) are

$$
0=t_0<\ldots
$$

⁴ Let *r* ∈ **N**⁰ be the temporal polynomial degree. We define the semi-discrete space $\tilde{X}_k^r := \{\hat{U}_k \in \hat{X} | U_k |_{I_m} \in P_r(I_m, \hat{X}), \ \hat{U}_k(0) \in L^2(\hat{\Omega})\},\$

where *k* stands for the temporal discretization parameter

⁵ For setting up the *dG*(*r*) method, we need to account for the jumps and introduce further for $\hat{U}_k \in \tilde{X}_k^r$

$$
\hat{U}_{k,m}^{\pm} := \lim_{s \to 0} \hat{U}_k(t_m \pm s), \quad [\hat{U}_k]_m := \hat{U}_{k,m}^+ - \hat{U}_{k,m}^-.
$$

Galerkin in time discretization (II)

Proposition (*dG*(*r*) semi-discretization of FSI)

Find $U_k \in \tilde{X}_k^r$ *such that*

$$
\sum_{m=1}^{M} \int_{I_m} (\hat{J}\hat{\varrho}_f \partial_t \hat{v}_k, \hat{\psi}^v)_{\hat{\Omega}_f} + (\hat{\varrho}_s \partial_t \hat{v}_k, \hat{\psi}^v)_{\hat{\Omega}_s} + (\hat{\varrho}_s \partial_t \hat{u}_{k,s}, \hat{\psi}^u_s)_{\hat{\Omega}_s} dt \n+ \hat{A}_{notimeter} (\hat{U}_k) (\hat{\Psi}) \n+ \sum_{m=0}^{M-1} (\hat{J}\hat{\varrho}_f[\hat{v}_k]_m, \hat{\psi}^{v,+}_m)_{\hat{\Omega}_f} + (\hat{\varrho}_s[\hat{v}_k]_m, \hat{\psi}^{v,+}_m)_{\hat{\Omega}_s} + (\hat{\varrho}_s[\hat{u}_k]_m, \hat{\psi}^{u,+}_m)_{\hat{\Omega}_s} \n+ (\hat{J}\hat{\varrho}_f \hat{v}_{k,0}^-, \hat{\psi}^{v,-}_0)_{\hat{\Omega}_f} + (\hat{\varrho}_s \hat{v}_{k,0}^-, \hat{\psi}^{v,-}_0)_{\hat{\Omega}_s} + (\hat{\varrho}_s \hat{u}_{k,0}^-, \hat{\psi}^{u,-}_0)_{\hat{\Omega}_s} \n= (\hat{J}\hat{\varrho}_f \hat{v}_0, \hat{\psi}^{v,-}_0)_{\hat{\Omega}_f} + (\hat{\varrho}_s \hat{v}_0, \hat{\psi}^{v,-}_0)_{\hat{\Omega}_s} + (\hat{\varrho}_s \hat{u}_0, \hat{\psi}^{u,-}_0)_{\hat{\Omega}_s}
$$

for all $\hat{\Psi} \in \tilde{X}_k^r$ and where $\hat{A}_{notimeder}(\hat{U})(\hat{\Psi})$ is defined as before.

Galerkin in time discretization (III)

- ¹ **Temporal discretization**: Due to the dG test functions, the schemes will decouple to each time interval *I^m* and known time-stepping schemes are obtained:
	- $dG(0)$ vs. backward Euler, $\theta = 1$: For $r = 0$, we deal with the $dG(0)$ scheme, first order in time, which is a variant of the backward Euler scheme (see below) for $\theta = 1$.
	- $cG(1)$ vs. Crank-Nicolson, $\theta = 0.5$: Using $cG(1)$ trial functions and $dG(0)$ test functions, yields a scheme similar to the Crank-Nicolson scheme, which is actually used in computations with dynamics since $dG(0)$ is strongly A-stable and will damp physical oscillations.
- ² **Spatial discretization**: based on classical continuous cG finite elements ; here at *tm*: $(\hat{v}, \hat{u}, \hat{p}_f) \in Q_c^2 \times Q_2^2 \times Q_c^1$ (Taylor-Hood due to LBB for the flow part)

Motivation

2 Space-time modeling

Space-time modeling of heat equation and Biot's system Galerkin finite element discretization Space-time modeling of fluid-structure interaction Galerkin finite element discretization of FSI

3 Space-time a posteriori goal-oriented error control

- 4 A posteriori goal-oriented error-controlled reduced-order modeling Reduced-order modeling The MORe DWR method
- 5 Numerical tests
- 6 Space-time variational material modeling (ongoing work)
- **Conclusions**

Goal functional and optimization problem

1 Let a goal functional² $J : \tilde{X}(\mathcal{T}_k, V(\Omega)) \to \mathbb{R}$ of the form

$$
J(u) = \int_0^T J_1(u(t)) dt + J_2(u(T)),
$$
\n(3)

be given, which represents some physical quantity of interest (QoI).

- Here, *T* denotes the end time as before.
- ³ **Objective:** reduce the difference between the quantity of interest of some (unknown) solution and some numerical approximation:

$$
\min J(u) - J(\tilde{u}), \quad \text{subject to the given PDE(s)} \ A(\cdot)(\cdot) = F(\cdot) \tag{4}
$$

- $4 \, A(\cdot)(\cdot)$: space-time weak form, e.g., heat, porous media, Navier-Sokes, FSI
- ⁵ *F*(·): given right hand side data, e.g., forces, boundary data, initial data

²Becker, Rannacher, 1996/2001; Bangerth, Rannacher, 2003; Schmich, Vexler, 2008

Overall interest and specifications

Overall interest in a posteriori error estimation:

- ⇒ A **robust, time-adaptive, procedure** to calculate functionals of interest with **sufficient accuracy** allowing for the **automated adjustment of time step sizes** where necessary.
- ⇒ A (global) **error estimator and not only an error indicator**. Therefore, we obtain a guess *η* about the unknown true error $J(u) - J(\tilde{u})$. Consequently, we know to which accuracy we have computed a certain physical quantity without knowing its exact (analytical) value *J*(*u*).

Specific interest in this talk:

¹ full discretization estimates for heat, Navier-Stokes, i.e.,

 $\min J(u) - J(u_{kh})$

² temporal error control for FSI, i.e.,

 $\min J(u) - J(u_k)$

³ model error control for heat, porous media (Biot system), i.e.,

 $\min J(u^{\text{fine}}) - J(u^{\text{course}})$

Lagrangian and optimality system

- ¹ Formulate Lagrangian, compute stationary points, yielding primal and adjoint solutions
- ² Lagrangian:

$$
\mathcal{L}_{\Box}: X_k^{\mathrm{dG}(0)}(\mathcal{T}_k, V_h^{\Box}) \times X_k^{\mathrm{dG}(0)}(\mathcal{T}_k, V_h^{\Box}) \to \mathbb{R},
$$

$$
(U^{\Box}, Z^{\Box}) \mapsto J(U^{\Box}) - A(U^{\Box})(Z^{\Box}) + F(Z^{\Box})
$$

with $\square \in \{\text{exact}, \text{discrete}\}.$

³ Optimality system:

$$
\mathcal{L}'_{\Box}=0
$$

⁴ Primal problem:

$$
\mathcal{L}'_{\Box, Z}(U^{\Box}, Z^{\Box})(\delta Z^{\Box}) = -A(U^{\Box})(\delta Z^{\Box}) + F(\delta Z^{\Box}) = 0 \qquad \forall \delta Z^{\Box} \in X_k^{\mathrm{dG}(0)}, \quad \Box \in \{\text{exact, discrete}\}\
$$

⁵ Adjoint problem:

$$
\mathcal{L}'_{\Box,U}(U^\Box,Z^\Box)(\delta U^\Box)=J'_U(U^\Box)(\delta U^\Box)-A(\delta U^\Box)(Z^\Box)=0\\ \forall \delta U^\Box\in X_k^{\mathrm{dG}(0)}(\mathcal{T}_k,V^\Box_h),\quad \Box\in\{\mathrm{exact},\mathrm{discrete}\}.
$$

Error representation and error estimator

¹ **Adjoint problem** (heat), linear (always!), primal solution enters, running backwards in time: Find $z \in X_k^{\mathrm{dG}(r)}$ $\int_k^{\mathbf{u}(\mathbf{u})} (\mathcal{T}_k, V_h)$ such that

$$
\sum_{m=1}^M \int_{I_m} (\delta u, -\partial_t z) + (\nabla_x \delta u, \nabla_x z) dt - \sum_{m=1}^{M-1} (\delta u_m^-, [z]_m) + (\delta u_M^-, z_M^-) = J_u'(u)(\delta u).
$$

² It holds (based on Becker, Rannacher, 2001):

$$
J(u) - J(\tilde{u}) = -\tilde{A}(\tilde{u})(z - i_h z) + \tilde{F}(z - i_h z) + R^{(2)}.
$$

³ **A posteriori error estimator**

$$
\eta := -\tilde{A}(\tilde{u})(z - i_h z) + \tilde{F}(z - i_h z).
$$

⁴ Quality measure by **effectivity index**:

$$
I_{\text{eff}} := \left| \frac{\eta}{J(u) - J(\tilde{u})} \right|
$$

⁵ Ideally *Ieff* ∼ 1 (rigorous reliability and efficiency for discretization errors Endtmayer, Langer, Wick; SISC, 2020; key tool in the proof: saturation assumption on goal functional)

Failer/Wick (JCP, 2018): Adaptive time step control

¹ *J*(*U*) can be a point value, deformation, drag, lift, temperature evaluation etc. but not necessarily in the entire domain!

Proposition (Goal-oriented error estimator with primal part)

 $Let \ \hat{U} \in X$ the unknown, exact, solution and $\hat{U}_{kh} \in X^{r,s}_{kh}$ the space-time fully discrete solution. Furthermore, let \hat{Z} the exact adjoint solution and $\hat{Z}_{kh}\in X^{r,s}_{kh}$ the discrete adjoint. It holds the a posteriori error estimate

$$
J(\hat{U}) - J(\hat{U}_{kh}) = \frac{1}{2}\rho(\hat{U}_{kh})(\hat{Z} - \hat{Z}_{kh}) + R^{(2)},
$$

where

$$
\rho(\hat{U}_{kh})(\hat{Z}-\hat{Z}_{kh}):=-A(\hat{U}_{kh})(\hat{Z}-\hat{Z}_{kh})
$$

 ω here $A(\hat{U}_{kh})(\hat{Z}-\hat{Z}_{kh})$ is our space-time FSI formulation.

- ² Idea of the proof: take Lagrangian, use trapezoidal rule, insert continuous and disdrete problem statements
- 3 Difficulty: \hat{Z} still unknown; use higher-order approximation $\hat{Z}^{high}.$

Adaptive time step control: error estimator

• We want to use global error estimator for steering algorithms during computations

Proposition

The localized error estimator readsfor M time intervals (only temporal part U^k !)

$$
J(\hat{U}) - J(\hat{U}_k) \approx \eta := \sum_{m=1}^{M} \eta_m = \frac{1}{2} \left(-A(\hat{U}_k, \hat{Z}_k^{(2)} - \hat{Z}_k^{(1)}) \right) + \tilde{R}^{(2)}
$$

- Idea of the proof: follows naturally from the *dG* properties or alternatively from a partition-of-unity (see next slide)
- As just before, check by computing the effectivity index (now w.r.t. temporal error):

$$
I_{\text{eff}} = \frac{\eta}{J(\hat{U}) - J(\hat{U}_k)}
$$

where *η* is a computable error estimator and $J(\hat{U}) - J(\hat{U}_k)$ is the true error for some known 'exact' solution *U*ˆ

Full space-time error control: partition-of-unity localication ³

¹ Now: space-time localization techniques to localize error contributions in time as well as space:

$$
\eta = \sum_{m=1}^{M} \sum_{n=1}^{N} \eta_{mn},
$$

where *M* number of temporal elements and *N* number of spatial elements.

Proposition (PU)

Let V_{PII} *a discrete finite element space. For a function* $\chi \in V_{PII}$, *it holds*

$$
\sum_{m=1}^{M} \sum_{n=1}^{N} \chi_{mn} \equiv 1.
$$
\n(5)

Proof: Follows immediately from the properties of the finite element functions.

³Thiele, Wick; J. Sci. Comput. 2023; in revised review

Full space-time error control: heat equation

Proposition (Primal joint error estimator for the heat equation)

For the space-time formulation of the heat equation, we have the following a posteriori joint error estimator with partition-of-unity localization:

$$
|J(u) - J(u_{kh})| \leq |\eta_{joint}| := \left|\sum_m \eta_{kh}^m\right|, \quad \text{with } \eta_{kh}^m := \sum_{i \in \mathcal{T}_h^m} \eta_{kh}^{i,m}, \tag{6}
$$

with the error indicators

$$
\eta_{kh}^{i,m} := \int_{I_m} (f, (\tilde{z} - z_{kh}) \chi_{i,m})_H dt - \int_{I_m} (\nabla u_{kh}, \nabla ((\tilde{z} - z_{kh}) \chi_{i,m}))_H dt \n- \int_{I_m} (\partial_t u_{kh}, (\tilde{z} - z_{kh}) \chi_{i,m})_H dt - ([u_{kh}]_{m-1}, (\tilde{z}^+(t_{m-1}) - z_{kh}^+(t_{m-1})) \chi_{i,m})_H.
$$
\n(7)

Proof: Thiele, Wick, 2023: use main error theorem, use space-time weak forms, plug-in PU, seperate temporal and spatial error contributions, apply triangle inequality.
Thomas Wick (Hannover) Space-Time Modeling, Discretization, Error Control, Simulations

Space-Time Modeling, Discretization, Error Control, Simulations 33

Motivation

2 Space-time modeling

Space-time modeling of heat equation and Biot's system Galerkin finite element discretization Space-time modeling of fluid-structure interaction Galerkin finite element discretization of FSI

- 3 Space-time a posteriori goal-oriented error control
- 4 A posteriori goal-oriented error-controlled reduced-order modeling Reduced-order modeling The MORe DWR method
- 5 Numerical tests
- 6 Space-time variational material modeling (ongoing work)
- **Conclusions**

Motivation: Reduced order modeling

- ¹ Another method to significantly reduce computational cost, when problem must be run numerous times (100x, 1000x, ...)
- \rightarrow Parameter estimation (Bayesian inversion), optimal control, optimal experimental design
- ² Complementary to parallel computing and adaptivity

 3 Idea⁴:

- Compute full-order model (everything we had before),
- select snapshots based on SVD (singular value decomposition), here POD (proper orthogonal decomposition),
- construct reduced (finite element) basis
- ⁴ Our contribution: let goal-oriented error estimator decide on enrichment of reduced basis in order to obtain a desired accuracy in *J*(*ukh*)

⁴e.g., P. Benner and A. Cohen and M. Ohlberger and K. Willcox; Model Reduction and Approximation: Theory and Algorithms, SIAM, 2015

Goal functional and optimization problem

1 Let a time-distributed goal functional $J : \tilde{X}(\mathcal{T}_k, V(\Omega)) \to \mathbb{R}$ of the form

$$
J(u) = \int_0^T J_1(u(t)) \, \mathrm{d}t,\tag{8}
$$

be given, which represents some physical quantity of interest (QoI).

- ² Here, *T* denotes the end time as before.
- ³ **Objective:** reduce the difference between the quantity of interest of a fine solution *u* fine and a coarse solution *u* coarse, i.e.,

 $\min J(u^{\text{fine}}) - J(u^{\text{coarse}})$, subject to the given PDE(s) $\tilde{A}(\cdot)(\cdot) = \tilde{F}(\cdot)$ (9)

⁴ **Enrichment**⁵ **of the reduced basis depending on the temporal evolution of the goal functional**⁶

⁵Fischer, Roth et al. 2023a, 2023b on arXiv

⁶For coarsening, see Meyer/Matthies; Comp. Mech. 2003

Motivation

2 Space-time modeling

Space-time modeling of heat equation and Biot's system Galerkin finite element discretization Space-time modeling of fluid-structure interaction Galerkin finite element discretization of FSI

- 3 Space-time a posteriori goal-oriented error control
- 4 A posteriori goal-oriented error-controlled reduced-order modeling Reduced-order modeling The MORe DWR method
- 5 Numerical tests
- 6 Space-time variational material modeling (ongoing work)
- **Conclusions**

Tensor-product space-time POD-ROM

- ¹ General spatial FEM space *V^h* is replaced by a problem-specific low-dimensional space $V_N = \text{span}\{\varphi_N^1, \dots, \varphi_N^N\}$
- ² Use (incremental) POD.
- ³ Variational formulation:

Formulation

Find $u_N \in \tilde{X}(\mathcal{T}_k, V_N)$ *such that*

$$
\tilde{A}(u_N)(\varphi) = \tilde{F}(\varphi) \qquad \forall \varphi \in \tilde{X}(\mathcal{T}_k, V_N).
$$

Slabwise assemply I (FOM tensor-product space-time modeling)

¹ Define (time) slabs:

$$
S_l^n := \Omega \times \left(\bigcup_{m=l}^n I_m\right),\,
$$

where $1 \leq l \leq n \leq M$

- 2 Space-time basis by tensor-product ansatz $\varphi_{kh}(t,x) = \varphi_k(t) \varphi_h(x)$
- 3 Full-order solution on slab S_l^n is given by

$$
\begin{pmatrix} A & & & & 0 \ B & A & & & \\ & B & A & & & \\ & & & \ddots & \ddots & \\ & & & & B & A \end{pmatrix} \begin{pmatrix} U_l \\ U_{l+1} \\ U_{l+2} \\ \vdots \\ U_n \end{pmatrix} = \begin{pmatrix} F_l - B U_{l-1} \\ F_{l+1} \\ F_{l+2} \\ \vdots \\ F_n \end{pmatrix}
$$
 (10)

⁴ Idea to formulate 'big' space-time system matrix inspired by Gander, Neumüller, SISC, 2016, who developed space-time multigrid solvers.

Slabwise assemply II (ROM)

¹ The reduced basis matrix can be formed by the concatenation of the reduced basis vectors, viz.

$$
Z_N = \begin{bmatrix} \varphi_N^1 & \dots & \varphi_N^N \end{bmatrix} \in \mathbb{R}^{\# \text{DoFs}(\mathcal{T}_h) \times N}.
$$
 (11)

- 2 Subsequently, the slabwise discretization for the space-time slab S_l^n with $n l + 1$ time intervals is obtained in analogy to the full-order model
- ³ We arrive at

$$
\begin{pmatrix}\nA_N & & & & 0 \\
B_N & A_N & & & & \\
& B_N & A_N & & & \\
& & \ddots & \ddots & & \\
& & & B_N & A_N\n\end{pmatrix}\n\begin{pmatrix}\nU_{N_l} \\
U_{N_{l+1}} \\
U_{N_{l+2}} \\
\vdots \\
U_{N_n}\n\end{pmatrix} = \begin{pmatrix}\nF_{N_l} - B_N U_{N_{l-1}} \\
F_{N_{l+1}} \\
F_{N_{l+2}} \\
\vdots \\
F_{N_n}\n\end{pmatrix}
$$
\n(12)

- 4 In brevity $A_N U_{N, S_l^n} = F_{N, S_l^n}$
- ⁵ Reduced components

$$
A_N = Z_N^T A Z_N, \quad B_N = Z_N^T B Z_N, \quad F_{N_i} = Z_N^T F_i, \quad l \le i \le n. \tag{13a}
$$

Incremental POD

- ¹ Update already existing truncated SVD
- ² According to modifications in the snapshot matrix
- ³ Append additional snapshots to the initial snapshot matrix
- \rightarrow Additive rank-b modification of the SVD⁷

⁷M. Brand; 2006 and 2006; Kühl, Fischer, Hinze, Rung; 2023

Motivation

2 Space-time modeling

Space-time modeling of heat equation and Biot's system Galerkin finite element discretization Space-time modeling of fluid-structure interaction Galerkin finite element discretization of FSI

- 3 Space-time a posteriori goal-oriented error control
- 4 A posteriori goal-oriented error-controlled reduced-order modeling Reduced-order modeling The MORe DWR method
- 5 Numerical tests
- 6 Space-time variational material modeling (ongoing work)
- **Conclusions**

MORe DWR algorithm I

Algorithm 2 MORe DWR algorithm **Input:** Initial condition $U_0 := U(t_0)$, primal and dual reduced basis matrices Ψ_N^p and Ψ_{N}^d , energy threshold $\varepsilon \in [0, 1]$ and error tolerance to $0 > 0$. **Output:** Primal and dual reduced basis matrices Ψ_N^p and Ψ_N^d , and reduced primal solutions U_{N_o,I_m} for all $1 \leq m \leq M$. 1: for $k = 1, 2, ..., K$ do > Loop over parent slabs \mathfrak{a} while $\eta_{max} > tol$ do for $l = 1, 2, ..., L$ do \triangleright Primal ROM on k -th parent slab \mathcal{R} Solve reduced primal system (8): $A_{N_p}U_{N_p,S_{P_h}^1} = F_{N_p,S_{P_h}^1}$ \mathbf{d} : \triangleright Dual ROM on $k\text{-th}$ parent slab s. for $l = L, L - 1, ..., 1$ do $\mathbf{r} \in L, L-1, \ldots, 1$ do
Solve reduced dual system (25): $A'_{N_d} Z_{N_d, S'_{P_b}} = J_{N_d, S'_{P_b}}$ κ_1 $\overline{7}$ for $l = 1, 2, \ldots, L$ do \triangleright Error estimates on k-th parent slab **r** $l = 1, 2, ..., L$ **do**
Compute error estimate: $\eta_{N, S_{\infty}}^{rel}$ $(U_{N_{\rm o}, S_{\rm o}^l}, Z_{N_d, S_{\rm o}^l})$ \mathbf{g} . $\eta_{max} = \max_{1 \leq l \leq L} \left| \eta_{N,S_{P_k}}^{rel} \right|$ $9:$ if $\eta_{max} > tol$ then 10: $l_{max} = \operatorname*{arg\,max}_{1 \leq l \leq L} \left| \eta_{N, S_{P_k}^l}^{rel} \right|$ $11₂$ Solve primal full-order system (3): $AU_{S_{D}^{t_{max}}} = F_{S_{D}^{t_{max}}}$ $12.$ Update primal reduced basis: $\Psi_{N_p}^p = iPOD(\Psi_{N_p}^p, \Sigma_{N_p}, [U_{S_{m}^{\text{long}}}(t_1), \ldots, U_{S_{m}^{\text{long}}}(t_{r+1})], \varepsilon)$ 13: Solve dual full-order system (24): $A'Z_{S_{m}^{l_{max}}} = J_{S_{m}^{l_{max}}}$ $14:$ Update dual reduced basis: $\Psi_{N_d}^d = i\text{POD}(\Psi_{N_d}^d, \Sigma_{N_d}^{\bullet}, [Z_{S_{E}^{l_{max}}}(t_1), \ldots, Z_{S_{E}^{l_{max}}}(t_{r+1})], \varepsilon)$ 15: Update reduced system components and error estimator w.r.t (9) 16: Validation loop \triangleright This is an optional validation of the model. $17:$ 18: for $k = 1, 2, ..., K$ do Primal ROM on whole temporal domain for $l=1,2,\ldots,L$ do Solve primal reduced system: $A_{N_p}U_{N_p,S_{p_1}^l} = F_{N_p,S_{p_2}^l}$ 20 21: for $k = K, K - 1, ..., 1$ do \vartriangleright Dual ROM on whole temporal domain $22:$ for $l = L, L - 1, ..., 1$ do Solve dual reduced system: $A'_{N_d}Z_{N_d,S'_m} = J_{N_d,S'_m}$ 23: 24: for $k = 1, 2, ..., K$ do \triangleright Error estimates on whole temporal domain 25 for $l = 1, 2, \ldots, L$ do Compute slab estimate: η^{rel}_{N, S^l_n} (U_{N_n, S^l_n} , Z_{N_d, S^l_n}) 26

MORe DWR algorithm I: two consecutive parent slabs

MORe DWR algorithm II

Motivation

2 Space-time modeling

Space-time modeling of heat equation and Biot's system Galerkin finite element discretization Space-time modeling of fluid-structure interaction Galerkin finite element discretization of FSI

- 3 Space-time a posteriori goal-oriented error control
- 4 A posteriori goal-oriented error-controlled reduced-order modeling Reduced-order modeling The MORe DWR method

5 Numerical tests

- 6 Space-time variational material modeling (ongoing work)
- **Conclusions**

Schäfer, Turek, 2D-3 benchmark in incompressible flow around a cylinder: spatial and temporal refinement

Figure: Left: spatial refinement. Right: temporal refinement.

Drag and lift evaluations

Figure: Left: drag evaluation. Right: lift evaluation. Little oscillations are due to dynamic mesh refinement with non-robustness of pressure (Besier, Wollner, 2011) and treated with additional projections.

Performance studies

#DoF(primal)	#DoF(adjoint)	M	n_{k}	n_h		$J(U) - J(U_{kh})$	I_{eff}
17,800	96,600	20	$-9.3298 \cdot 10^{-6}$	$3.8542 \cdot 10^{-1}$	$3.8541 \cdot 10^{-1}$	$5.5752 \cdot 10^{-1}$	0.69
63,454	350,922	36	$-1.4015 \cdot 10^{-7}$	$2.6505 \cdot 10^{-1}$	$2.6505 \cdot 10^{-1}$	$2.6642 \cdot 10^{-1}$	0.99
230,032	1.294.482	64	$8.9182 \cdot 10^{-4}$	$-1.2571 \cdot 10^{-2}$	$1.1679 \cdot 10^{-2}$	$1.2586 \cdot 10^{-1}$	0.09
828,744	4.706.883	113	$-1.1615 \cdot 10^{-1}$	$7.6888 \cdot 10^{-2}$	$3.9265 \cdot 10^{-2}$	$2.5449 \cdot 10^{-2}$	1.54
3.004.686	17,251,722	199	$4.3194 \cdot 10^{-3}$	$1.9094 \cdot 10^{-2}$	$2.3414 \cdot 10^{-2}$	$1.9674 \cdot 10^{-2}$	1 1 9

Table 12: Adaptive refinement of mixed order on dynamic meshes for Navier-Stokes 2D-3 with divergence-free L² projection.

Table 13: Adaptive refinement of mixed order on dynamic meshes for Navier-Stokes 2D-3 with divergence-free H_0^1 projection.

Figure: Performance of adaptive refinements in terms of error reductions, estimator behavior and effectivity indices. Results from Roth, Thiele, Köcher, Wick, CMAM, 2023.

Adaptive time step control in FSI: computations ⁸

- Code verification: test code with the help of a manufactured solution (rarely possible!) or with a computationally-obtained referenced solution $\hat{U}_{ref} =: \hat{U}$.
- In this work: up to 1 444 384 **time steps** are used to obtain a numerically-obtained *U*; wall clock time > 31 **days** (serial computation in time and space)
- Numerical test: **FSI-2 benchmark (Hron/Turek, 2006)**
- Elastic beam immersed in a fluid (Navier-Stokes)

⁸Failer, Wick, JCP, 2018.

Adaptive time step control in FSI: results

- Goal functional: $J(\hat{U}) := \int_I \int_{\hat{\Gamma}_i \cup \hat{\Gamma}_{cyl}} -\hat{\sigma}_f \hat{n} e_1 d\hat{x} dt$
- Time step refinements after selected refinement rounds:

Fig. 8. Section 6.3.2: time step size k= plotted over time t after 1 (left) 3 (middle) and 6 (right) adaptive refinements for the FSL3 benchmark using the DMR time discretization error estimator with respect to %(II)

• Computation of effectivity indices:

Table: Effectivity indices I_{eff} for DWR time discretization error estimator with respect to $J(U)$ on adaptively refined time grids.

2+1D heat equation 9

- 1 Spatial domain $\Omega = (0,1)^2$ and temporal domain $I = (0,10)$
- ² Moving heat source of oscillating temperature that rotates around the midpoint of the spatial domain Ω
- ³ For this, we use the right-hand side function

$$
f(t,x) := \begin{cases} \sin(4\pi t) & \text{if } (x_1 - p_1)^2 + (x_2 - p_2)^2 < r^2, \\ 0 & \text{else,} \end{cases}
$$

with $x = (x_1, x_2)$, midpoint $p = (p_1, p_2) = (\frac{1}{2} + \frac{1}{4}\cos(2\pi t), \frac{1}{2} + \frac{1}{4}\sin(2\pi t))$ and radius of the trajectory $r = 0.125$.

Goal functional (distributed in time):

$$
J(u) := \frac{1}{10} \int_0^{10} \int_{\Omega} u(t, x)^2 dx dt
$$

⁹Fischer, Roth, Wick, Chamoin, Fau, 2023, arXiv.

FOM solution

Figure: Full-order solution snapshots for the 2+1D heat equation.

Goal functional evolution, error estimator, true error

Figure: Temporal evolution of the time interval-wise relative error estimator compared to the true error for the 2+1D heat equation.

Summary of performances

Table: Incremental reduced-order modeling summary for the 2+1D heat equation depending on the tolerance in the goal functional.

- ¹ Column 5: POD basis sizes for the primal and dual problem
- ² Column 6: (sorted according to the severity; first bad, ..., fourth best)

error > tol ∧ estimate < tol | error < tol ∧ estimate > tol

error > tol \land estimate > tol | error < tol \land estimate < tol.

Footing problem in a 3D porous medium (Biot equations)

Goal functional:

$$
J(U) := \int_I \int_{\Gamma_{\text{compression}}} p \, dx \, dt.
$$

Initial and boundary conditions:

$$
p(0) = p^{0} = 0 \quad \text{in } \Omega \times \{0\},
$$

\n
$$
u(0) = u^{0} = 0 \quad \text{in } \Omega \times \{0\},
$$

\n
$$
\frac{K}{v} \nabla_{x} p \cdot n = 0 \quad \text{on } \partial\Omega \setminus \Gamma_{\text{bottom}} \times I,
$$

\n
$$
\sigma(u) \cdot n = -\overline{t}e_{z} \quad \text{on } \Gamma_{\text{compression}} \times I,
$$

\n
$$
\sigma(u) \cdot n = 0 \quad \text{on } \Gamma_{\text{top}} \setminus \Gamma_{\text{compression}} \times I,
$$

\n
$$
p = 0 \quad \text{on } \Gamma_{\text{bottom}} \times I,
$$

\n
$$
u = 0 \quad \text{on } \Gamma_{\text{bottom}} \times I,
$$

\n
$$
\sigma(u) \cdot n = 0 \quad \text{on } \Gamma_{\text{wall}} \times I.
$$

Thomas Wick (Hannover)

Summary of performances¹⁰

Table: Performance of MORe DWR method for the 3D footing problem, depending on the tolerance in the goal functional.

¹ Column 5: primal (displacements, pressure) and adjoint (displacements, pressure)

¹⁰Fischer, Roth, Fau, Chamoin, Wheeler, Wick, 2023, arXiv.

Motivation

2 Space-time modeling

Space-time modeling of heat equation and Biot's system Galerkin finite element discretization Space-time modeling of fluid-structure interaction Galerkin finite element discretization of FSI

- 3 Space-time a posteriori goal-oriented error control
- 4 A posteriori goal-oriented error-controlled reduced-order modeling Reduced-order modeling The MORe DWR method
- 5 Numerical tests

6 Space-time variational material modeling (ongoing work)

Conclusions

Hamilton principle resulting into space-time modeling

- ¹ Thermodynamically consistent Hamilton functional
- ² Hamilton principle yields thermo-mechanically coupled models
- ³ State variables: displacements *u*, (velocities) *v*, internal variables *α*, and temperature *θ*
- ⁴ Specifically internal variables *α* are parts of new material models

¹¹Junker, Wick, Comp. Mech., 2023

Hamilton principle resulting into space-time modeling

- ¹ Thermodynamically consistent Hamilton functional
- ² Hamilton principle yields thermo-mechanically coupled models
- ³ State variables: displacements *u*, (velocities) *v*, internal variables *α*, and temperature *θ*
- ⁴ Specifically internal variables *α* are parts of new material models
- ⁵ **Holistic space-time Hamilton principle yields direct (formal) mathematically consistent space-time settings**
- \rightarrow Unifying framework for wave propagation, visco-elasticity, elasto-plasticity, gradient-enhanced damage / fracture¹¹
- → Time *t* does **not have a specified direction**; **seems to contradict causality**
- $\rightarrow u(0) = u_0$ and $v(0) = v_0$ become to $v(0) = v_0$ and $v(T) = v_T$ (assumption mechanical equilibrium; acceleration zero)
- ⁶ Current work (interest in this workshop): incompressible flow, thixotropy (time-dependent shear thinning property)

¹¹Junker, Wick, Comp. Mech., 2023

Space-time system: stationarity conditions of extended Hamilton functional

$$
\int_{I} \left(\int_{\Omega} \frac{\partial \Psi}{\partial \epsilon} : \delta \epsilon \, dx - \int_{\Omega} b^* \cdot \delta u \, dx - \int_{\partial \Omega} t^* \cdot \delta u \, dx \right) \, dt
$$
\n
$$
- \int_{I} \int_{\Omega} \rho \partial_{t} u \cdot \partial_{t} \delta u \, dx \, dt - \int_{I} \int_{\partial \Omega_{D,\mu}} c_{u} (u - u^*) \delta u \, ds \, dt + \int_{\partial I} \int_{\Omega} \rho \partial_{t} u^* \cdot \partial u \, dx \, ds = 0 \quad \forall \delta u
$$
\n
$$
\int_{I} \left(\int_{\Omega} \frac{\partial \Psi}{\partial \alpha} \cdot \delta \alpha \, dx + \int_{\Omega} \frac{\partial \Psi}{\partial \nabla \alpha} : \delta \nabla \alpha \, dx + \int_{\Omega} p^{diss,*} \cdot \delta \alpha \, dx \right) \, dt
$$
\n
$$
- \int_{I} \int_{\partial \Omega_{D,\alpha}} c_{\alpha} (\alpha - \alpha^*) \cdot \delta \alpha \, ds \, dt - \int_{\Omega} \tilde{r} (\alpha - \alpha_0^*) \cdot \delta \alpha \, dx |_{t=0} = 0 \quad \forall \delta \alpha
$$
\n
$$
\int_{I} \int_{\Omega} \int \frac{1}{\theta} \left(\kappa \partial_{t} \theta + \nabla \cdot q^{*} - \theta \frac{\partial^{2} \Psi}{\partial \theta \partial \epsilon(u)} : \partial_{t} \epsilon(u) + \left(\frac{\partial \Psi}{\partial \alpha} - \theta \frac{\partial^{2} \Psi}{\partial \theta \partial \alpha} \right) \cdot \partial_{t} \alpha \right) \delta \theta \, dt \, dx \, dt
$$
\n
$$
- \int_{I} \int_{\partial \Omega_{D,\theta}} c_{\theta} (\theta - \theta^{*}) \delta \theta \, dx \, dt - \int_{\Omega} \kappa (\theta - \theta_{0}^{*}) \delta \theta \, dx |_{t=0}
$$
\n
$$
- \int_{I} \int_{\partial \Omega_{N,\theta}} \int \frac{1}{\theta} n q^{*} \delta \theta \, dt \, ds \, dt = 0 \quad \forall \delta \theta
$$

Z

Strong form to 'see something' I

1 Find $u : \Omega \times I \to \mathbb{R}^d$, $v : \Omega \times I \to \mathbb{R}^d$ such that

$$
\rho \partial_t v - \nabla \cdot p^{diss,*} - \nabla \cdot \frac{\partial \Psi^f}{\partial (\nabla u + \nabla u^T)} + \nabla p = b^* \quad \text{in } \Omega \times I,
$$

$$
\rho \partial_t u - \rho v - \frac{\partial \Psi^f}{\partial v} - \nabla \cdot \frac{\partial \Psi^f}{\partial (\nabla v + \nabla v^T)} = 0.
$$

² Non-conservative forces and dissipation function:

$$
p^{diss,*} = \frac{\partial \Delta^{diss}}{\partial (\nabla v + \nabla v^T)}, \quad \Delta^{diss} = \frac{1}{2}\mu \| (\nabla v + \nabla v^T) \|^2 + \frac{1}{2}\lambda (\nabla \cdot v)^2
$$

3 Free energy density: $\Psi^f := \Psi^f(\nabla u, \nabla v, \gamma, \nabla \gamma, \theta)$

Strong form to 'see something' II: two models

1 **Model 1 (classical Navier-Stokes)**. Set $\Psi^f = 0$. Find $u : \Omega \times I \to \mathbb{R}^d$, $v : \Omega \times I \to \mathbb{R}^d$ such that

$$
\rho \partial_t v - \nabla \cdot (\mu (\nabla v + \nabla v^T) + \lambda \nabla \cdot vI) + \nabla p = b^* \quad \text{in } \Omega \times I,
$$

$$
\rho \partial_t u - \rho v = 0 \quad \text{in } \Omega \times I.
$$

² **Model 2**. Let the fluid potential be given by

$$
\Psi^f = \mu_\gamma e^{-\gamma} \frac{d}{dt} \frac{1}{2} ||(\nabla u + \nabla u^T)||^2 + \frac{1}{2} c \gamma^2
$$

and the dissipation function as

$$
\Delta^{diss} = \frac{1}{2}\mu \| (\nabla v + \nabla v^T) \|^2 + \frac{1}{2}\lambda (\nabla \cdot v)^2 + \frac{1}{2}\eta (\partial_t \gamma)^2.
$$

Find $u : \Omega \times I \to \mathbb{R}^d$, $v : \Omega \times I \to \mathbb{R}^d$ and the internal variable, i.e., viscosity parameter, $\gamma : \Omega \times I \to \mathbb{R}$ such that

$$
\rho \partial_t v - \nabla \cdot ((\mu + \mu_\gamma e^{-\gamma})(\nabla v + \nabla v^T) + \lambda \nabla \cdot vI) + \nabla p = b^* \quad \text{in } \Omega \times I,
$$

\n
$$
\rho \partial_t u - \rho v + \nabla \cdot (\mu_\gamma e^{-\gamma}(\nabla u + \nabla u^T)) = 0 \quad \text{in } \Omega \times I,
$$

\n
$$
\eta \partial_t \gamma - \mu_\gamma e^{-\gamma} \frac{d}{dt} \frac{1}{2} \| (\nabla u + \nabla u^T) \|^2 + c\gamma = 0 \quad \text{in } I.
$$

First numerical simulations

Figure: Model 1: left x-velocity, right pressure.

Figure: Model 2: left x-velocity v_x , middle pressure *p*, and viscosity γ at time $t = 100$ (top row) and $t = 400$ (bottom row).
Thomas Wick (Hannover) Space-Time Modeling, Discretization, Error Control, Simulations 63

Current questions from us (Junker, Wick)

- ¹ Relevance of this model?
- ² Relationship to known non-Newtonian flow models?
- ³ Correct functional framework / function spaces?
- 4 Sign $+\nabla \cdot (\mu_\gamma e^{-\gamma} (\nabla u + \nabla u^T))$?

Motivation

2 Space-time modeling

Space-time modeling of heat equation and Biot's system Galerkin finite element discretization Space-time modeling of fluid-structure interaction Galerkin finite element discretization of FSI

- 3 Space-time a posteriori goal-oriented error control
- 4 A posteriori goal-oriented error-controlled reduced-order modeling Reduced-order modeling The MORe DWR method
- 5 Numerical tests
- 6 Space-time variational material modeling (ongoing work)

Conclusions

Conclusions

Conclusions

- 1 Space-time formulations of single PDEs and coupled systems
- 2 Space-time Galerkin finite element discretizations
- 3 A posteriori goal-oriented error control with the dual-weighted residual method for time-distributed functionals (quantities of interest)
- 4 Incremental POD model order reduction by refining POD basis with previous error estimator
- 5 Variational material modeling

Key references of this work

- 1 P. Junker, T. Wick; Space-time variational material modeling: a new paradigm demonstrated for thermo-mechanically coupled wave propagation, visco-elasticity, elasto-plasticity with hardening, and gradient-enhanced damage, Computational Mechanics (CM), Aug 2023
- 2 Hendrik Fischer, Julian Roth, Ludovic Chamoin, Amelie Fau, Mary F. Wheeler, Thomas Wick; Adaptive space-time model order reduction with dual-weighted residual (MORe DWR) error control for poroelasticity, arXiv:2311.08907, 2023
- 3 Hendrik Fischer, Julian Roth, Thomas Wick, Ludovic Chamoin, Amelie Fau; MORe DWR: Space-time goal-oriented error control for incremental POD-based ROM, arXiv:2304.01140, 2023
- 4 J. Roth, J. P. Thiele, U. Köcher, T. Wick; Tensor-product space-time goal-oriented error control and adaptivity with partition-of-unity dual-weighted residuals for nonstationary flow problems, Computational Methods in Applied Mathematics (CMAM), Apr 2023
- 5 L. Failer, T. Wick; Adaptive Time-Step Control for Nonlinear Fluid-Structure Interaction, Journal of Computational Physics (JCP), Vol. 366, 2018, pp. 448 - 477

The end

Thank you very much!