A Mixed Variational Formulation for the Qualitative and Quantitaive Analysis of a Certain Compressible Flow $-$ Incompressible Fluid PDE Interaction

> George Avalos, University of Nebraska-Lincoln Paula Egging, University of Nebraska-Lincoln

Workshop on Recent Progress in Deterministic and Stochastic Fluid-Structure Interaction

SLMath, December 6, 2023

Introduction

Wellposedness and Numerical Results for a Fluid-Fluid Model

George Avalos and Paula Egging

Partial differential equations (PDEs) can be used to model natural phenomena, including:

- Sound waves
- Heat dispersion
- **•** Thermodynamics
- **•** Fluid dynamics

And our present concern

• Ocean-atmosphere interaction, inspired by an internship project at Argonne National l ab.

Figure: freeimages.com/display/ \Box ocean water sky sea \Box htm \Box

Introduction

Wellposedness and Numerical Results for a Fluid-Fluid Model

George Avalos and Paula Egging

Historically, semigroup generation in 3-D fluid-structure interaction models have been well-studied, including

- I. Chueshov, I. Ryzhkova, A global attractor for a fluid-plate interaction model, 2013.
- **O** I. Chueshov, I. Lasiecka, J. T. Webster, Flow-plate interactions: Well-posedness and long-time behavior, 2014.
- L. Bociu, L. Castle, K. Martin, and D. Toundykov, Optimal Control in a Free Boundary Fluid-Elasticity Interaction, 2015.
- G. Avalos, P. G. Geredeli, J. T. Webster, Semigroup Well-posedness of A Linearized, Compressible Fluid with An Elastic Boundary, 2018.
- G. Avalos, P. G. Geredeli and B. Muha, Rational Decay of A Multilayered Structure-Fluid PDE System, 2022.

But the extension of similar techniques to fluid-fluid interaction has remained relatively untouched.

George Avalos and Paula Egging Wellposedness and Numerical Results for a Fluid-Fluid Model

 $\alpha \alpha$

The \mathbf{u}^+ , \mathbf{u}^- represent *velocity* of the fluid in Ω^+, Ω^- . The p^+, p^- represent *pressure* in Ω^+, Ω^- , respectively. Additionally, U is a steady state solution to Navier-Stokes about which we linearize, and $\sigma(\mathbf{u}^+)$ is the *stress tensor* of u^+ . Ω

Our Model

Wellposedness and Numerical Results for a Fluid-Fluid Model

George Avalos and Paula Egging

For variables $[\mathbf{u}^+, p^+, \mathbf{u}^-, p^-]$, consider the system:

$$
\begin{cases} \mathbf{u}_t^+ + \mathbf{U} \cdot \nabla \mathbf{u}^+ - \mathrm{div} \, \sigma(\mathbf{u}^+) + \nabla p^+ = 0 & \text{on } \Omega^+ \times (0,T), \\ p_t^+ + \mathbf{U} \cdot \nabla p^+ + \mathrm{div}(\mathbf{u}^+) = 0 & \text{on } \Omega^+ \times (0,T), \\ \mathbf{u}^+ = 0 & \text{on } (\partial \Omega^+ \setminus \Gamma) \times (0,T), \end{cases}
$$

(a compressible fluid evolving in time on Ω^+ (1)

$$
\begin{cases} \mathbf{u}_t^- - \Delta \mathbf{u}^- + \nabla p^- = 0 & \text{on } \Omega^- \times (0,T), \\ \mathsf{div}(\mathbf{u}^-) = 0 & \text{on } \Omega^- \times (0,T), \\ \mathbf{u}^- = 0 & \text{on } (\partial \Omega^- \setminus \Gamma) \times (0,T), \end{cases}
$$

(an incompressible fluid evolving in time on Ω^-) $^{-})$ (2)

$$
\begin{cases}\n\mathbf{u}^+ = \mathbf{u}^- & \text{on } \Gamma \times (0, T), \\
\sigma(\mathbf{u}^+) \vec{\nu} - p^+ \vec{\nu} = \frac{\partial \mathbf{u}^-}{\partial \vec{\nu}} - p^- \vec{\nu} & \text{on } \Gamma \times (0, T), \\
\mathbf{u}^+(t=0) = \mathbf{u}_0^+; \ \mathbf{u}^-(t=0) = \mathbf{u}_0^-.\n\end{cases}
$$
\n(boundary and initial conditions)

Elimination of Pressure in Ω^-

Wellposedness and Numerical Results for a Fluid-Fluid Model

George Avalos and Paula Egging

We eliminate p^{\pm} by identifying it as the solution to the boundary value problem

$$
\begin{cases}\n\Delta p^{-} = 0 & \text{on } \Omega^{-} \times (0, T), \\
p^{-} = \frac{\partial \mathbf{u}^{-}}{\partial \vec{\nu}} \cdot \vec{\nu} - [\sigma(\mathbf{u}^{+})\vec{\nu}] \cdot \vec{\nu} + p^{+} & \text{on } \Gamma \times (0, T), \\
\frac{\partial p^{-}}{\partial \vec{\nu}} = \Delta \mathbf{u}^{-} \cdot \vec{\nu} & \text{on } \partial \Omega^{-} \setminus \Gamma \times (0, T),\n\end{cases}
$$
\n(4)

which is derived from $(??)$ - $(??)$.

イロメ イ御 メイモメ イモメ

Elimination of Pressure in Ω^-

Wellposedness and Numerical Results for a Fluid-Fluid Model

George Avalos and Paula Egging

Let the Dirichlet and Neumann maps, respectively, be given by

$$
\mathbf{h} = D_s(\mathbf{g}) \iff \begin{cases} \Delta \mathbf{h} = \mathbf{0} & \text{ on } \Omega^-, \\ \mathbf{h} = \mathbf{g} & \text{ on } \Gamma, \\ \frac{\partial \mathbf{h}}{\partial \vec{\nu}} = \mathbf{0} & \text{ on } \partial \Omega^- \setminus \Gamma, \end{cases}
$$

and

$$
\mathbf{h} = N_s(\mathbf{g}) \iff \begin{cases} \Delta \mathbf{h} = \mathbf{0} & \text{on } \Omega^-, \\ \mathbf{h} = \mathbf{0} & \text{on } \Gamma, \\ \frac{\partial \mathbf{h}}{\partial \vec{\nu}} = \mathbf{g} & \text{on } \partial \Omega^- \setminus \Gamma, \end{cases}
$$

イロメ イ御 メイモメ イモメ George Avalos and Paula Egging Wellposedness and Numerical Results for a Fluid-Fluid Model

Elimination of Pressure in Ω^-

Wellposedness and Numerical Results for a Fluid-Fluid Model

George Avalos and Paula Egging

In consideration of the boundary conditions in (??),

$$
p^{-}(t) = D_s \left(\frac{\partial \mathbf{u}^{-}(t)}{\partial \vec{\nu}} \cdot \vec{\nu} - [\sigma(\mathbf{u}^{+}(t))\vec{\nu}] \cdot \vec{\nu} + p^{+}(t) \right) + N_s(\Delta \mathbf{u}^{-}(t) \cdot \vec{\nu}) \in L^2(\Omega^-)
$$

Then with

$$
G_1 \mathbf{u}^- = -\nabla \left(D_s \left(\frac{\partial \mathbf{u}^-}{\partial \vec{\nu}} \cdot \vec{\nu} \right) + N_s (\Delta \mathbf{u}^- \cdot \vec{\nu}) \right),
$$

\n
$$
G_2 \mathbf{u}^+ = -\nabla \left(D_s \left([\sigma(\mathbf{u}^+) \vec{\nu}] \cdot \vec{\nu} \right) \right); \quad G_3 p^+ = -\nabla (D_s(p^+)),
$$

we identify

$$
\nabla p^{-} = -G_1 \mathbf{u}^{-} - G_2 \mathbf{u}^{+} - G_3 p^{+} \text{ in } \Omega^{-} \times (0, T).
$$

So we have ∇p^- in terms of ${\bf u}^+$, p^+_{\Box} , and , ${\bf u}^-_{\Box}$ George Avalos and Paula Egging Wellposedness and Numerical Results for a Fluid-Fluid Model

Our Model

Wellposedness and Numerical Results for a Fluid-Fluid Model

George Avalos and Paula Egging

To determine the semigroup, consider the system again

$$
\begin{cases}\n\mathbf{u}_t^+ + \mathbf{U} \cdot \nabla \mathbf{u}^+ - \text{div} \, \sigma(\mathbf{u}^+) + \nabla p^+ = 0 & \text{ on } \Omega^+ \times (0, T), \\
p_t^+ + \mathbf{U} \cdot \nabla p^+ + \text{div}(\mathbf{u}^+) = 0 & \text{ on } \Omega^+ \times (0, T), \\
\mathbf{u}^+ = 0 & \text{ on } (\partial \Omega^+ \setminus \Gamma) \times (0, T),\n\end{cases}
$$

$$
\begin{cases}\n\mathbf{u}_t^- - \Delta \mathbf{u}^- + \nabla p^- = 0 & \text{on } \Omega^- \times (0, T), \\
\text{div}(\mathbf{u}^-) = 0 & \text{on } \Omega^- \times (0, T), \\
\mathbf{u}^- = 0 & \text{on } (\partial \Omega^- \setminus \Gamma) \times (0, T),\n\end{cases}
$$

$$
\begin{cases}\n\mathbf{u}^+ = \mathbf{u}^- \\
\sigma(\mathbf{u}^+) \vec{\nu} - p^+ \vec{\nu} = \frac{\partial \mathbf{u}^-}{\partial \vec{\nu}} - p^- \vec{\nu} \\
\mathbf{u}^+(t=0) = \mathbf{u}_0^+; \ \mathbf{u}^-(t=0) = \mathbf{u}_0^-. \n\end{cases}
$$

on $\Gamma \times (0,T)$, on $\Gamma \times (0, T)$,

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

Semigroup Generation

Wellposedness and Numerical Results for a Fluid-Fluid Model

George Avalos and Paula Egging

Keeping time derivatives on left and moving everything else to RHS, we have

$$
\begin{cases} \mathbf{u}_t^+ = -\mathbf{U} \cdot \nabla \mathbf{u}^+ + \mathrm{div} \, \sigma(\mathbf{u}^+) - \nabla p^+ & \text{ on } \Omega^+ \times (0, T), \\ p_t^+ = -\mathrm{div}(\mathbf{u}^+) - \mathbf{U} \cdot \nabla p^+ & \text{ on } \Omega^+ \times (0, T), \\ \mathbf{u}_t^- = G_2 \mathbf{u}^+ + G_3 p^+ + \Delta \mathbf{u}^- + G_1 \mathbf{u}^- & \text{ on } \Omega^- \times (0, T). \end{cases}
$$

This is equivalent to the following system of equations

$$
\begin{split} &\frac{d}{dt} \begin{bmatrix} \mathbf{u}^+ \\ p^+ \\ \mathbf{u}^- \end{bmatrix} = \begin{bmatrix} -\mathbf{U} \cdot \nabla \mathbf{u}^+ + \operatorname{div} \sigma (\mathbf{u}^+) - \nabla p^+ \\ -\operatorname{div} (\mathbf{u}^+) - \mathbf{U} \cdot \nabla p^+ \\ G_2 \mathbf{u}^+ + G_3 p^+ + \Delta \mathbf{u}^- + G_1 \mathbf{u}^- \end{bmatrix} \\ &= \begin{bmatrix} -\mathbf{U} \cdot \nabla (\cdot) + \operatorname{div} \sigma (\cdot) & -\nabla (\cdot) & 0 \\ -\operatorname{div} (\cdot) & -\mathbf{U} \cdot \nabla (\cdot) & 0 \\ G_2 & G_3 & \Delta (\cdot) + G_1 \end{bmatrix} \begin{bmatrix} \mathbf{u}^+ \\ p^+ \\ \mathbf{u}^- \end{bmatrix} . \\ & \text{hopeful semigroup generator, } A_{\text{superscript}} \, \mathbf{u}^+ + \mathbf{u}^+ + \mathbf{u}^- + \mathbf{u}^+ + \mathbf{u}^- + \mathbf{u}^+ + \mathbf{u}^- + \mathbf{u}^+ + \mathbf{u}^- + \mathbf{u}^+ + \mathbf{u}^- + \mathbf{u}^- + \mathbf{u}^+ + \mathbf{u}^- + \mathbf{u}^+ + \mathbf{u}^- + \mathbf{u}^+ + \mathbf{u}^- + \mathbf{u}^+ + \mathbf{u}^- + \mathbf{u}^- + \mathbf{u}^+ + \mathbf{u}^- + \mathbf{u}^- + \mathbf{u}^- + \mathbf{u}^- + \mathbf{u}^- + \mathbf{u}^- + \mathbf{
$$

George Avalos and Paula Egging **Wellposedness and Numerical Results for a Fluid-Fluid Model**

Domain of Semigroup

Wellposedness and Numerical Results for a Fluid-Fluid Model

George Avalos and Paula Egging

We carefully choose the domain, $\mathcal{D}(\mathcal{A})$, to ensure the necessary regularity of solutions and that A is, indeed, a maximal dissipative generator.

Let the space of finite energy be

$$
\mathcal{H} = \mathbf{L}^2(\Omega^+) \times L^2(\Omega^+) \times \{ \mathbf{f} \in \mathbf{L}^2(\Omega^-) : \text{div}(\mathbf{f}) = 0
$$

and $\mathbf{f} \cdot \vec{\nu}|_{\partial \Omega^- \setminus \Gamma} = 0 \}.$

A few key properties include

 \bullet $\mathcal{D}(\mathcal{A}) \subset \mathcal{H}$ $\mathcal{D}(\mathcal{A})\subset \mathbf{H}^1_{\partial \Omega^+\backslash \Gamma}(\Omega^+)\times L^2(\Omega^+)\times \mathbf{H}^1_{\partial \Omega^-\backslash \Gamma}(\Omega^-)$

$$
\bullet\ \mathbf{u}^+ = \mathbf{u}^- \text{ on } \Gamma
$$

 $[\mathbf{u}^+, p^+, \mathbf{u}^-] \in \mathcal{D}(\mathcal{A})$ if there exists a $p^- \in L^2(\Omega^-)$ such that $\nabla p^{-}=-G_{1}\mathbf{u}^{-}-G_{2}\mathbf{u}^{+}=\overline{G_{3}p^{+}}.$

Main Theorem

Wellposedness and Numerical Results for a Fluid-Fluid Model

George Avalos and Paula Egging

Theorem (P.E., G. A., 2022)

- (i) The operator $A: \mathcal{D}(\mathcal{A}) \subset \mathcal{H} \to \mathcal{H}$ is maximal dissipative. Therefore, by the Lumer-Phillips Theorem, it generates a C_0 -semigroup of contractions $\{e^{\mathcal{A}t}\}_{t\geq 0}$ on $\mathcal{H}.$
- (ii) In particular, let $\lambda > 0$ and $[\mathbf{f}, g, \mathbf{h}] \in \mathcal{H}$ be given. (By part (i), there exists $[\mathbf{u}^+, p^+, \mathbf{u}^-] \in \mathcal{D}(\mathcal{A})$ which solves $(\lambda I - A)[\mathbf{u}^+, p^+, \mathbf{u}^-] = [\mathbf{f}, g, \mathbf{h}].$ Then \mathbf{u}^- and p^- can be characterized as the solution to a certain variational system, while \mathbf{u}^+ and p^+ can be characterized by

$$
\mathbf{u}^+ = \mu_\lambda(\mathbf{u}^-) + \tilde{\mu}([\mathbf{f}, g]^T)
$$

$$
p^+ = q_\lambda(\mathbf{u}^-) + \tilde{q}([\mathbf{f}, g]^T),
$$

where $[\mu_{\lambda}, q_{\lambda}]$ and $[\tilde{\mu}, \tilde{q}]$ are (to be given) mappings.

 $\sqrt{100}$

イロン イミン イモン

Outline

Wellposedness and Numerical Results for a Fluid-Fluid Model

George Avalos and Paula Egging

The proof strategy for Part (i) is:

- \bullet Show $\mathcal A$ is maximal dissipative.
- **2** Apply the classical Lumer-Phillips Theorem to obtain a C_0 -semigroup of contractions, $\{e^{\mathcal{A}t}\}.$
- \bullet This allows for solutions $[\mathbf{u}^+(t), p^+(t), \mathbf{u}^-(t)]$ of $(??)$ -(??) to be obtained by applying $\{e^{\mathcal{A}t}\}$ to initial data $[\mathbf{u}_0^+, p^+(t=0), \mathbf{u}_0^-]$.

The characterizations of $\mathbf{u}^+, \, p^+, \, \mathbf{u}^-,$ and p^- given in Part (ii) are obtained within the proof of Part (i).

イロト イタト イチト イチト

つのへ

Slight Caveat..

Wellposedness and Numerical Results for a Fluid-Fluid Model

George Avalos and Paula Egging

There is a slight caveat... A , as defined, is not actually dissipative due to the non-zero U.

However, the bounded perturbation

$$
\hat{\mathcal{A}} = \mathcal{A} - \frac{\text{div}(\mathbf{U})}{2} \begin{bmatrix} I & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ \ \mathcal{D}(\hat{\mathcal{A}}) = \mathcal{D}(\mathcal{A}),
$$

IS dissipative.

The standard perturbation result in Kato ([?]) can be applied to $\hat{\mathcal{A}}$, yielding semigroup generation for the original A.

イロメ イ母 トラ ミュース

Dissipativity

Wellposedness and Numerical Results for a Fluid-Fluid Model

George Avalos and Paula Egging

The proof of dissipativity is actually kinda cute. It involves Green's Identities, using boundary conditions, $\mathsf{div}(\mathbf{u}^\perp)=0$, and some vector identities, to eventually get down to

$$
\begin{array}{ll} \operatorname{Re}\left(\hat{{\mathcal A}}\begin{bmatrix} {\mathbf u}^+\\ p^+\\ {\mathbf u}^- \end{bmatrix}, \begin{bmatrix} {\mathbf u}^+\\ p^+\\ {\mathbf u}^- \end{bmatrix}\right)_{\mathcal H} \\ = -(\sigma({\mathbf u}^+), \epsilon({\mathbf u}^+))_{\Omega^+} - ||\nabla{\mathbf u}^-||_{\Omega^-}^2 \leq 0, \end{array}
$$

as desired.

(This is not the hard part of the proof.)

イロメ イ母 トラ ミュース

Maximality

Wellposedness and Numerical Results for a Fluid-Fluid Model

George Avalos and Paula Egging

To show maximality of \hat{A} on $\hat{\mathcal{H}}$, we establish the *range* condition:

 $Range(\lambda I - \hat{\mathcal{A}}) = \mathcal{H}$ for λ sufficiently large.

That is, for any $[\mathbf{f}, g, \mathbf{h}] \in \mathcal{H}$, there is a solution $[\mathbf{u}^+, p^+, \mathbf{u}^-]$ to

$$
(\lambda I - \hat{\mathcal{A}}) \begin{bmatrix} \mathbf{u}^+ \\ p^+ \\ \mathbf{u}^- \end{bmatrix} = \begin{bmatrix} \mathbf{f} \\ g \\ \mathbf{h} \end{bmatrix}.
$$

George Avalos and Paula Egging Wellposedness and Numerical Results for a Fluid-Fluid Model

イロメ マ桐 どマ ミメ マチャ

Wellposedness and Numerical Results for a Fluid-Fluid Model

George Avalos and Paula Egging

Goal: Find bilinear forms in \mathbf{u}^- and p^- so we can apply the Babuska-Brezzi Theorem.

So consider
$$
(\lambda I - \hat{\mathcal{A}})\begin{bmatrix} \mathbf{u}^+ \\ p^+ \\ \mathbf{u}^- \end{bmatrix} = \begin{bmatrix} \mathbf{f} \\ g \\ \mathbf{h} \end{bmatrix}
$$
, which gives the

equivalent system:

$$
\begin{cases} \lambda \mathbf{u}^+ + \mathbf{U} \cdot \nabla \mathbf{u}^+ - \mathrm{div} \, \sigma(\mathbf{u}^+) + \frac{1}{2} \mathrm{div}(\mathbf{U}) \mathbf{u}^+ + \nabla p^+ = \mathbf{f} & \text{in } \Omega^+, \\ \lambda p^+ + \mathrm{div}(\mathbf{u}^+) + \mathbf{U} \cdot \nabla p^+ + \frac{1}{2} \mathrm{div}(\mathbf{U}) p^+ = g & \text{in } \Omega^+, \\ \lambda \mathbf{u}^- - \Delta \mathbf{u}^- + \nabla p^- = \mathbf{h} & \text{in } \Omega^-. \end{cases}
$$

George Avalos and Paula Egging Wellposedness and Numerical Results for a Fluid-Fluid Model

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

Wellposedness and Numerical Results for a Fluid-Fluid Model

George Avalos and Paula Egging

Taking the last line, multiplying everything by $\varphi \in \mathbf{H}^1_{\partial \Omega^-\setminus \Gamma}(\Omega^-)$, integrating over Ω^- , and applying Green's Theorems and boundary conditions gives

$$
\begin{aligned} \lambda (\mathbf{u}^-,\varphi)_{\Omega^-}+&(\nabla \mathbf{u}^-,\nabla \varphi)_{\Omega^-}-(p^-,\mathsf{div}(\varphi))_{\Omega^-}\\&+\langle \sigma (\mathbf{u}^+) -p^+ \vec{\nu}, \varphi \rangle_{\Gamma}=(\mathbf{h},\varphi)_{\Omega^-}.\end{aligned}
$$

But the \mathbf{u}^+ and p^+ are still unknown \circledcirc **Solution:** Just make some more maps \odot

イロメ イ母 トラ ミュース

つのへ

Wellposedness and Numerical Results for a Fluid-Fluid Model

George Avalos and Paula Egging

Recall, need
$$
\mathbf{u}^+, p^+
$$
 to satisfy:
\n
$$
\lambda \mathbf{u}^+ + \mathbf{U} \cdot \nabla \mathbf{u}^+ - \text{div} \, \sigma(\mathbf{u}^+) + \frac{1}{2} \text{div}(\mathbf{U}) \mathbf{u}^+ + \nabla p^+ = \mathbf{f} \text{ in } \Omega^+,
$$
\n
$$
\lambda p^+ + \text{div}(\mathbf{u}^+) + \mathbf{U} \cdot \nabla p^+ + \frac{1}{2} \text{div}(\mathbf{U}) p^+ = g \text{ in } \Omega^+,
$$
\n
$$
\mathbf{u}^+ = \mathbf{u}^- \text{ on } \Gamma,
$$
\n
$$
\mathbf{u}^+ = 0 \text{ on } \partial \Omega^+ \backslash \Gamma.
$$

Evidently, \mathbf{u}^+ and p^+ depend on \mathbf{f}, g , and \mathbf{u}^- .

George Avalos and Paula Egging Wellposedness and Numerical Results for a Fluid-Fluid Model

イロメ イ御 メイモメ イモメ

Wellposedness and Numerical Results for a Fluid-Fluid Model

George Avalos and Paula Egging

So we define two maps: For $\lambda > 0$ sufficiently large, $D_\lambda: \mathbf{H}^{1/2}(\Gamma) \rightarrow \mathbf{H}^1_{\partial \Omega^+ \setminus \Gamma}(\Omega^+) \times L^2(\Omega^+)$ is given by

$$
D_\lambda(\varphi)=\begin{bmatrix} \mu_\lambda(\varphi) \\ q_\lambda(\varphi) \end{bmatrix},
$$

where

$$
\begin{cases} \lambda \mu_{\lambda} + \mathbf{U} \cdot \nabla \mu_{\lambda} - \text{div} \, \sigma(\mu_{\lambda}) + \frac{1}{2} \text{div}(\mathbf{U}) \mu_{\lambda} + \nabla q_{\lambda} = \mathbf{0} & \text{ in } \Omega^{+}, \\ \lambda q_{\lambda} + \text{div}(\mu_{\lambda}) + \mathbf{U} \cdot \nabla q_{\lambda} + \frac{1}{2} \text{div}(\mathbf{U}) q_{\lambda} = 0 & \text{ in } \Omega^{+}, \\ \mu_{\lambda}|_{\Gamma} = \varphi & \text{ on } \Gamma, \\ \mu_{\lambda}|_{\partial \Omega^{+} \setminus \Gamma} = \mathbf{0} & \text{ on } \partial \Omega^{+} \setminus \Gamma. \end{cases}
$$

This takes boundary values φ on Γ and maps to solutions on all of $\Omega^+.$

Lemma

This D_{λ} mapping is wellposed, admitting of a unique solution with continuous dependence on data.

Nehrasla

Maximality (continued)

Wellposedness and Numerical Results for a Fluid-Fluid Model

George Avalos and Paula Egging

Similarly, with $\mathbb{A}_{\lambda}: \mathbf{H}^{1}_{0}(\Omega^{+})\times L^{2}(\Omega^{+})\to \mathbf{L}^{2}(\Omega^{+})\times L^{2}(\Omega^{+})$ given by

$$
\mathbb{A}_{\lambda}(\tilde{\mu},\tilde{q})=\begin{bmatrix}\lambda\tilde{\mu}+\mathbf{U}\cdot\nabla\tilde{\mu}-\mathsf{div}\,\sigma(\tilde{\mu})+\frac{1}{2}\mathsf{div}(\mathbf{U})\tilde{\mu}+\nabla\tilde{q}\\\lambda\tilde{q}+\mathsf{div}(\tilde{\mu})+\mathbf{U}\cdot\nabla\tilde{q}+\frac{1}{2}\mathsf{div}(\mathbf{U})\tilde{q}\end{bmatrix},
$$

we want $[\tilde{\mu}, \tilde{q}]$ such that

$$
\begin{array}{ll} \mathbb{A}_{\lambda}(\tilde{\mu},\tilde{q})= \\ \begin{cases} \lambda\tilde{\mu}+\mathbf{U}\cdot\nabla\tilde{\mu}-\mathsf{div}\,\sigma(\tilde{\mu})+\frac{1}{2}\mathsf{div}(\mathbf{U})\tilde{\mu}+\nabla\tilde{q}=\mathbf{f} &\text{ in } \Omega^+, \\ \lambda\tilde{q}+\mathsf{div}(\tilde{\mu})+\mathbf{U}\cdot\nabla\tilde{q}+\frac{1}{2}\mathsf{div}(\mathbf{U})\tilde{q}=g &\text{ in } \Omega^+, \\ \tilde{\mu}=0 &\text{ on } \partial\Omega^+. \end{cases} \end{array}
$$

Thus, $[\tilde{\mu},\tilde{q}]=\mathbb{A}_{\lambda}^{-1}(\mathbf{f},g)$ takes data $[\mathbf{f},g]$ and maps it to solutions on all of $\hat{\Omega}^{+}.$

Lemma

This A_{λ} has a bounded inverse. So the mapping $[\tilde{\mu}, \tilde{q}]$ is wellposed.

Wellposedness and Numerical Results for a Fluid-Fluid Model

George Avalos and Paula Egging

Thus, $\begin{bmatrix} \mu_{\lambda}(\mathbf{u}^-) \\ \vdots \\ \mu_{\lambda}(\mathbf{u}^-) \end{bmatrix}$ $q_{\lambda}(\mathbf{u}^-)$ \int handles the condition $\mathbf{u}^+ = \mathbf{u}^-$ on Γ and $\lceil \tilde{\mu}(\mathbf{f}, g) \rceil$ $\tilde{q}(\mathbf{f}, g)$ $\big]$ handles the non-zero right hand side $[\mathbf{f}, g].$

So we immediately recover

$$
\begin{bmatrix} \mathbf{u}^+ \\ p^+ \end{bmatrix} = \begin{bmatrix} \mu_\lambda(\mathbf{u}^-) + \tilde{\mu}(\mathbf{f}, g) \\ q_\lambda(\mathbf{u}^-) + \tilde{q}(\mathbf{f}, g) \end{bmatrix}.
$$

(Note, \mathbf{u}^- is still not known yet either \circledcirc)

イロメ イ団メ イヨメ イヨメー

Wellposedness and Numerical Results for a Fluid-Fluid Model

George Avalos and Paula Egging

Recall that we were in the middle of finding a bilinear form for \mathbf{u}^- and p^+ . We had

$$
\lambda(\mathbf{u}^-,\varphi)_{\Omega^-}+(\nabla\mathbf{u}^-,\nabla\varphi)_{\Omega^-}-(p^-,\text{div}(\varphi))_{\Omega^-} + \langle \sigma(\mathbf{u}^+) - p^+\vec{\nu},\varphi \rangle_{\Gamma} = (\mathbf{h},\varphi)_{\Omega^-}.
$$

With
$$
\begin{bmatrix} \mathbf{u}^+ \\ p^+ \end{bmatrix} = \begin{bmatrix} \mu_\lambda(\mathbf{u}^-) + \tilde{\mu}(\mathbf{f}, g) \\ q_\lambda(\mathbf{u}^-) + \tilde{q}(\mathbf{f}, g) \end{bmatrix}
$$
, this becomes

$$
\lambda(\mathbf{u}^-,\varphi)_{\Omega^-} + (\nabla \mathbf{u}^-,\nabla \varphi)_{\Omega^-} - (p^-, \text{div}(\varphi))_{\Omega^-} \n+ \langle \sigma(\mu_\lambda(\mathbf{u}^-) + \tilde{\mu}(\mathbf{f},g)) - (q_\lambda(\mathbf{u}^-) + \tilde{q}(\mathbf{f},g))\vec{\nu}, \varphi \rangle_{\Gamma} \n= (\mathbf{h}, \varphi)_{\Omega^-}
$$

for all $\varphi \in \mathbf{H}^1_{\partial \Omega^-\setminus \Gamma}(\Omega^-).$

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

Wellposedness and Numerical Results for a Fluid-Fluid Model

George Avalos and Paula Egging

Applying Green's Theorem to the boundary term and keeping the \mathbf{u}^- terms on the left while moving the (\mathbf{f}, g) terms to the right hand side, we then have $\lambda(\mathbf{u}^-,\varphi)_{\Omega^-} + (\nabla \mathbf{u}^-,\nabla \varphi)_{\Omega^-} - (p^-,\mathsf{div}(\varphi))_{\Omega^-} + \lambda (\mu_\lambda(\mathbf{u}^-),\mu_\lambda(\varphi))_{\Omega^-}$ $+ (\mathbf{U} \cdot \nabla \mu_{\lambda}(\mathbf{u}^-))_{\Omega^+} + \frac{1}{2}$ $\frac{1}{2}$ (div(U) $\mu_{\lambda}(\mathbf{u}^-), \mu_{\lambda}(\varphi))_{\Omega^+}$ $+ \, (\sigma(\mu_{\lambda}(\mathbf{u}^-)), \epsilon(\mu_{\lambda}(\varphi)))_{\Omega^+}$ $\mathbf{H} = (\mathbf{h}, \varphi)_{\Omega^{-}} + (\mathbf{f}, \mu_\lambda(\varphi))_{\Omega^{+}} - \big[\lambda(\tilde{\mu}(\mathbf{f}, g), \mu_\lambda(\varphi)))_{\Omega^{+}}$ $+ \left(\mathbf{U} \cdot \nabla \tilde{\mu}(\mathbf{f},g), \mu_\lambda(\varphi) \right)_{\Omega^+} + \frac{1}{2}$ $\frac{1}{2}(\mathsf{div}(\mathbf{U})\tilde{\mu}(\mathbf{f},g),\mu_\lambda(\varphi))_{\Omega^+}$ $+ \ (\sigma(\tilde{\mu}({\bf f},g)), \epsilon(\mu_{\lambda}(\varphi)))_{\Omega^+}- (\tilde{q}({\bf f},g), \mathsf{div}(\mu_{\lambda}(\varphi)))_{\Omega^+} \big]$ for all $\varphi \in \mathbf{H}^1_{\partial \Omega^-\setminus \Gamma}(\Omega^-).$

Additionally, from div $(\mathbf{u}^-) = 0$ in Ω^- , we have

$$
(\mathsf{div}(\mathbf{u}^-), \psi)_{\Omega^-} = 0 \text{ for all } \psi \in L^2(\Omega^-).
$$

George Avalos and Paula Egging Wellposedness and Numerical Results for a Fluid-Fluid Model

つのへ

Wellposedness and Numerical Results for a Fluid-Fluid Model

George Avalos and Paula Egging

Simplifying notation, we are looking for $[\mathbf{u}^-, p^-]$ that solves

$$
\begin{cases}\na_{\lambda}(\mathbf{u}^{-},\varphi)+b(\varphi,p^{-})=F(\varphi) & \text{for all } \varphi \in \mathbf{H}^{1}_{\partial\Omega^{-}\setminus\Gamma}(\Omega^{-}) \\
b(\mathbf{u}^{-},\rho) & =0 & \text{for all } \rho \in L^{2}(\Omega^{-})\n\end{cases},
$$
\nwhere $a_{\lambda}(\cdot,\cdot): \mathbf{H}^{1}_{\partial\Omega^{-}\setminus\Gamma}(\Omega^{-}) \times \mathbf{H}^{1}_{\partial\Omega^{-}\setminus\Gamma}(\Omega^{-}) \to \mathbb{R}$ is given by\n
$$
a_{\lambda}(\psi,\varphi)=\lambda(\psi,\varphi)_{\Omega^{-}}+\lambda(\mu_{\lambda}(\psi),\mu_{\lambda}(\varphi))_{\Omega^{+}}+(\nabla\psi,\nabla\varphi)_{\Omega^{-}} \\
+(\mathbf{U}\cdot\nabla\mu_{\lambda}(\psi),\mu_{\lambda}(\varphi))_{\Omega^{+}}+\frac{1}{2}(\text{div}(\mathbf{U})\mu_{\lambda}(\psi),\mu_{\lambda}(\varphi))_{\Omega^{+}} \\
+(\sigma(\mu_{\lambda}(\psi)),\epsilon(\mu_{\lambda}(\varphi)))_{\Omega^{+}}-(q_{\lambda}(\psi),\text{div}(\mu_{\lambda}(\varphi)))_{\Omega^{+}},
$$

$$
b(\cdot,\cdot): \mathbf{H}^1_{\partial \Omega^-\setminus \Gamma}(\Omega^-)\times L^2(\Omega^-)\to \mathbb{R} \text{ is given by}
$$

$$
b(\varphi,\rho)=-(\rho,\mathsf{div}(\varphi))_{\Omega^-},
$$

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

Wellposedness and Numerical Results for a Fluid-Fluid Model

George Avalos and Paula Egging

$$
\begin{aligned}\n\text{and } F(\cdot): \mathbf{H}^1_{\partial\Omega-\backslash\Gamma}(\Omega^-) &\rightarrow \mathbb{R} \text{ is given by} \\
F(\varphi) &= (\mathbf{h}, \varphi)_{\Omega^-} + (\mathbf{f}, \mu_\lambda(\varphi))_{\Omega^+} - \left[\lambda(\tilde{\mu}(\mathbf{f}, g), \mu_\lambda(\varphi)))_{\Omega^+}\right. \\
&\quad + (\mathbf{U} \cdot \nabla \tilde{\mu}(\mathbf{f}, g), \mu_\lambda(\varphi))_{\Omega^+} + \frac{1}{2} (\text{div}(\mathbf{U}) \tilde{\mu}(\mathbf{f}, g), \mu_\lambda(\varphi))_{\Omega^+} \\
&\quad + (\sigma(\tilde{\mu}(\mathbf{f}, g)), \epsilon(\mu_\lambda(\varphi)))_{\Omega^+} - (\tilde{q}(\mathbf{f}, g), \text{div}(\mu_\lambda(\varphi)))_{\Omega^+}\right].\n\end{aligned}
$$

イロト イ押ト イミト イミト

重

Wellposedness and Numerical Results for a Fluid-Fluid Model

George Avalos and Paula Egging

For the Inf-Sup condition, we invoke a lemma from [?]:

Lemma (Grisvard)

For $\Omega \subset \mathbb{R}^n$ that is bounded, open, and with Lipshitz boundary $\partial\Omega$, there exists some $\delta > 0$ and $\mu \in [C^{\infty}(\overline{\Omega})]^n$ such that $\mu \cdot \vec{\nu} > \delta$ a.e. on $\partial \Omega$.

With this in hand, let $\omega \in \mathbf{H}^1_{\partial \Omega^- \setminus \Gamma}(\Omega^-)$ be a solution to

$$
\begin{cases} \mathsf{div}(\omega) = -\eta \langle \mu, \vec{\nu} \rangle_{\Gamma} & \text{in } \Omega^-, \\ \omega|_{\partial \Omega^- \setminus \Gamma} = 0 & \text{on } \partial \Omega^- \setminus \Gamma, \\ \omega|_{\Gamma} = \left(\int_{\Omega^-} \eta \, d \Omega^- \right) \mu(x) & \text{on } \Gamma, \end{cases}
$$

for any $\eta\in L^2(\Omega^-).$ It is well-known that solution, $\omega,$ exists with $||\nabla \omega||_{\Omega}$ - $\leq C||\eta||_{\Omega}$ -. OQ

Now consider

Wellposedness and Numerical Results for a Fluid-Fluid Model

George Avalos and Paula Egging

 $b(\varphi, \eta)$ $b(\varphi,\eta)$ $\frac{\partial(\varphi,\eta)}{||\varphi||_{\mathbf{H}^1_{\partial\Omega^-\setminus\Gamma}(\Omega^-)}} \overset{\text{Poincaré's}}{=} \sup_{\varphi\in\mathbf{H}^1_{\partial\Omega^-\setminus\Gamma}}$ $\sup_{\varphi \in \mathbf{H}^1_{\partial \Omega^- \setminus \Gamma}(\Omega^-)}$ $||\nabla \varphi||_{\Omega}$ – $-\int \eta \mathsf{div}(\varphi) \, d\Omega^ (b(\varphi,\eta)=-(\eta,\operatorname{\mathsf{div}}(\varphi))_{\Omega^{-}})=\sup_{\varphi\in\mathbf{H}^1_{\partial\Omega^{-}\setminus\Gamma}(\Omega^{-})}$ $||\nabla \varphi||_{\Omega^{-}}$ $\geq \frac{-\int \eta \mathsf{div}(\omega) \, d\Omega^-}{\|\nabla\| \, \|\nabla\|}$ $||\nabla\omega||_{\Omega^{-}}$ $\left(\text{div}(\omega) = -\eta\langle \mu, \vec{\nu}\rangle_{\Gamma}\right) = \frac{\int \eta^2 \langle \mu, \vec{\nu}\rangle_{\Gamma} d\Omega^-}{\|\nabla \psi\|^2}$ $||\nabla\omega||_{\Omega^{-}}$ $(\mu \cdot \vec{\nu} \geq \delta) \geq \frac{\delta \cdot \textsf{meas}(\Gamma) ||\eta||^2_{\Omega^{-1}}}{\|\nabla \cdot\|}$ $||\nabla\omega||_{\Omega^{-}}$ $(||\nabla\omega||_{\Omega^{-}}\leq C||\eta||_{\Omega^{-}})\geq \frac{\delta\cdot\textsf{meas}(\Gamma)||\eta||_{\Omega^{-}}\left(\frac{1}{C}||\nabla\omega||_{\Omega^{-}}\right)}{||\nabla\omega||_{\Omega^{-}}}$ $||\nabla\omega||_{\Omega^{-}}$ $=\left(\frac{1}{c}\right)$ $\frac{1}{C}\,\delta$ meas(Γ) $||\eta||_{\Omega-}$. Ω

Wellposedness and Numerical Results for a Fluid-Fluid Model

George Avalos and Paula Egging

Thus, we have

$$
\sup_{\varphi \in \mathbf{H}^1_{\partial \Omega^-\setminus \Gamma}(\Omega^-)}\frac{b(\varphi,\eta)}{||\varphi||_{\mathbf{H}^1_{\partial \Omega^-\setminus \Gamma}(\Omega^-)}} \geq \beta ||\eta||_{\Omega^-},
$$

and since $\eta\in L^2(\Omega^-)$ was arbitrary,

$$
\inf_{\eta \in L^2(\Omega^-)} \sup_{\varphi \in \mathbf{H}^1_{\partial \Omega^- \setminus \Gamma}(\Omega^-)} \frac{b(\varphi, \eta)}{||\eta||_{\Omega^-} ||\varphi||_{\partial \Omega^- \setminus \Gamma}} \geq \beta,
$$

with $\beta=\frac{1}{C}$ $\frac{1}{C}\,\delta$ meas($\Gamma)$. So the Inf-Sup condition is satisfied.

 $\left\{ \begin{array}{ccc} \Box & \rightarrow & \left\{ \bigoplus \bullet \right\} & \left\{ \begin{array}{ccc} \Xi & \rightarrow & \left\{ \begin{array}{ccc} \Xi & \rightarrow & \end{array} \right. \end{array} \right. \end{array} \right.$

Conclusion of Proof

Wellposedness and Numerical Results for a Fluid-Fluid Model

George Avalos and Paula Egging

Thus, by the Babuska-Brezzi Theorem, we have the desired solutions $[\mathbf{u}^-, p^-]$. Along the way, we found maps which gave us $\begin{bmatrix} \mathrm{u}^+ \ \mathrm{u}^+ \end{bmatrix}$ p^+ $= \left[\mu_{\lambda}(\mathbf{u}^-) + \tilde{\mu}(\mathbf{f}, g) \right]$ $q_{\lambda}(\mathbf{u}^-) + \tilde{q}(\mathbf{f}, g)$. (These establish Part (ii) of Theorem.)

After showing $[\mathbf{u}^+, p^+, \mathbf{u}^-]\in \mathcal{D}(\mathcal{A})$, we have established maximality of \hat{A} , which allows us to use Lumer-Phillips Theorem to give us a C_0 -semigroup of contractions. (This established Part (i) of Theorem.)

イロメ マ桐 どマ ミメ マチャ

つのへ

The Finite Element Method

Wellposedness and Numerical Results for a Fluid-Fluid Model

George Avalos and Paula Egging

Domain is discretized in to a mesh with elements and nodes.

Figure: A sample mesh.

Pressure reference element

 $2Q$

イロメ イ御 メイモメ イモメ

The Discrete Problem

Wellposedness and Numerical Results for a Fluid-Fluid Model

George Avalos and Paula Egging

FEM idea: Assume $\mathbf{u} = \sum_{i=1}^N \vec{\alpha_i} \vec{\varphi_i}(x,y)$ for known basis functions $\{\varphi_i\}_{i=1}^N$ and $p = \sum_{i=1}^{N_p} \beta_i \psi_i$ for basis functions $\{\psi_i\}_{i=1}^{N_p}$. Then just need to find α_i 's and β_i 's.

The variational form from before

$$
a_{\lambda}(\mathbf{u}^-,\varphi) + b(\varphi,p) = F(\varphi) \text{ for all } \varphi \in \mathbf{H}^1_{\partial\Omega^-\setminus\Gamma}(\Omega^-)
$$

$$
b(\mathbf{u}^-,q) = 0 \qquad \text{for all } q \in L^2(\Omega^-)
$$

lends itself to the matrix equation

$$
\begin{bmatrix} A & B \\ B^T & 0 \end{bmatrix} \begin{bmatrix} \vec{\alpha} \\ \beta \end{bmatrix} = \begin{bmatrix} \mathbf{F} \\ 0 \end{bmatrix}.
$$

We use similar formulation to find $[\mu_{\lambda}, q_{\lambda}]$ and $[\tilde{\mu}, \tilde{q}]$.

Numerical Test Problem

Wellposedness and Numerical Results for a Fluid-Fluid Model

George Avalos and Paula Egging

Take **U** = 0,
$$
\Omega^+
$$
 = (1,0) × (.5,1), and Ω^- = (0,1) × (0,.5).

Then

$$
\mathbf{u}^+ = \begin{bmatrix} 2\sin(2\pi x)\cos(2\pi y) \\ \cos(2\pi x)\sin(2\pi y) \end{bmatrix}, \ \mathbf{u}^- = \begin{bmatrix} 2\sin(2\pi x)\cos(2\pi y) \\ -2\cos(2\pi x)\sin(2\pi y) \end{bmatrix}
$$

$$
p^+ = 2\pi(2\nu + 3\lambda - 2)\cos(2\pi x), \ p^- = 0
$$

solve our system for right hand side data

$$
\mathbf{f} = \lambda \mathbf{u}^+ - \text{div}\sigma(\mathbf{u}^+) + \nabla p^+
$$

\n
$$
= \begin{bmatrix} (2\lambda + 16\nu\pi^2 + 12(\nu + \tilde{\lambda}))\sin(2\pi x)\cos(2\pi y) \\ (\lambda + 8\nu\pi^2 + 12(\nu + \tilde{\lambda}))\cos(2\pi x)\sin(2\pi y) \end{bmatrix},
$$

\n
$$
g = \lambda p^+ + \text{div}(\mathbf{u}^+)
$$

\n
$$
= 2\pi\lambda(2\nu + 3\tilde{\lambda} - 2)\cos(2\pi x) + 6\pi\cos(2\pi x)\cos(2\pi y),
$$

\n
$$
\mathbf{h} = \lambda \mathbf{u}^- - \Delta \mathbf{u}^- + \nabla p^-
$$

\n
$$
= \begin{bmatrix} (2\lambda + 16\pi^2)\sin(2\pi x)\cos(2\pi y) \\ -(2\lambda + 16\pi^2)\cos(2\pi x)\sin(2\pi y) \end{bmatrix}.
$$

Numerical Results

Wellposedness and Numerical Results for a Fluid-Fluid Model

George Avalos and Paula Egging

For this problem, the errors in FEM approximations are given below.

Wellposedness and Numerical Results for a Fluid-Fluid Model

George Avalos and Paula Egging

Since \mathbf{u}^+ and \mathbf{u}^- are vector valued, we compare plots of approximate and true solutions for each component. Images shown are with 64 elements in domain.

 \mathcal{A} \mathcal{A} \mathcal{B} \mathcal{A} \mathcal{B} \mathcal{B}

- 4 ⊞ +

 $2Q$

4 m k

 -0.6

 $n \times A \times B$

 -0.5

ù.

 X Axis

Wellposedness and Numerical Results for a Fluid-Fluid Model

George Avalos and Paula Egging

Approximate u_2^+

 σ

 -0.6

 -0.8

 \mathbf{d}

Y Axis

Y Axis X Axis \circ $+1$ \mathbb{L}^2 0.8 0.6 $+0.5$ 0.4 0.2 $_0$ Z Axis Z Axis -0 $-0.2 -0.5$ -0.4 -0.6 -0.8 \mathbf{r} \cdot X Axis Y Axis $\widetilde{0}$ $\frac{1}{2}$ True u_2^+

メロメ メタメ メミメ メミ

÷

B

 $2Q$

Wellposedness and Numerical Results for a Fluid-Fluid Model

George Avalos and Paula Egging

イロメ イ母メ イヨメ イヨ

 $2Q$

B

Wellposedness and Numerical Results for a Fluid-Fluid Model

George Avalos and Paula Egging

イロト イ押ト イミト イミト

É

 $2Q$

Wellposedness and Numerical Results for a Fluid-Fluid Model

George Avalos and Paula Egging

K ロ ⊁ K 伊 ⊁ K ミ ▶

一 三

In

÷