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Examples & Setup

Consider an elastic plate interacting with a fluid

Ωη(t)

ω η(t)

or an elastic shell interacting with a fluid

Ωη

ω
ηn

The solid deforms in Lagrangian coordinates w.r.t. a reference state.
η : [0,T ]× ω → R.
The fluid by Eulerian coordinates on the time-changing geometry Ωη via
its velocity v : [0,T ]× Ωη → Rd and pressure p : [0,T ]× Ωη → R.
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The PDEs for thin solids

A perfect elastic solid is driven by its elastic energy E
hρs∂

2
t η(t) = −E ′(η(t)) + g in [0,T ]× ω.

a visco-elastic solid additionally by its dissipation potential R
hρs∂

2
t η(t) = −E ′(η(t))− D2R(η, ∂tη) + g in [0,T ]× ω.

We have the following dichotomies.

Visco-elasticity Elasticity

Plate Shell

Linear Non-linear

Normal displacement Free displacement

Linear plate: E ′(η) = α∆2η − β∆η, D2R(η, ∂tη) = α0∆
2∂tη − β0∆∂tη.

Linear shell: E ′(η) = α∆2η − Lη, D2R(η, ∂tη) = α0∆
2∂tη − L0∂tη.

Non-linear Koiter energy: G represents area and R curvature change

EK (η) =
h

4

�
ω
AG(η(t, .)) : G(η(t, .))dS +

h3

48

�
ω
AR(η(t, .)) : R(η(t, .))dS
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PDEs for fluid-strcuture interaction

The solid defines the fluid domain

hρs∂
2
t η(t) = −E ′(η(t)) + g + gf in [0,T ]× ω.

The movement of the Fluid is governed by Navier Stokes equation:

div(v) = 0, in [0,T ]× Ωη,

ρf (∂t(v) + div(v ⊗ v)) = µ∆v −∇p + f in [0,T ]× Ωη,

Physical quantities: h thickness of the shell, ρs solid density, ρf fluid
density µ fluid viscosity.
Coupling 1: Boundary values, v(η) = ∂tηn.
Coupling 2: Equilibrium of forces
gf (t, y) = −|n(η(t, y))|(I p − ν∇symv)(t, η(t, y))n(η(t, y)) · n(y)
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Weak formulation–coupled momentum equation

For all

(ξ(t),ψ(t)) ∈ H2(ω)× H1(Ωη) such that ξ(t, y) = ψ(t, η(t, y))

the following is satisfied1

d

dt

( �
Ωη

v ·ψdx +

�
ω
∂tηξ dS

)
−
�
Ωη

v · ∂tψ + v ⊗ v : ∇ψdx−
�
ω
∂tη ∂tξ dS

+

�
Ωη

(
∇symv : ∇symψ − p divψ

)
dx + ⟨E ′(η), ξ⟩ = ⟨f,ψ⟩Ωη

+ ⟨g , ξ⟩ω

Take (∂tη, v) as test function, then (by Korn’s inequality)

d

dt

(∥v(t)∥2L2(Ωη)

2
+

∥∂tη(t)∥2L2(ω)
2

+ E(η(t))
)
+

�
Ωη

|∇v|2 dx ≤ C (f, g)

1We set h = ρf = ρs = µ = 1.
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Existence results–Cauchy problem

Visco-elasticity Elasticity

Plate Shell

Linear Non-linear

Normal displacement Free displacement

Weak solutions to Navier-Stokes coupled with rather general thin solids are
available.

Plates: Chambolle, Desjardins, Esteban, Grandmont, ’05;
Grandmont, ’08

Visco-elastic linear shells: Muha, Canic ’13

Linear elastic shells: Lengeler, Ruzicka ’14

Nonlinear elastic shells: Muha, Sch, ’22

Nonlinear elastic plates with free displacement 2D: Kampschulte,
Sch, Sperone ’23
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Ladyzhenskaya-Prodi-Serrin condition

For 3D Navier-Stokes only conditional uniqueness is known.
If the Ladyzhenskaya-Prodi-Serrin condition

u ∈ Lr (0,T ; Ls(Ω)), 2
r +

3
s = 1, 2 ≤ r < ∞.

is satisfied, solutions are

Smooth (as was shown by Ladyzhenskaya)

Unique in the class of all weak solutions (as was shown by Prodi and
Serrin). This relates to weak-strong uniqueness.

The borderline case s = 3, r = ∞ is of particular interest: It suffices for
uniqueness if a smooth right hand side is considered (Kozono, Sohr ’96,
Escauriaza-Seregin-Sverak ’03), but non-uniqueness is known in case a
singular forcing is considered (Albritton-Brue-Colombo ’22).
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A first weak-strong uniqueness result

Theorem (Sch, Sorczinski ’22 (for plates))

Let (v1, p1, η1) and (v2, p2, η2) be weak solutions and assume for some
s > 3 that v2 ∈ L2(0,T ;W 1,s(Ωη2)) and ∂tv2 ∈ L2(0,T ;W−1,2(Ωη2)). If
v1(0) = v2(0), η1(0) = η2(0), ∂tη1(0) = ∂tη2(0) then
(v1, p1, η1) = (v2, p2, η2).

Previous works on uniqueness
1 Weak-strong uniqueness rigid body motions: (Glass, Sueur ’19), (Chemetov,

Necasova, Muha, ’19), (Kreml, Necasova, Piaseck ’20), (Necasova, Muha,
Radosevic ’21), time-periodic (Galdi ’22) .

2 Global existence of smooth for visco-elastic fluids in 2-D (including −∆∂tηt):
(Grandmont, Hillariet ’16).

3 Local existence of smooth solutions (2D): (Coutand, Shkoller ’06,’07), (Boulakia
’07), (Grandmont-Hillariet ’19).

4 Global existence with small data (bulk) (Chueshov, Lasiecka, Webster ’13).

5 Weak-strong uniqueness for compressible fluids interacting with (heat-conducting)
plates (Trifunovic ’23)
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Strategy for uniqueness

Strategy: Subtract the two systems and use the difference of solutions as
test-function.
First problem: The two geometries are different.
Solution: Use a change of variables. v2(t, x , y) = v2

(
t, x , η1(t,x)η2(t,x)

y
)

Second problem: This function is not divergence free.
Strategy 1: Use a Bogovskij operator: div(Bf ) = f in Ωη, f = 0 on ∂Ωη.
Problem with Bogovskij: How to estimate ∂tBf ?
Strategy 2: Direct approach use Piola transform , which conserves the
divergence.
Third problem: One cannot test.
Solution part 1: Test E2 (strong) with (η2 − η1, v2 − v1), E1 (weak) with
(η2,Pηv2) and add the energy inequality for (η1, v1).
Collected terms are formally well defined.
Solution part 2: The time-derivatives do not exist. E.g.: ⟨∆η1,∆∂tη2⟩ is
not defined.
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Distributional time derivative

Lemma (Sch, Sorczinski ’22 (for plates))

Let (v , η) be a weak solution.
If v ∈ L2(0,T ;W 1,s(Ωη(t))) for s ≥ 2 then

∂tv + [∇v ]v ∈ L2(0,T ; (W 1,q
0,div(Ωη(t)))

∗)

for any q ∈ (2,∞) if s = 2 and q = 2 if s > 2.
� T

0
⟨∂tv + [∇v ]v , φ⟩Ωη

dt = −
� T

0

�
Ωη(t)

∇v · ∇φ dx dt.

Moreover, the pair (∂tv + [∇v ]v , ∂2
t η) ∈ L2(0,T ;W∗) for

W = {(φ, b) ∈ W 1,q
div (Ωη(t))× H2(ω) : φ(t, x , η(x)) = (0, b(t, x))T}

The proof strongly relies on (Muha, Sch 2022): η ∈ L2(Hs) for s < 1
2
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Ladyzhenskaya-Prodi-Serrin condition for shells

For shells the Piola-transform is not well defined–a new strategy is needed:
Regularity implies uniqueness here.

Theorem (Breit, Mensah, Sch, Su 23’ for shells)

Let (v, η) be a weak solution to Navier-Stokes coupled to

∂2
t η −∆∂tη +∆2η = gf .

Suppose that

v ∈ Lr (I ; Ls(Ωη)),
2
r +

3
s ≤ 1, η ∈ L∞(I ;C 1(ω))

Then (v, η) is a strong solution.
Moreover, (v, η) is unique in the class of weak solutions satisfying the
energy inequality with Lipschitz deformation.

Regularity check: η ∈ H2 implies almost Lipschitz continuity.
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Proof strategy

The proof contains three independent results (all new for shells).

1 Local strong solutions. The existence of a smooth solution for short
times is constructed.

2 The acceleration estimate. As long as the
Ladyzhenskaya-Prodi-Serrin condition is satisfied and the
displacement of the shell stays C 1 in space, the solutions is a strong
solution. Here the viscosity of the shell is essential!

3 Weak-strong uniqueness. Finally, it is shown that the constructed
smooth solution is unique in the regime of weak solutions with
bi-Lipschitz-in-space shell displacement.
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Space regularity

The key to regularity in fluid-structure interaction is to improve the
time-regularity, as the steady Stokes theory is well established:

Theorem (Breit ’23)

Let p ∈ (1,∞), s ≥ 1 + 1
p and natural restrictions to ρ. Suppose that O is

a Bθ
ϱ,p-domain for some θ > s − 1/p with locally small Lipschitz constant,

RHS f ∈ W s−2,p(O) and compatible boundary value u∂ ∈ W s−1/p,p(∂O).
Then there is a unique solution (u, π) to the steady Stokes equation
satisfying

∥u∥W s,p(O) + ∥π∥W s−1,p(O) ≲ ∥f∥W s−2,p(O) + ∥u∂∥W s−1/p,p(∂O).
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Time-regularity

We follow (Grandmont, Hillairet ’16) and use the test-function
(∂2

t η, ∂tv + Fη(∂tη) · ∇v), where Fη is an extension operator into Ωη.
Observe that ∂2

t η is not a good test function for hyperbolic equations!
However, for the visco-elastic solid testing with ∂2

t η implies

�
ω

∣∣∂2
t η

∣∣2 + ∂t
|∇∂tη|2

2
dx =

�
ω
−gf ∂

2
t η + |∆∂tη|2 dx .

Further testing with −∆∂tη implies

�
ω
∂t

|∇∂tη|2 + |∇∆η|2

2
+ |∆∂tη|2 dx = −

�
ω
gf∆∂tη dx ,

this combination produces enough good terms on the left hand side to
close the estimate.
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Bogovskij for Lipschitz domains

Paying the price of assuming Lipschitz deformations we get the following
universal Bogovskij operator.

Theorem (Kampschulte, Sch, Sperone ’23)

There is a universal Bogovskij operator, such that for all Ωη with
∥∇η∥∞ ≤ CL, ∥η∥∞ ≤ L and b ∈ C∞

0 (Ω \ SL) with unit integral

B : C∞
0 (Ωη) → C∞

0 (Ωη;Rn) with divBf = f − b

�
f dx .

In addition ∥B(f )∥W s+1,p(Ωη ;Rn) ≤ C∥f ∥W s,p(Ωη)
with C independent of η.

In particular ∂tB(f χΩη) = B(∂t f χΩη) and B(∂t f χΩη) = 0 on ∂Ωη.

The proof strongly depends the uniform Lipschitz property. If its lost the
situation changes drastically (compare to Galdi ’11 and Saari, Sch, ’23)
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Strong solution for elastic plates

The time-regularity estimate strongly depends on the viscosity of the solid.
If the solid is purely elastic a different strategy is needed. This is already
true for short times (see M. Badra and T. Takahashi ’19, ’22)

Theorem (Sch, Su 23’)

An elastic beam ρs∂
2
t η + α∂4

xη − β∂2
xη = g interacting with the 2D

Navier-Stokes equation has a strong solution for arbitrary large times if no
collision appears.

Proof idea: Take the time-derivative of the whole coupled system.

Ωη(t)

ω η(t)
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Centre of analysis and numerics for
fluid-structure interactions at Charles University

https://fsi.karlin.mff.cuni.cz/

The Faculty of Mathematics and Physics of Charles University, Prague opens
two postdoc positionswithin the ERC-CZ Grant LL2105, supported by the
Ministry of Education, Youth and Sport of the Czech Republic: ”The interaction
of fluids and solids”, https://fsi.karlin.mff.cuni.cz/

The postdoc positions are for 3 years (1+2). The earliest possible start is
January 2024 and should be filled by October 2024.

In case of interest please send your application until 10.12.2023 by email to
schwarz@karlin.mff.cuni.cz. The application should be a single PDF file and
include a CV, a research statement and the copy of the PhD diploma or if not
available the master diploma. Two letters of recommendation should be sent
separately. We also have free PhD positions! In case of interest please
contact us!
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