Regularity for fluid-structure interactions and its relation to uniqueness

Sebastian Schwarzacher

Uppsala University & Charles University, Prague

in collaboration with D. Breit, P. R. Mensah, B. Muha, M. Sroczinski and P. Su

"Hot Topics: Recent Progress in Deterministic and Stochastic Fluid-Structure Interaction", Berkeley, December 7th 2023

Examples & Setup

Consider an elastic plate interacting with a fluid

or an elastic shell interacting with a fluid

The solid deforms in Lagrangian coordinates w.r.t. a reference state. $\eta : [0, T] \times \omega \rightarrow \mathbb{R}$. The fluid by Eulerian coordinates on the time-changing geometry Ω_n via its velocity $\mathsf{v}:[0,T]\times \Omega_\eta\to\mathbb{R}^d$ and pressure $\rho:[0,T]\times \Omega_\eta\to\mathbb{R}.$

The PDEs for thin solids

A perfect elastic solid is driven by its elastic energy $\mathcal E$ $h\rho_s \partial_t^2 \eta(t) = -\mathcal{E}'(\eta(t)) + g$ in $[0, T] \times \omega$.

a visco-elastic solid additionally by its dissipation potential $\mathcal R$

$$
h\rho_s \partial_t^2 \eta(t) = -\mathcal{E}'(\eta(t)) - D_2 \mathcal{R}(\eta, \partial_t \eta) + g \text{ in } [0, T] \times \omega.
$$

We have the following dichotomies.

Linear plate: $\mathcal{E}'(\eta) = \alpha \Delta^2 \eta - \beta \Delta \eta$, $D_2 \mathcal{R}(\eta, \partial_t \eta) = \alpha_0 \Delta^2 \partial_t \eta - \beta_0 \Delta \partial_t \eta$. Linear shell: $\mathcal{E}'(\eta) = \alpha \Delta^2 \eta - \mathcal{L} \eta$, $D_2 \mathcal{R}(\eta, \partial_t \eta) = \alpha_0 \Delta^2 \partial_t \eta - \mathcal{L}_0 \partial_t \eta$. Non-linear Koiter energy: G represents area and R curvature change

$$
\mathcal{E}_{K}(\eta) = \frac{h}{4} \int_{\omega} \mathcal{A}G(\eta(t,.)) : G(\eta(t,.)) dS + \frac{h^3}{48} \int_{\omega} \mathcal{A}R(\eta(t,.)) : R(\eta(t,.)) dS
$$

The PDEs for thin solids

A perfect elastic solid is driven by its elastic energy $\mathcal E$ $h\rho_s \partial_t^2 \eta(t) = -\mathcal{E}'(\eta(t)) + g$ in $[0, T] \times \omega$.

a visco-elastic solid additionally by its dissipation potential $\mathcal R$

$$
h\rho_s \partial_t^2 \eta(t) = -\mathcal{E}'(\eta(t)) - D_2 \mathcal{R}(\eta, \partial_t \eta) + g \text{ in } [0, T] \times \omega.
$$

We have the following dichotomies.

Linear plate: $\mathcal{E}'(\eta) = \alpha \Delta^2 \eta - \beta \Delta \eta$, $D_2 \mathcal{R}(\eta, \partial_t \eta) = \alpha_0 \Delta^2 \partial_t \eta - \beta_0 \Delta \partial_t \eta$. Linear shell: $\mathcal{E}'(\eta) = \alpha \Delta^2 \eta - \mathcal{L} \eta$, $D_2 \mathcal{R}(\eta, \partial_t \eta) = \alpha_0 \Delta^2 \partial_t \eta - \mathcal{L}_0 \partial_t \eta$. Non-linear Koiter energy: G represents area and R curvature change

$$
\mathcal{E}_{\mathcal{K}}(\eta) = \frac{h}{4} \int_{\omega} \mathcal{A}G(\eta(t,.)) : G(\eta(t,.)) dS + \frac{h^3}{48} \int_{\omega} \mathcal{A}R(\eta(t,.)) : R(\eta(t,.)) dS
$$

PDEs for fluid-strcuture interaction

The solid defines the fluid domain

$$
h\rho_s \partial_t^2 \eta(t) = -\mathcal{E}'(\eta(t)) + g + g_f \text{ in } [0, T] \times \omega.
$$

The movement of the Fluid is governed by Navier Stokes equation:

$$
\text{div}(\mathbf{v}) = 0, \qquad \text{in } [0, T] \times \Omega_{\eta},
$$

$$
\rho_f(\partial_t(\mathbf{v}) + \text{div}(\mathbf{v} \otimes \mathbf{v})) = \mu \Delta \mathbf{v} - \nabla p + \mathbf{f} \qquad \text{in } [0, T] \times \Omega_{\eta},
$$

Physical quantities: h thickness of the shell, ρ_s solid density, ρ_f fluid density μ fluid viscosity. Coupling 1: Boundary values, $\mathbf{v}(\eta) = \partial_t \eta \mathbf{n}$.

Coupling 2: Equilibrium of forces

 $g_f(t, y) = -\frac{ln(\eta(t, y))}{(\rho - \nu \nabla_{\text{sym}} \mathbf{v})(t, \eta(t, y))} \mathbf{n}(\eta(t, y)) \cdot \mathbf{n}(y)$

Weak formulation–coupled momentum equation

For all

$$
(\xi(t), \psi(t)) \in H^2(\omega) \times H^1(\Omega_\eta) \text{ such that } \xi(t, y) = \psi(t, \eta(t, y))
$$

the following is satisfied¹

$$
\frac{d}{dt} \left(\int_{\Omega_{\eta}} \mathbf{v} \cdot \psi \, dx + \int_{\omega} \partial_t \eta \xi \, dS \right) - \int_{\Omega_{\eta}} \mathbf{v} \cdot \partial_t \psi + \mathbf{v} \otimes \mathbf{v} : \nabla \psi \, dx - \int_{\omega} \partial_t \eta \, \partial_t \xi \, dS
$$
\n
$$
+ \int_{\Omega_{\eta}} \left(\nabla_{\text{sym}} \mathbf{v} : \nabla_{\text{sym}} \psi - p \operatorname{div} \psi \right) \, dx + \langle \mathcal{E}'(\eta), \xi \rangle = \langle \mathbf{f}, \psi \rangle_{\Omega_{\eta}} + \langle g, \xi \rangle_{\omega}
$$

Take $(\partial_t \eta, \mathbf{v})$ as test function, then (by Korn's inequality)

$$
\frac{d}{dt}\left(\frac{\|\mathbf{v}(t)\|_{L^2(\Omega_\eta)}^2}{2} + \frac{\|\partial_t\eta(t)\|_{L^2(\omega)}^2}{2} + \mathcal{E}(\eta(t))\right) + \int_{\Omega_\eta} |\nabla \mathbf{v}|^2 dx \leq C(\mathbf{f}, g)
$$

¹We set $h = \rho_f = \rho_s = \mu = 1$. Ω Schwarzacher **Regularity for FSI** 7.12.2023 5/17

Existence results–Cauchy problem

Weak solutions to Navier-Stokes coupled with rather general thin solids are available.

- Plates: Chambolle, Desjardins, Esteban, Grandmont, '05; Grandmont, '08
- **Visco-elastic linear shells**: Muha, Canic '13
- **Linear elastic shells:** Lengeler, Ruzicka '14
- Nonlinear elastic shells: Muha, Sch, '22
- Nonlinear elastic plates with free displacement 2D: Kampschulte, Sch, Sperone '23

Ladyzhenskaya-Prodi-Serrin condition

For 3D Navier-Stokes only conditional uniqueness is known. If the Ladyzhenskaya-Prodi-Serrin condition

$$
\mathbf{u}\in L^{r}(0,\,T;L^{s}(\Omega)),\qquad \frac{2}{r}+\frac{3}{s}=1,\qquad 2\leq r<\infty.
$$

is satisfied, solutions are

- Smooth (as was shown by Ladyzhenskaya)
- Unique *in the class of all weak solutions* (as was shown by Prodi and Serrin). This relates to weak-strong uniqueness.

The borderline case $s = 3$, $r = \infty$ is of particular interest: It suffices for uniqueness if a smooth right hand side is considered (Kozono, Sohr '96, Escauriaza-Seregin-Sverak '03), but non-uniqueness is known in case a singular forcing is considered (Albritton-Brue-Colombo '22).

A first weak-strong uniqueness result

Theorem (Sch, Sorczinski '22 (for plates))

Let (v_1, p_1, η_1) and (v_2, p_2, η_2) be weak solutions and assume for some $s>3$ that $v_2\in L^2(0,\,T;\,W^{1,s}(\Omega_{\eta_2}))$ and $\partial_t v_2\in L^2(0,\,T;\,W^{-1,2}(\Omega_{\eta_2}))$. If $v_1(0) = v_2(0), \eta_1(0) = \eta_2(0), \partial_t \eta_1(0) = \partial_t \eta_2(0)$ then $(v_1, p_1, \eta_1) = (v_2, p_2, \eta_2).$

Previous works on uniqueness

- **1** Weak-strong uniqueness rigid body motions: (Glass, Sueur '19), (Chemetov, Necasova, Muha, '19), (Kreml, Necasova, Piaseck '20), (Necasova, Muha, Radosevic '21), time-periodic (Galdi '22) .
- 2 Global existence of smooth for visco-elastic fluids in 2-D (including $-\Delta\partial_t n_t$): (Grandmont, Hillariet '16).
- ³ Local existence of smooth solutions (2D): (Coutand, Shkoller '06,'07), (Boulakia '07), (Grandmont-Hillariet '19).
- Global existence with small data (bulk) (Chueshov, Lasiecka, Webster '13).

⁵ Weak-strong uniqueness for compressible fluids interacting with (heat-conducting) plates (Trifunovic '23) $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ Ω Schwarzacher **Regularity for FSI** 7.12.2023 8/17

Strategy for uniqueness

Strategy: Subtract the two systems and use the difference of solutions as test-function.

First problem: The two geometries are different.

Solution: Use a change of variables. $\overline{v_2}(t,x,y) = v_2(t,x,\frac{\eta_1(t,x)}{\eta_2(t,x)})$ $\frac{\eta_1(t,x)}{\eta_2(t,x)}y$

Second problem: This function is not divergence free.

Strategy 1: Use a Bogovskij operator: div $(\beta f) = f$ in Ω_n , $f = 0$ on $\partial \Omega_n$. *Problem with Bogovskij:* How to estimate $\partial_t \mathcal{B}f$?

Strategy 2: Direct approach use Piola transform , which conserves the divergence.

Third problem: One cannot test.

Solution part 1: Test E_2 (strong) with $(\eta_2 - \eta_1, \nu_2 - \overline{\nu}_1)$, E_1 (weak) with $(\eta_2, \mathcal{P}_n v_2)$ and add the energy inequality for (η_1, v_1) .

Solution part 2: The time-derivatives do not exist. E.g.: $\langle \Delta \eta_1, \Delta \partial_t \eta_2 \rangle$ is not defined.

イロン イ部ン イヨン イヨン 一番

 QQ

Strategy for uniqueness

Strategy: Subtract the two systems and use the difference of solutions as test-function.

First problem: The two geometries are different.

Solution: Use a change of variables. $\overline{v_2}(t,x,y) = v_2(t,x,\frac{\eta_1(t,x)}{\eta_2(t,x)})$ $\frac{\eta_1(t,x)}{\eta_2(t,x)}y$ Second problem: This function is not divergence free.

Strategy 1: Use a Bogovskij operator: $\text{div}(\mathcal{B}f) = f$ in Ω_n , $f = 0$ on $\partial\Omega_n$. Problem with Bogovskij: How to estimate $\partial_t \mathcal{B}f$?

Strategy 2: Direct approach use Piola transform, which conserves the divergence.

Third problem: One cannot test.

Solution part 1: Test E_2 (strong) with $(\eta_2 - \eta_1, \nu_2 - \overline{\nu}_1)$, E_1 (weak) with $(\eta_2, \mathcal{P}_n v_2)$ and add the energy inequality for (η_1, v_1) .

Solution part 2: The time-derivatives do not exist. E.g.: $\langle \Delta \eta_1, \Delta \partial_t \eta_2 \rangle$ is not defined.

Strategy for uniqueness

Strategy: Subtract the two systems and use the difference of solutions as test-function.

First problem: The two geometries are different.

Solution: Use a change of variables. $\overline{v_2}(t,x,y) = v_2(t,x,\frac{\eta_1(t,x)}{\eta_2(t,x)})$ $\frac{\eta_1(t,x)}{\eta_2(t,x)}y$ Second problem: This function is not divergence free.

Strategy 1: Use a Bogovskij operator: $\text{div}(\mathcal{B}f) = f$ in Ω_n , $f = 0$ on $\partial\Omega_n$. Problem with Bogovskij: How to estimate $\partial_t \mathcal{B}f$?

Strategy 2: Direct approach use Piola transform, which conserves the divergence.

Third problem: One cannot test.

Solution part 1: Test E_2 (strong) with $(\eta_2 - \eta_1, \nu_2 - \overline{\nu}_1)$, E_1 (weak) with $(\eta_2, \mathcal{P}_n v_2)$ and add the energy inequality for (η_1, v_1) . Collected terms are formally well defined.

Solution part 2: The time-derivatives do not exist. E.g.: $\langle \Delta \eta_1, \Delta \partial_t \eta_2 \rangle$ is not defined.

K ロ ▶ K 個 ▶ K 글 ▶ K 글 ▶ │ 글 │ ◆) Q ⊙

Distributional time derivative

Lemma (Sch, Sorczinski '22 (for plates)) Let (v, η) be a weak solution. If $v\in L^2(0,\,T;\, W^{1,s}(\Omega_\eta(t)))$ for $s\geq 2$ then $\partial_t v + [\nabla v] v \in L^2(0,\, T; (W^{1,q}_{0,\mathrm{div}}(\Omega_\eta(t)))^*)$ for any $q \in (2,\infty)$ if $s = 2$ and $q = 2$ if $s > 2$. \int_0^T $\int_0^T\left\langle \partial_t v+[\nabla v]v,\varphi \right\rangle_{\Omega_\eta} dt=-\int_0^T$ 0 - $\Omega_\eta(t)$ $\nabla v \cdot \nabla \varphi$ dx dt. Moreover, the pair $(\partial_t v + [\nabla v]v, \partial_t^2 \eta) \in L^2(0, T; \mathcal{W}^*)$ for $\mathcal{W} = \{(\varphi,b)\in \mathcal{W}_{\rm div}^{1,q}(\Omega_\eta(t))\times H^2(\omega)\,:\, \varphi(t,x,\eta(x)) = (0,b(t,x))^{\mathsf{T}}\}$ The proof strongly relies on (Muha, Sch 2022): $\eta \in L^2(H^s)$ for $s < \frac{1}{2}$ 2

Ladyzhenskaya-Prodi-Serrin condition for shells

For shells the Piola-transform is not well defined–a new strategy is needed: Regularity implies uniqueness here.

Theorem (Breit, Mensah, Sch, Su 23' for shells) Let (v, η) be a weak solution to Navier-Stokes coupled to

$$
\partial_t^2 \eta - \Delta \partial_t \eta + \Delta^2 \eta = g_f.
$$

Suppose that

$$
\mathbf{v} \in L^r(I; L^s(\Omega_\eta)), \quad \frac{2}{r} + \frac{3}{s} \leq 1, \quad \eta \in L^\infty(I; C^1(\omega))
$$

Then (v, η) is a strong solution.

Moreover, (v, η) is unique in the class of weak solutions satisfying the energy inequality with Lipschitz deformation.

Regularity check: $\eta \in H^2$ implies almost Lipschitz continuity.

The proof contains three independent results (all new for shells).

- **Q** Local strong solutions. The existence of a smooth solution for short times is constructed.
- **2** The acceleration estimate. As long as the Ladyzhenskaya-Prodi-Serrin condition is satisfied and the displacement of the shell stays C^1 in space, the solutions is a strong solution. Here the viscosity of the shell is essential!
- **3 Weak-strong uniqueness.** Finally, it is shown that the constructed smooth solution is unique in the regime of weak solutions with bi-Lipschitz-in-space shell displacement.

The key to regularity in fluid-structure interaction is to improve the time-regularity, as the steady Stokes theory is well established:

Theorem (Breit '23)

Let $p\in (1,\infty)$, $s\geq 1+\frac{1}{p}$ and natural restrictions to $\rho.$ Suppose that ${\cal O}$ is a $\textbf{B}_{\varrho, \rho}^{\theta}$ -domain for some $\theta > s - 1/\rho$ with locally small Lipschitz constant, RHS $f \in W^{s-2,p}(\mathcal{O})$ and compatible boundary value $\mathbf{u}_{\partial} \in W^{s-1/p,p}(\partial \mathcal{O})$. Then there is a unique solution (\mathbf{u}, π) to the steady Stokes equation satisfying

$$
\|{\mathbf u}\|_{W^{s,p}(\mathcal O)}+\|\pi\|_{W^{s-1,p}(\mathcal O)}\lesssim \|{\mathbf f}\|_{W^{s-2,p}(\mathcal O)}+\|{\mathbf u}_\partial\|_{W^{s-1/p,p}(\partial\mathcal O)}.
$$

 Ω

∢ ロ ▶ (御 ▶ (唐 ▶ (唐 ▶)

Time-regularity

We follow (Grandmont, Hillairet '16) and use the test-function $(\partial_t^2\eta,\partial_t{\sf v}+{\sf F}_\eta(\partial_t\eta)\cdot\nabla{\sf v}),$ where ${\sf F}_\eta$ is an extension operator into $\Omega_\eta.$ Observe that $\partial_t^2\eta$ is not a good test function for hyperbolic equations! However, for the visco-elastic solid testing with $\partial_t^2\eta$ implies

$$
\int_{\omega} \left| \partial_t^2 \eta \right|^2 + \partial_t \frac{|\nabla \partial_t \eta|^2}{2} dx = \int_{\omega} -g_f \partial_t^2 \eta + |\Delta \partial_t \eta|^2 dx.
$$

Further testing with $-\Delta\partial_t\eta$ implies

$$
\int_{\omega} \partial_t \frac{|\nabla \partial_t \eta|^2 + |\nabla \Delta \eta|^2}{2} + |\Delta \partial_t \eta|^2 \, dx = - \int_{\omega} g_f \Delta \partial_t \eta \, dx,
$$

this combination produces enough good terms on the left hand side to close the estimate.

 200

イロメ イ部メ イヨメ イヨメー

Time-regularity

We follow (Grandmont, Hillairet '16) and use the test-function $(\partial_t^2\eta,\partial_t{\sf v}+{\sf F}_\eta(\partial_t\eta)\cdot\nabla{\sf v}),$ where ${\sf F}_\eta$ is an extension operator into $\Omega_\eta.$ Observe that $\partial_t^2\eta$ is not a good test function for hyperbolic equations! However, for the visco-elastic solid testing with $\partial_t^2\eta$ implies

$$
\int_{\omega} \left| \partial_t^2 \eta \right|^2 + \partial_t \frac{\left| \nabla \partial_t \eta \right|^2}{2} \, dx = \int_{\omega} -g_f \partial_t^2 \eta + \left| \Delta \partial_t \eta \right|^2 \, dx.
$$

Further testing with $-\Delta\partial_t\eta$ implies

$$
\int_{\omega} \partial_t \frac{|\nabla \partial_t \eta|^2 + |\nabla \Delta \eta|^2}{2} + |\Delta \partial_t \eta|^2 \, dx = -\int_{\omega} g_f \Delta \partial_t \eta \, dx,
$$

this combination produces enough good terms on the left hand side to close the estimate.

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Bogovskij for Lipschitz domains

Paying the price of assuming Lipschitz deformations we get the following universal Bogovskij operator.

Theorem (Kampschulte, Sch, Sperone '23)

There is a universal Bogovskij operator, such that for all Ω_n with $\|\nabla\eta\|_\infty\leq \mathcal{C}_L$, $\|\eta\|_\infty\leq L$ and $b\in \mathcal{C}_0^\infty(\Omega\setminus S_L)$ with unit integral

$$
\mathcal{B}: C_0^{\infty}(\Omega_\eta) \to C_0^{\infty}(\Omega_\eta; \mathbb{R}^n) \text{ with } \text{div}\mathcal{B}f = f - b \int f \, dx.
$$

In addition $||\mathcal{B}(f)||_{W^{s+1,p}(\Omega_n;\mathbb{R}^n)} \leq C||f||_{W^{s,p}(\Omega_n)}$ with C independent of η .

In particular $\partial_t \mathcal{B}(f\chi_{\Omega_\eta})=\mathcal{B}(\partial_t f\chi_{\Omega_\eta})$ and $\mathcal{B}(\partial_t f\chi_{\Omega_\eta})=0$ on $\partial\Omega_\eta.$

The proof strongly depends the uniform Lipschitz property. If its lost the situation changes drastically (compare to Galdi '11 and Saari, Sch, '23)

KOD KARD KED KED ORA

Bogovskij for Lipschitz domains

Paying the price of assuming Lipschitz deformations we get the following universal Bogovskij operator.

Theorem (Kampschulte, Sch, Sperone '23)

There is a universal Bogovskij operator, such that for all Ω_n with $\|\nabla\eta\|_\infty\leq \mathcal{C}_L$, $\|\eta\|_\infty\leq L$ and $b\in \mathcal{C}_0^\infty(\Omega\setminus S_L)$ with unit integral

$$
\mathcal{B}: C_0^{\infty}(\Omega_\eta) \to C_0^{\infty}(\Omega_\eta; \mathbb{R}^n) \text{ with } \text{div}\mathcal{B}f = f - b \int f \, dx.
$$

In addition $||\mathcal{B}(f)||_{W^{s+1,p}(\Omega_n;\mathbb{R}^n)} \leq C||f||_{W^{s,p}(\Omega_n)}$ with C independent of η .

In particular $\partial_t \mathcal{B}(f\chi_{\Omega_\eta})=\mathcal{B}(\partial_t f\chi_{\Omega_\eta})$ and $\mathcal{B}(\partial_t f\chi_{\Omega_\eta})=0$ on $\partial\Omega_\eta.$

The proof strongly depends the uniform Lipschitz property. If its lost the situation changes drastically (compare to Galdi '11 and Saari, Sch, '23)

K ロ ⊁ K 御 ⊁ K 君 ⊁ K 君 ⊁ …

Strong solution for elastic plates

The time-regularity estimate strongly depends on the viscosity of the solid. If the solid is purely elastic a different strategy is needed. This is already true for short times (see M. Badra and T. Takahashi '19, '22)

An elastic beam $\rho_{\rm s}\partial_t^2\eta+\alpha\partial_{\rm x}^4\eta-\beta\partial_{\rm x}^2\eta=g$ interacting with the 2D Navier-Stokes equation has a strong solution for arbitrary large times if no collision appears.

Proof idea: Take the time-derivative of the whole coupled system.

 200

イロト イ押ト イヨト イヨト

Strong solution for elastic plates

The time-regularity estimate strongly depends on the viscosity of the solid. If the solid is purely elastic a different strategy is needed. This is already true for short times (see M. Badra and T. Takahashi '19, '22)

Theorem (Sch, Su 23')

An elastic beam $\rho_{\sf s}\partial_{\sf t}^2\eta+\alpha\partial_{\sf x}^4\eta-\beta\partial_{\sf x}^2\eta={\sf g}$ interacting with the 2D Navier-Stokes equation has a strong solution for arbitrary large times if no collision appears.

Proof idea: Take the time-derivative of the whole coupled system.

 200

Centre of analysis and numerics for fluid-structure interactions at Charles University

https://fsi.karlin.mff.cuni.cz/

The Faculty of Mathematics and Physics of Charles University, Prague opens **two postdoc positions**within the **ERC-CZ Grant LL2105**, supported by the Ministry of Education, Youth and Sport of the Czech Republic: *"The interaction of fluids and solids", https://fsi.karlin.mff.cuni.cz/*

The **postdoc positions** are for **3 years** (1+2). The earliest possible start is January 2024 and should be filled by October 2024.

In case of interest please send your application until **10.12.2023** by email to **schwarz@karlin.mff.cuni.cz**. The application should be a single PDF file and include a CV, a research statement and the copy of the PhD diploma or if not available the master diploma. Two letters of recommendation should be sent separately. **We also have free PhD positions! In case of interest please contact us!**

K ロ ▶ K 伺 ▶ K ヨ ▶ K ヨ ▶