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Introduction

Partial differential equations (PDEs) can be used to model
natural phenomena, including:

Sound waves
Heat dispersion
Thermodynamics
Fluid dynamics

And our present concern

Ocean-atmosphere interaction,
inspired by an internship
project at Argonne National
Lab.

Figure: free-
images.com/display/
ocean water sky sea.html
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Introduction

Historically, semigroup generation in 3-D fluid-structure
interaction models have been well-studied, including

I. Chueshov, I. Ryzhkova, A global attractor for a fluid-plate
interaction model, 2013.

I. Chueshov, I. Lasiecka, J. T. Webster, Flow-plate interactions:
Well-posedness and long-time behavior, 2014.

L. Bociu, L. Castle, K. Martin, and D. Toundykov, Optimal
Control in a Free Boundary Fluid-Elasticity Interaction, 2015.

G. Avalos, P. G. Geredeli, J. T. Webster, Semigroup
Well-posedness of A Linearized, Compressible Fluid with An
Elastic Boundary, 2018.

G. Avalos, P. G. Geredeli and B. Muha, Rational Decay of A
Multilayered Structure-Fluid PDE System, 2022.

But the extension of similar techniques to fluid-fluid
interaction has remained relatively untouched.
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Our Model

Here, the geometry is

“atmosphere”

“ocean”

Ω+

Ω+

Ω−
~ν

Γ

Figure: The fluid-fluid geometry.

The u+, u− represent velocity of the fluid in Ω+,Ω−.
The p+, p− represent pressure in Ω+,Ω−, respectively.

Additionally, U is a steady state solution to Navier-Stokes
about which we linearize, and σ(u+) is the stress tensor of
u+.
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Our Model

For variables [u+, p+,u−, p−], consider the system:


u+
t + U · ∇u+ − divσ(u+) +∇p+ = 0 on Ω+ × (0, T ),

p+
t + U · ∇p+ + div(u+) = 0 on Ω+ × (0, T ),

u+ = 0 on (∂Ω+ \ Γ)× (0, T ),

(a compressible fluid evolving in time on Ω+) (1)
u−t −∆u− +∇p− = 0 on Ω− × (0, T ),

div(u−) = 0 on Ω− × (0, T ),

u− = 0 on (∂Ω− \ Γ)× (0, T ),

(an incompressible fluid evolving in time on Ω−) (2)
u+ = u− on Γ× (0, T ),

σ(u+)~ν − p+~ν = ∂u−

∂~ν
− p−~ν on Γ× (0, T ),

u+(t = 0) = u+
0 ; u−(t = 0) = u−0 .

(boundary and initial conditions) (3)
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Elimination of Pressure in Ω−

We eliminate p− by identifying it as the solution to the
boundary value problem

∆p− = 0 on Ω− × (0, T ),

p− = ∂u−

∂~ν · ~ν − [σ(u+)~ν] · ~ν + p+ on Γ× (0, T ),
∂p−

∂~ν = ∆u− · ~ν on ∂Ω− \ Γ× (0, T ),

(4)
which is derived from (??) - (??).
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Elimination of Pressure in Ω−

Let the Dirichlet and Neumann maps, respectively, be given
by

h = Ds(g) ⇐⇒


∆h = 0 on Ω−,

h = g on Γ,
∂h
∂~ν = 0 on ∂Ω− \ Γ,

and

h = Ns(g) ⇐⇒


∆h = 0 on Ω−,

h = 0 on Γ,
∂h
∂~ν = g on ∂Ω− \ Γ,
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Elimination of Pressure in Ω−

In consideration of the boundary conditions in (??),

p−(t) = Ds

(
∂u−(t)

∂~ν
· ~ν − [σ(u+(t))~ν] · ~ν + p+(t)

)
+Ns(∆u−(t) · ~ν) ∈ L2(Ω−)

Then with

G1u
− = −∇

(
Ds

(
∂u−

∂~ν
· ~ν
)

+Ns(∆u− · ~ν)

)
,

G2u
+ = −∇

(
Ds([σ(u+)~ν] · ~ν)

)
; G3p

+ = −∇(Ds(p
+)),

we identify

∇p− = −G1u
− −G2u

+ −G3p
+ in Ω− × (0, T ).

So we have ∇p− in terms of u+, p+, and u−.
George Avalos and Paula Egging Wellposedness and Numerical Results for a Fluid-Fluid Model



Wellposedness and
Numerical Results
for a Fluid-Fluid

Model

George Avalos and
Paula Egging

Our Model

To determine the semigroup, consider the system again
u+
t + U · ∇u+ − divσ(u+) +∇p+ = 0 on Ω+ × (0, T ),

p+
t + U · ∇p+ + div(u+) = 0 on Ω+ × (0, T ),

u+ = 0 on (∂Ω+ \ Γ)× (0, T ),


u−t −∆u− +∇p− = 0 on Ω− × (0, T ),

div(u−) = 0 on Ω− × (0, T ),

u− = 0 on (∂Ω− \ Γ)× (0, T ),


u+ = u− on Γ× (0, T ),

σ(u+)~ν − p+~ν = ∂u−

∂~ν
− p−~ν on Γ× (0, T ),

u+(t = 0) = u+
0 ; u−(t = 0) = u−0 .
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Semigroup Generation

Keeping time derivatives on left and moving everything else
to RHS, we have
u+
t = −U · ∇u+ + divσ(u+)−∇p+ on Ω+ × (0, T ),

p+
t = −div(u+)−U · ∇p+ on Ω+ × (0, T ),

u−t = G2u
+ +G3p

+ + ∆u− +G1u
− on Ω− × (0, T ).

This is equivalent to the following system of equations

d

dt

u+

p+

u−

 =

−U · ∇u+ + divσ(u+)−∇p+

−div(u+)−U · ∇p+

G2u
+ +G3p

+ + ∆u− +G1u
−


=

−U · ∇(·) + divσ(·) −∇(·) 0
−div(·) −U · ∇(·) 0
G2 G3 ∆(·) +G1


︸ ︷︷ ︸

hopeful semigroup generator, A

u+

p+

u−

 .
(5)George Avalos and Paula Egging Wellposedness and Numerical Results for a Fluid-Fluid Model
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Domain of Semigroup

We carefully choose the domain, D(A), to ensure the
necessary regularity of solutions and that A is, indeed, a
maximal dissipative generator.

Let the space of finite energy be

H = L2(Ω+)× L2(Ω+)× {f ∈ L2(Ω−) : div(f) = 0

and f · ~ν|∂Ω−\Γ = 0}.

A few key properties include

D(A) ⊂ H
D(A) ⊂ H1

∂Ω+\Γ(Ω+)× L2(Ω+)×H1
∂Ω−\Γ(Ω−)

u+ = u− on Γ

[u+, p+,u−] ∈ D(A) if there exists a p− ∈ L2(Ω−)
such that ∇p− = −G1u

− −G2u
+ −G3p

+.
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Main Theorem

Theorem (P.E., G. A., 2022)

(i) The operator A : D(A) ⊂ H → H is maximal dissipative.
Therefore, by the Lumer-Phillips Theorem, it generates a
C0-semigroup of contractions {eAt}t≥0 on H.

(ii) In particular, let λ > 0 and [f , g,h] ∈ H be given. (By part
(i), there exists [u+, p+,u−] ∈ D(A) which solves
(λI −A)[u+, p+,u−] = [f , g,h].)
Then u− and p− can be characterized as the solution to a
certain variational system, while u+ and p+ can be
characterized by

u+ = µλ(u−) + µ̃([f , g]T )

p+ = qλ(u−) + q̃([f , g]T ),

where [µλ, qλ] and [µ̃, q̃] are (to be given) mappings.
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Outline

The proof strategy for Part (i) is:

1 Show A is maximal dissipative.

2 Apply the classical Lumer-Phillips Theorem to obtain a
C0-semigroup of contractions, {eAt}.

3 This allows for solutions [u+(t), p+(t),u−(t)] of (??) -
(??) to be obtained by applying {eAt} to initial data
[u+

0 , p
+(t = 0),u−0 ].

The characterizations of u+, p+, u−, and p− given in Part
(ii) are obtained within the proof of Part (i).

George Avalos and Paula Egging Wellposedness and Numerical Results for a Fluid-Fluid Model



Wellposedness and
Numerical Results
for a Fluid-Fluid

Model

George Avalos and
Paula Egging

Slight Caveat..

There is a slight caveat... A, as defined, is not actually
dissipative due to the non-zero U.

However, the bounded perturbation

Â = A− div(U)

2

I 0 0
0 I 0
0 0 0

 , D(Â) = D(A),

IS dissipative.

The standard perturbation result in Kato ([?]) can be
applied to Â, yielding semigroup generation for the original
A.
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Dissipativity

The proof of dissipativity is actually kinda cute.
It involves Green’s Identities, using boundary conditions,
div(u−) = 0, and some vector identities, to eventually get
down to

Re

Â
u+

p+

u−

 ,
u+

p+

u−


H

= −(σ(u+), ε(u+))Ω+ − ||∇u−||2Ω− ≤ 0,

as desired.

(This is not the hard part of the proof.)
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Maximality

To show maximality of Â on H, we establish the range
condition:
Range(λI − Â) = H for λ sufficiently large.

That is, for any [f , g,h] ∈ H, there is a solution
[u+, p+,u−] to

(λI − Â)

u+

p+

u−

 =

fg
h

 .
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Maximality (continued)

Goal: Find bilinear forms in u− and p− so we can apply
the Babuska-Brezzi Theorem.

So consider (λI − Â)

u+

p+

u−

 =

fg
h

, which gives the

equivalent system:
λu+ + U · ∇u+ − divσ(u+) + 1

2div(U)u+ +∇p+ = f in Ω+,

λp+ + div(u+) + U · ∇p+ + 1
2div(U)p+ = g in Ω+,

λu− −∆u− +∇p− = h in Ω−.

George Avalos and Paula Egging Wellposedness and Numerical Results for a Fluid-Fluid Model



Wellposedness and
Numerical Results
for a Fluid-Fluid

Model

George Avalos and
Paula Egging

Maximality (continued)

Taking the last line, multiplying everything by
ϕ ∈ H1

∂Ω−\Γ(Ω−), integrating over Ω−, and applying
Green’s Theorems and boundary conditions gives

λ(u−, ϕ)Ω−+(∇u−,∇ϕ)Ω− − (p−, div(ϕ))Ω−

+ 〈σ(u+)− p+~ν, ϕ〉Γ = (h, ϕ)Ω− .

But the u+ and p+ are still unknown /

Solution: Just make some more maps ,
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Maximality (continued)

Recall, need u+, p+ to satisfy:

λu+ + U · ∇u+ − divσ(u+) +
1

2
div(U)u+ +∇p+ = f in Ω+,

λp+ + div(u+) + U · ∇p+ +
1

2
div(U)p+ = g in Ω+,

u+ = u− on Γ,

u+ = 0 on ∂Ω+\Γ.

Evidently, u+ and p+ depend on f , g, and u−.
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Maximality (continued)

So we define two maps: For λ > 0 sufficiently large,

Dλ : H1/2(Γ)→ H1
∂Ω+\Γ(Ω+)× L2(Ω+) is given by

Dλ(ϕ) =

[
µλ(ϕ)
qλ(ϕ)

]
,

where
λµλ + U · ∇µλ − divσ(µλ) + 1

2
div(U)µλ +∇qλ = 0 in Ω+,

λqλ + div(µλ) + U · ∇qλ + 1
2

div(U)qλ = 0 in Ω+,

µλ|Γ = ϕ on Γ,

µλ|∂Ω+\Γ = 0 on ∂Ω+ \ Γ.

This takes boundary values ϕ on Γ and maps to solutions on all of Ω+.

Lemma

This Dλ mapping is wellposed, admitting of a unique solution with
continuous dependence on data.

George Avalos and Paula Egging Wellposedness and Numerical Results for a Fluid-Fluid Model
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Maximality (continued)

Similarly, with Aλ : H1
0(Ω+)× L2(Ω+)→ L2(Ω+)× L2(Ω+)

given by

Aλ(µ̃, q̃) =

[
λµ̃+ U · ∇µ̃− divσ(µ̃) + 1

2div(U)µ̃+∇q̃
λq̃ + div(µ̃) + U · ∇q̃ + 1

2div(U)q̃

]
,

we want [µ̃, q̃] such that

Aλ(µ̃, q̃) =
λµ̃+ U · ∇µ̃− divσ(µ̃) + 1

2div(U)µ̃+∇q̃ = f in Ω+,

λq̃ + div(µ̃) + U · ∇q̃ + 1
2div(U)q̃ = g in Ω+,

µ̃ = 0 on ∂Ω+.

Thus, [µ̃, q̃] = A−1λ (f , g) takes data [f , g] and maps it to
solutions on all of Ω+.

Lemma

This Aλ has a bounded inverse. So the mapping [µ̃, q̃] is
wellposed.
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Maximality (continued)

Thus,

[
µλ(u−)
qλ(u−)

]
handles the condition u+ = u− on Γ and[

µ̃(f , g)
q̃(f , g)

]
handles the non-zero right hand side [f , g].

So we immediately recover

[
u+

p+

]
=

[
µλ(u−) + µ̃(f , g)
qλ(u−) + q̃(f , g)

]
.

(Note, u− is still not known yet either /)
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Maximality (continued)

Recall that we were in the middle of finding a bilinear form
for u− and p−. We had

λ(u−, ϕ)Ω−+(∇u−,∇ϕ)Ω− − (p−, div(ϕ))Ω−

+ 〈σ(u+)− p+~ν, ϕ〉Γ = (h, ϕ)Ω− .

With

[
u+

p+

]
=

[
µλ(u−) + µ̃(f , g)
qλ(u−) + q̃(f , g)

]
, this becomes

λ(u−, ϕ)Ω− + (∇u−,∇ϕ)Ω− − (p−, div(ϕ))Ω−

+ 〈σ(µλ(u−) + µ̃(f , g))− (qλ(u−) + q̃(f , g))~ν, ϕ〉Γ
= (h, ϕ)Ω−

for all ϕ ∈ H1
∂Ω−\Γ(Ω−).
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Maximality (continued)

Applying Green’s Theorem to the boundary term and
keeping the u− terms on the left while moving the (f , g)
terms to the right hand side, we then have

λ(u−, ϕ)Ω− + (∇u−,∇ϕ)Ω− − (p−, div(ϕ))Ω− + λ(µλ(u−), µλ(ϕ))Ω−

+ (U · ∇µλ(u−))Ω+ +
1

2
(div(U)µλ(u−), µλ(ϕ))Ω+

+ (σ(µλ(u−)), ε(µλ(ϕ)))Ω+ −(qλ(u−), div(µλ(ϕ)))Ω+

= (h, ϕ)Ω− + (f , µλ(ϕ))Ω+ −
[
λ(µ̃(f , g), µλ(ϕ)))Ω+

+ (U · ∇µ̃(f , g), µλ(ϕ))Ω+ +
1

2
(div(U)µ̃(f , g), µλ(ϕ))Ω+

+ (σ(µ̃(f , g)), ε(µλ(ϕ)))Ω+ − (q̃(f , g), div(µλ(ϕ)))Ω+

]
for all ϕ ∈ H1

∂Ω−\Γ(Ω−).

Additionally, from div(u−) = 0 in Ω−, we have

(div(u−), ψ)Ω− = 0 for all ψ ∈ L2(Ω−).
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Maximality (continued)

Simplifying notation, we are looking for [u−, p−] that solves{
aλ(u−, ϕ) + b(ϕ, p−) = F (ϕ) for all ϕ ∈ H1

∂Ω−\Γ(Ω−)

b(u−, ρ) = 0 for all ρ ∈ L2(Ω−)
,

where aλ(·, ·) : H1
∂Ω−\Γ(Ω−)×H1

∂Ω−\Γ(Ω−)→ R is given by

aλ(ψ,ϕ) = λ(ψ,ϕ)Ω− + λ(µλ(ψ), µλ(ϕ))Ω+ + (∇ψ,∇ϕ)Ω−

+ (U · ∇µλ(ψ), µλ(ϕ))Ω+ +
1

2
(div(U)µλ(ψ), µλ(ϕ))Ω+

+ (σ(µλ(ψ)), ε(µλ(ϕ)))Ω+ − (qλ(ψ), div(µλ(ϕ)))Ω+ ,

b(·, ·) : H1
∂Ω−\Γ(Ω−)× L2(Ω−)→ R is given by

b(ϕ, ρ) = −(ρ, div(ϕ))Ω− ,

George Avalos and Paula Egging Wellposedness and Numerical Results for a Fluid-Fluid Model
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Maximality (continued)

and F (·) : H1
∂Ω−\Γ(Ω−)→ R is given by

F (ϕ) = (h, ϕ)Ω− + (f , µλ(ϕ))Ω+ −
[
λ(µ̃(f , g), µλ(ϕ)))Ω+

+ (U · ∇µ̃(f , g), µλ(ϕ))Ω+ +
1

2
(div(U)µ̃(f , g), µλ(ϕ))Ω+

+ (σ(µ̃(f , g)), ε(µλ(ϕ)))Ω+ − (q̃(f , g), div(µλ(ϕ)))Ω+

]
.
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Maximality (continued)

For the Inf-Sup condition, we invoke a lemma from [?]:

Lemma (Grisvard)

For Ω ⊂ Rn that is bounded, open, and with Lipshitz
boundary ∂Ω, there exists some δ > 0 and µ ∈ [C∞(Ω̄)]n

such that µ · ~ν ≥ δ a.e. on ∂Ω.

With this in hand, let ω ∈ H1
∂Ω−\Γ(Ω−) be a solution to

div(ω) = −η〈µ, ~ν〉Γ in Ω−,

ω|∂Ω−\Γ = 0 on ∂Ω− \ Γ,

ω|Γ =
(∫

Ω− η dΩ−
)
µ(x) on Γ,

for any η ∈ L2(Ω−). It is well-known that solution, ω,
exists with ||∇ω||Ω− ≤ C||η||Ω− .

George Avalos and Paula Egging Wellposedness and Numerical Results for a Fluid-Fluid Model
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Maximality (continued)

Now consider

sup
ϕ∈H1

∂Ω−\Γ
(Ω−)

b(ϕ, η)

||ϕ||H1
∂Ω−\Γ

(Ω−)

Poincaré’s
= sup

ϕ∈H1
∂Ω−\Γ

b(ϕ, η)

||∇ϕ||Ω−

(b(ϕ, η) = −(η, div(ϕ))Ω−) = sup
ϕ∈H1

∂Ω−\Γ
(Ω−)

−
∫
ηdiv(ϕ) dΩ−

||∇ϕ||Ω−

≥
−
∫
ηdiv(ω) dΩ−

||∇ω||Ω−

(div(ω) = −η〈µ, ~ν〉Γ) =

∫
η2〈µ, ~ν〉Γ dΩ−

||∇ω||Ω−

(µ · ~ν ≥ δ) ≥
δ ·meas(Γ)||η||2Ω−
||∇ω||Ω−

(||∇ω||Ω− ≤ C||η||Ω−) ≥
δ ·meas(Γ)||η||Ω−

(
1
C
||∇ω||Ω−

)
||∇ω||Ω−

=

(
1

C
δmeas(Γ)

)
||η||Ω− .
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Maximality (continued)

Thus, we have

sup
ϕ∈H1

∂Ω−\Γ
(Ω−)

b(ϕ, η)

||ϕ||H1
∂Ω−\Γ

(Ω−)

≥ β||η||Ω− ,

and since η ∈ L2(Ω−) was arbitrary,

inf
η∈L2(Ω−)

sup
ϕ∈H1

∂Ω−\Γ
(Ω−)

b(ϕ, η)

||η||Ω− ||ϕ||∂Ω−\Γ
≥ β,

with β = 1
C δmeas(Γ). So the Inf-Sup condition is satisfied.
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Conclusion of Proof

Thus, by the Babuska-Brezzi Theorem, we have the
desired solutions [u−, p−]. Along the way, we found

maps which gave us

[
u+

p+

]
=

[
µλ(u−) + µ̃(f , g)
qλ(u−) + q̃(f , g)

]
.

(These establish Part (ii) of Theorem.)

After showing [u+, p+,u−] ∈ D(A), we have
established maximality of Â, which allows us to use
Lumer-Phillips Theorem to give us a C0-semigroup of
contractions. (This established Part (i) of Theorem.)
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The Finite Element Method

Domain is discretized in to a mesh with elements and
nodes.

Figure: A sample mesh.

Fluid velocity reference
element

Pressure reference element
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The Discrete Problem

FEM idea:
Assume u =

∑N
i=1 ~αi ~ϕi(x, y) for known basis functions

{ϕi}Ni=1 and p =
∑Np

i=1 βiψi for basis functions {ψi}
Np
i=1.

Then just need to find αi’s and βi’s.

The variational form from before

aλ(u−, ϕ) + b(ϕ, p) = F (ϕ) for all ϕ ∈ H1
∂Ω−\Γ(Ω−)

b(u−, q) = 0 for all q ∈ L2(Ω−)

lends itself to the matrix equation[
A B
BT 0

] [
~α
β

]
=

[
F
0

]
.

We use similar formulation to find [µλ, qλ] and [µ̃, q̃].
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Numerical Test Problem

Take U = 0, Ω+ = (1, 0)× (.5, 1), and Ω− = (0, 1)× (0, .5).

Then

u+ =

[
2 sin(2πx) cos(2πy)
cos(2πx) sin(2πy)

]
, u− =

[
2 sin(2πx) cos(2πy)
−2 cos(2πx) sin(2πy)

]
p+ = 2π(2ν + 3λ− 2) cos(2πx), p− = 0

solve our system for right hand side data

f = λu+ − divσ(u+) +∇p+

=

[
(2λ+ 16νπ2 + 12(ν + λ̃)) sin(2πx) cos(2πy)

(λ+ 8νπ2 + 12(ν + λ̃)) cos(2πx) sin(2πy)

]
,

g = λp+ + div(u+)

= 2πλ(2ν + 3λ̃− 2) cos(2πx) + 6π cos(2πx) cos(2πy),

h = λu− −4u− +∇p−

=

[
(2λ+ 16π2) sin(2πx) cos(2πy)
−(2λ+ 16π2) cos(2πx) sin(2πy)

]
.
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Numerical Results

For this problem, the errors in FEM approximations are given below.

# elements
in Ω+ Side length |u+ − u+

h |0 |u+ − u+
h |1 |p+ − p+

h |0
4 0.5 5.158 0.280 .783

16 0.25 1.533 0.0497 1.107
64 0.125 0.413 5.89× 10−3 0.232

256 0.0625 0.106 7.25× 10−4 0.055
1024 0.03125 0.0266 9.04× 10−5 0.0136

# elements
in Ω− Side length |u− − u−h |0 |u− − u−h |1 |p− − p−h |0

4 0.5 6.715 0.296 3.053
16 0.25 1.907 0.059 0.404
64 0.125 0.519 7.17× 10−3 0.032

256 0.0625 0.134 9.06× 10−4 2.44× 10−3

1024 0.03125 0.033 1.14× 10−4 1.92× 10−4
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Numerical Results (continued)

Since u+ and u− are vector valued, we compare plots of
approximate and true solutions for each component.
Images shown are with 64 elements in domain.

Approximate u+
1 True u+

1
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Numerical Results (continued)

For u+
2 :

Approximate u+
2 True u+

2
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Numerical Results (continued)

For p+:

Approximate p+
True p+
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Numerical Results (continued)

For u−1 :

Approximate u−1 True u−1
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Numerical Results (continued)

For u−2 :

Approximate u−2 True u−2
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