A Mixed Variational Formulation for the Qualitative and

Quantitaive Analysis of a Certain Compressible Flow —
Incompressible Fluid PDE Interaction

George Avalos, University of Nebraska-Lincoln
Paula Egging, University of Nebraska-Lincoln

Workshop on Recent Progress in Deterministic and Stochastic Fluid-Structure Interaction

SLMath, December 6, 2023

(Workshop on Recent Progress in Determinis SLMath, December 6, 2023 1/23



W\Cvel-Bl |ntroduction

Lincoln

Wellposedness and Partial differential equations (PDEs) can be used to model

Numerical Results ) .
for a Fluid Fluid natural phenomena, including:
ode
George Avalos and 4 SOU nd waves
Paula Eggi . .
e meste @ Heat dispersion
@ Thermodynamics

@ Fluid dynamics

And our present concern

@ Ocean-atmosphere interaction,

[—
inspired by an internship
project at Argonne National -
Lab.
Figure: free-
images.com/display/
ocean_water_sky_sea:html
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W\Cvel-Bl |ntroduction

Lincoln

Wellposedness and Historically, semigroup generation in 3-D fluid-structure
Numerical Seoults interaction models have been well-studied, including
or a Fluid-Fluid
Model
George Avalos and @ |. Chueshov, I. Ryzhkova, A global attractor for a fluid-plate

Paula Egging interaction model, 2013.

@ |. Chueshov, |. Lasiecka, J. T. Webster, Flow-plate interactions:
Well-posedness and long-time behavior, 2014.

@ L. Bociu, L. Castle, K. Martin, and D. Toundykov, Optimal
Control in a Free Boundary Fluid-Elasticity Interaction, 2015.

@ G. Avalos, P. G. Geredeli, J. T. Webster, Semigroup
Well-posedness of A Linearized, Compressible Fluid with An
Elastic Boundary, 2018.

@ G. Avalos, P. G. Geredeli and B. Muha, Rational Decay of A
Multilayered Structure-Fluid PDE System, 2022.

But the extension of similar techniques to fluid-fluid
interaction has remained relatively untouched.
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Wellposedness and Here, the geometry is

Numerical Results
for a Fluid-Fluid
Model Qt

George Avalos and
Paula Egging

< “atmosphere”

<+ “ocean”

Figure: The fluid-fluid geometry.

The u™, u™ represent velocity of the fluid in 7, Q™.
The p*,p~ represent pressure in Q7, Q™ respectively.

Additionally, U is a steady state solution to Navier-Stokes

about which we linearize, and o(u™) is the stress tensor of
+
ut.
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ISR For variables [u™,pt,u™, p~], consider the system:
Numerical Results
for a Fluid-Fluid

Model

Georse Avalos and S +U-vut —dive(u™) + VpT = on Q1 x (0,7),
eorge Avalos an
Paula Egging p, +U-Vpt +diviut) =0 on QT x (0,7),
ut =0 on (8QT\T) x (0,T),
(a compressible fluid evolving in time on Q) (1)
u, —Au +Vp =0 on Q7 x (0,7),
div(u™) =0 on Q7 x (0,7),
—=0 on (0Q~\T) x (0,7,
(an incompressible fluid evolving in time on Q) (2)
ut =u~ onI'x (0,7T),
o) —pti=28"—p v onI'x (0,7),

ut(t=0)=ul; u (t=0)=ug.

(boundary and initial conditions)
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Wellposedness and
Numerical Results
for a Fluid-Fluid
Model

George Avalos and

Paula Egging We eliminate p~ by identifying it as the solution to the
boundary value problem

Ap~ =0 on Q7 x (0,7,
p =t Tl Tt oD 0.1)
on 00~ \T x (0,7,

(4)

which is derived from (?7?) -

(7).
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Wellposedness and
Numerical Results
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Paula Egging

Elimination of Pressure in {2~

Let the Dirichlet and Neumann maps, respectively, be given

on 7,
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Wellposedness and In consideration of the boundary conditions in (?7?),

Numerical Results
for a Fluid-Fluid

Model - (8) = D. (811_@ 7 — [o(ut(t))7] - z7+p+(t)>

George Avalos and 877

Paula Egging
+N,(Au(t) - 7) € LA(Q7)

Then with
N ou” -
oo =035 ) i 5)
Gou® = =V (Dy([o(u™)i] - )5 Gsp™ = —V(Ds(p7)),
we identify

VP_ = _Glu_ — G2u+ — G3p+ in Q7 x (O,T)

So we have Vp~ in terms of u™, pT, and u™.
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Numerical Results
for a Fluid-Fluid
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George Avalos and
Paula Egging

u +U-Vut —dive(u™) +Vpt =0
p, +U-Vp' +diviut) =0

ll+:

u, —Au +Vp =0

divlu™) =0
u =0
ut =u

v

Our Model

To determine the semigroup, consider the system again

0

George Avalos and Paula Egging

on Q7 x (0,7),
on QT x (0,7),
on (0QT\T) x (0,7T),

on Q7 x (0,7),
on Q7 x (0,7),
on (0Q~\T) x (0,7,

onT' x (0,7),
onT' x (0,T),

Wellposedness and Numerical Results for a Fluid-Fluid Model
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Wellposedness and Keeping time derivatives on left and moving everything else

Numerical Results

for a Fluid-Fluid to RHS, we have

Model

Gezl))rgel Aéalo_s and u;_ =-U- vu+ + div J(qu) — Vp+ on Q+ X (0, T),
aula Egging
p:' = —div(u+) —-U. Ver on Q1 x (O,T),
u;, = Gout +G3pt + Au” +Giu™ on Q7 x (0,7).

This is equivalent to the following system of equations

[u™ —U - -Vu' +dive(ut) — Vp*
pt| = —div(u™) = U - Vp*
lu~ Gout + Gsp™ + Au™ + Giu~
[—-U - V() +dive(:) —V() 0 u’
—div() U-v() 0 pt
G Gs A() + Gy u

hopeful semigroup generator, A
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LTSSl \We carefully choose the domain, D(A), to ensure the
Numerical Results

for a Fluid Fluid necessary regularity of solutions and that A is, indeed, a
ode
maximal dissipative generator.

George Avalos and
Paula Egging

Let the space of finite energy be
H=T1*Q") x L*(QF) x {f € L*(Q7) : div(f) = 0
and f - ﬁ‘ag—\r = 0}

A few key properties include

o D(A) C H
o D(A) C Hi, (F) x LA(QH) x Hbo\1(Q7)
eut=u onl

o [ut,pt,u"] € D(A) if there exists a p~ € L?(Q7)
such that Vp~ = —Giu™ — Gout — Gsp™.

George Avalos and Paula Egging Wellposedness and Numerical Results for a Fluid-Fluid Model
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Paula Egging

(i)

(ii)

Main Theorem

Theorem (P.E., G. A., 2022)

The operator A : D(A) C H — H is maximal dissipative.
Therefore, by the Lumer-Phillips Theorem, it generates a
Co-semigroup of contractions {e*'};>0 on H.

In particular, let A\ > 0 and [f, g, h] € H be given. (By part
(i), there exists [u™, p™,u~] € D(A) which solves

(M — A)fut, p*,u"] = [f, g, h].)

Then u~ and p~ can be characterized as the solution to a
certain variational system, while u* and p* can be
characterized by

ut = px(u”) + a((f, g]")
pt = an(u?) +§([f, 9]7),

where [, gn] and [fi, q] are (to be given) mappings.
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Model

The proof strategy for Part (i) is:
George Avalos and
Paula Egging

@ Show A is maximal dissipative.

@ Apply the classical Lumer-Phillips Theorem to obtain a
Co-semigroup of contractions, {e}.

© This allows for solutions [u™t(t),p™(t),u™ (¢)] of (??) -
(??) to be obtained by applying {e**} to initial data
[ug, p*(t = 0),uq].

The characterizations of u™, p*, u™, and p~ given in Part
(ii) are obtained within the proof of Part (i).

George Avalos and Paula Egging Wellposedness and Numerical Results for a Fluid-Fluid Model
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Wellposedness and
Numerical Results

for a Fluid Fluid There is a slight caveat... A, as defined, is not actually

George Avalos and dissipative due to the non-zero U.
Paula Egging

However, the bounded perturbation

. I 0 0
A:A—d'VgU) 0 I 0|, D(A) =D(A),
0 0 0
IS dissipative.

The standard perturbation result in Kato ([?]) can be
applied to A, yielding semigroup generation for the original

A.
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Wellposedness and
Numerical Results

for a Fluid Fluid The proof of dissipativity is actually kinda cute.

George Avalos and It involves Green's ldentities, using boundary conditions,
Paula Eeging div(u™) = 0, and some vector identities, to eventually get
down to

Re [ A |pt]|, |pt
u u

H

as desired.

(This is not the hard part of the proof.)
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Wellposedness and
Numerical Results
for a Fluid-Fluid
Model

e To show maximality of A on H, we establish the range
eorge Avalos and

Paula Egging condition:
Range(AI — A) = H for X sufficiently large.

That is, for any [f, g, h] € H, there is a solution
[u*,p*,u"] to

George Avalos and Paula Egging Wellposedness and Numerical Results for a Fluid-Fluid Model
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Wellposedness and
Numerical Results
for a Fluid-Fluid
Model

R Goal: Find bilinear forms in u™ and p~ so we can apply
Paula Egging the Babuska-Brezzi Theorem.
ut f
So consider (\I — A) |p™| = | g|, which gives the
- h

u
equivalent system:

Aut +U-Vut —dive(u®) + Ldiv(U)ut + Vpt =f  in QF,
Apt +div(u™) + U- VpT + Ldiv(U)pt = ¢ in QF,
Au” —Au  +Vp =h in Q™.

George Avalos and Paula Egging Wellposedness and Numerical Results for a Fluid-Fluid Model
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Wellposedness and
Numerical Results
for a Fluid-Fluid

Model Taking the last line, multiplying everything by
e oo a1 pE HéQ,\F(Q_), integrating over 27, and applying
Green's Theorems and boundary conditions gives

Au™, p)o-+(Vu™, Ve)g- — (p~,div(e))o-
+(o(uh) = p 7 o)r = (h,p)q-.

But the u™ and p™ are still unknown ®

Solution: Just make some more maps ©
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Wellposedness and
Numerical Results
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Model

Recall, need u™, p™ to satisfy:

George Avalos and
Paula Egging

1
Mt +U-Vut —dive(u®) + §div(U)uJr +Vpt =finQF,

1
At +div(ut) +U - Vpt + §div(U)p+ =gin QF,
ut=u onT,
ut =0o0n 9QM\T.

Evidently, u™ and p* depend on f, g, and u~.

George Avalos and Paula Egging Wellposedness and Numerical Results for a Fluid-Fluid Model
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Wellposedness and So we define two maps: For A > 0 sufficiently large,
Numerical Results

e I Dy :HY2(I) > Hjo\p(QF) x L*(QF) is given by

Georgs Avslos and  Tua(e)
Paula Egging Di(p) = [q;(sﬁ)} ,
where
Mix + U -V —divo(ua) + 3div(U)ps + Vgr =0 in QF,
Agx +div(ua) + U - Vga + 2div(U)gx =0 in Q1
palr = ¢ on T,
palag+\r =0 on 90T\ T.

This takes boundary values ¢ on I and maps to solutions on all of Q.

This D mapping is wellposed, admitting of a unique solution with
continuous dependence on data.

George Avalos and Paula Egging Wellposedness and Numerical Results for a Fluid-Fluid Model
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Wellposedness and Slmllarly, with A/\ : H%)(QJ'_) X LZ(Q+> — L2(Q+) X L2(Q+)
Numerical Results .
for a FIuid-FIuiu; given by
Model

M AU-Vi—dive(i) + 1div( Vi +Vq

George Avalos and a
" A7 9) = [ Aj+div(i) +U-Vi+ LdivU)g |

Paula Egging

we want [f, G] such that

A)\(laad) =
Mi+U-Vi—divo() + 4div(U)i+ Vi=f in QF,
AG+div(a) + U- Vg + idiv(U)g=g in Qt,
=0 on 9O+,

Thus, [i1, 4] = A;l(f g) takes data [f, g] and maps it to
solutions on all of QT

This Ay has a bounded inverse. So the mapping [fi, q] is
wellposed.

George Avalos and Paula Egging Wellposedness and Numerical Results for a Fluid-Fluid Model
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George Avalos and
Paula Egging

Thus, [,uA(u:)} handles the condition ut = u~ on I" and
qa(u™)
ﬂ(ﬂg)} : :
- handles the non-zero right hand side [f, ¢].
[q(f,g) g £,

So we immediately recover

] - [ s it

(Note, u™ is still not known yet either ®)

George Avalos and Paula Egging Wellposedness and Numerical Results for a Fluid-Fluid Model
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Wellposedness and . . . . .-
Numerical Results Recall that we were in the middle of finding a bilinear form
for a Fluid-Fluid

Model for u= and p~. We had

George Avalos and

Paula Egging )\(u_, 80)97 —|—(vu_, V@)Qf - (p_7 d|V<SO))Q,
+ (o(u) —p" 7, o)r = (h,@)q--

Jr . ~
With [u ] = [,u/\(u )+g(f’5) , this becomes

/\(u_v (P)Q* + (Vu_, VSO)Q* - (p_> diV(@))Q

+ (o (pa(u™) + if, g)) — (aa(u™) + (£, 9))V, @)1
= (h? SO)Q—

for all ¢ € H},,_ \F(Q*).

George Avalos and Paula Egging Wellposedness and Numerical Results for a Fluid-Fluid Model
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Maximality (continued)

Applying Green's Theorem to the boundary term and
keeping the u™ terms on the left while moving the (f, g)
terms to the right hand side, we then have

A, @)o- + (VUTWJ)Q— (p™, div(p))o- + Aua(u™), ua(p))o-
U-Vur(u™))o+ + 5 (d'V(U)MA(uf)vﬂx(SD))m

o(px(u™)), (ux(w)))m
= (h,p)o- + (£, ua(9))a+ *[ (i(f, 9), ux () o+

+ (U - VA(f, ), pr(@))a+ + 5 (d'V( Ji(E, 9), pa(p)) o+
+ (a(i(f, 9)), e(uxa(®))) o+ ( (£, 9),div(ua()))a+]
for all p € H),_ \F(Q ).

Additionally, from div(u™) = 0 in Q~, we have
(div(u™),¢)q- = 0 for all ¢p € L2(Q7).

George Avalos and Paula Egging Wellposedness and Numerical Results for a Fluid-Fluid Model
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Wellposedness and
Numerical Results
for a Fluid-Fluid
Model

George Avalo_s and ax (u77 90) + b(@7p7) = F((,D) for all ¥ € Héﬂ*\F(Qi)
Paula Egging b(u~,p) =0 for all p € L*(Q7)

Simplifying notation, we are looking for [u™,p~| that solves

)

where ax (-, ) : Héﬂ_\F(Q’) X H}BQ_\F(Q’) — R is given by

ax(, ) = A, @)a- + Apa(¥), pa(@))a+ + (VY Vp)o-
(U Taa(), (@Dt + 3 (@v(U)ir (), ia ()
+ (o (¥), e(ua () o+ — (ax(¥), div(pa(p)))o+

b(-,-) : Hpg\p(Q7) X L*(27) — R is given by

b((,D, p) = _(P, div(@))ﬂ*a

George Avalos and Paula Egging Wellposedness and Numerical Results for a Fluid-Fluid Model
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George Avalos and
Paula Egging

and F(-) : H},— \r(27) = Ris given by

F(p) = (h,p)o- + (f, ux(9))a+ — [A(ﬂ(f,g),m(tp)))m
(U -V, g), ux(®))a+ + 5 (diV(U)ﬂ(f, 9)s b (®)) o+

+ )
+ (o (i(f, 9)), e(ur())a+ — (@(F, 9), div(pa(9))a+]-

George Avalos and Paula Egging Wellposedness and Numerical Results for a Fluid-Fluid Model
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Wellposedness and For the Inf-Sup condition, we invoke a lemma from [?]:

Numerical Results
for a Fluid-Fluid
Model

Lemma (Grisvard)

George Avalos and

Paula Egging For €2 C R™ that is bounded, open, and with Lipshitz
boundary 0%), there exists some § > 0 and p € [C°°(Q)]"
such that u -7 > 6 a.e. on 0S.

With this in hand, let w € HéQ,\F(Q_) be a solution to

div(w) = —n{u, V)r in 7,
w‘agf\p =0 on 897\F,
wir = (fo-ndQ™) p(z) onT,

for any 7 € L?(27). It is well-known that solution, w,
exists with ||Vw||o- < C||n||q--

George Avalos and Paula Egging Wellposedness and Numerical Results for a Fluid-Fluid Model
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Wellposedness and Now consider

Numerical Resul
= P L (R
Model 1 _ A% -
Soree Ao ot peHl (2 )||<%’||HC,m w0 peH! \r [IVella
Paula Egging — d dQ
ndiv(p
(blp,m) = =(n,en(@))o-) = sup IHVT
pEH \r ) 2
— [ndiv(w) dQ~
- IIVWHQ—
S0’ (p, Pr 2~
div(w) = Ly V a0
(ovlee) = =00 7) = TG
& - meas(I')||n]]5-
(B9 >0) > —
[[Vwl|q-
5 - meas(D)|[nllo- (ZIIVello-)

([[Vwllo- < Cllnllo-) 2

Wella-
1
— (& ameas(r)) il

George Avalos and Paula Egging Wellposedness and Numerical Results for a Fluid-Fluid Model
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Wellposedness and
Numerical Results
for a Fluid-Fluid

Rloce] Thus, we have

George Avalos and

Paula Egging
b(e,n)
sup T a—— > Bllnlla-
PEH, () v Hyo—\r (@7
and since n € L?(27) was arbitrary,
b(w,n)

>3

p— I

inf sup
neLHQ7) peml . (97) [nlla-[lellao-\r

with 3 = & d meas(I'). So the Inf-Sup condition is satisfied.

George Avalos and Paula Egging Wellposedness and Numerical Results for a Fluid-Fluid Model
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Wellposedness and
Numerical Results
for a Fluid-Fluid .
Model Thus, by the Babuska-Brezzi Theorem, we have the

(VTN desired solutions [u™,p~]. Along the way, we found

Paula Egging + _ ~
. u pa(u”) + a(f, g)
maps which gave us = ~ .
P 8 Lﬁ] [qx(u) +q(f, 9)

(These establish Part (ii) of Theorem.)

After showing [ut,p™,u”] € D(A), we have
established maximality of A, which allows us to use
Lumer-Phillips Theorem to give us a Cy-semigroup of
contractions. (This established Part (i) of Theorem.)

O

George Avalos and Paula Egging Wellposedness and Numerical Results for a Fluid-Fluid Model
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Wellposedness and
Numerical Results

for a Fluid-Fluid Domain is discretized in
Model
nodes.

to a mesh with elements and

George Avalos and
Paula Egging

() ° (7»?1 (o)

Fluid velocity reference
element

Figure: A sample mesh.
Pressure reference element

George Avalos and Paula Egging Wellposedness and Numerical Results for a Fluid-Fluid Model
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Wellposedness and FEM idea:

Numerical Results

| Resu N o5 - .
e I Assume u =) ." | &;Fi(x,y) for known basis functions
ode

N, . ) N
George Avalo_s and {wl}'fil and b= Zz:pl /621/}7/ for baSIS fUnCt|OnS {w’l}z:pl
Paula Egging Then just need to find o;'s and 3;’s.

The variational form from before

ax(u”,¢) + b(p,p) = F(p) for all p € H}m,\r(ﬂ_)
b(u,q) =0 for all ¢ € L*(27)

lends itself to the matrix equation
A Bj|l|a|l |F
BT o||B]|  |o]"

We use similar formulation to find [uy, gx] and [f,4]

George Avalos and Paula Egging Wellposedness and Numerical Results for a Fluid-Fluid Model
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Wellposedness and Take U =0, QF = (1,0) x (.5,1), and Q= = (0,1) x (0, .5).
Numerical Results
for a Fluid-Fluid
Model Then

George Avalos and u+ _ 2 sin(27r:7c) COS(27Ty) - _ 2 sin(27m:) COS(27I'y)
Paula Egging cos(2mx) sin(27y) |’ —2 cos(27z) sin(27y)

pT =21(2v + 3\ — 2) cos(27x), p~ =0
solve our system for right hand side data
f = u" —dive(u®) + Vpt

. {(2)\ +16vm? + 12(v +~5\)) sin(27x) cos(27ry)}
Tl A+ 8um? +12(v + ) cos(2nz) sin(27y)

g=p" +div(u™)
= 27A(2v + 3X — 2) cos(2mz) + 67 cos(2mx) cos(2my),
h=XMu" —Au +Vp~

_ { (2 + 167?) sin(27x) cos(2my) ]
—(2X + 167?) cos(2mz) sin(27y) |

George Avalos and Paula Egging Wellposedness and Numerical Results for a Fluid-Fluid Model
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Wellposedness and For this problem, the errors in FEM approximations are given below.

Numerical Results

for a Fluid-Fluid
Model # elements

George Avalos and in QF Side length  [u™ —uflo |Jut—ufli  |pT -l

Paula Egging 4 0.5 5.158 0.280 783

16 0.25 1.533 0.0497 1.107
64 0.125 0.413 5.80 x 1073 0.232
256 0.0625 0.106 7.25 x 1074 0.055
1024 0.03125 0.0266 9.04 x 107° 0.0136

# elements

in Q° Side length  |u™ —wu, o |u” —u, |1 [p” —p,lo
4 0.5 6.715 0.296 3.053
16 0.25 1.907 0.059 0.404
64 0.125 0.519 717 x 1073 0.032

256 0.0625 0.134 9.06 x 107*  2.44 x 1073

1024 0.03125 0.033 1.14 x 107*  1.92x 107*

George Avalos and Paula Egging Wellposedness and Numerical Results for a Fluid-Fluid Model
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Wellposedness and
Numerical Results

s Since u™ and u~ are vector valued, we compare plots of
odel . .
approximate and true solutions for each component.
George Avalos and . . .
Paula Egging Images shown are with 64 elements in domain.

1Y AxE o1 L X AxE

. .
.
"
.
.
|
.
o
0o
1
15 ——— 2
A

Approximate u
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Approximate u;

George Avalos and Paula Egging Wellposedness and Numerical Results for a Fluid-Fluid Model
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Paula Egging

X Axis o Y Axis

Approximate pT
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