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1. Introduction



The rise of Artificial Intelligence (Al)

/

knowledge based

/

Al

Machine Learning

Deep Learning

The essential component is neural networks often described as software,
but is just a type of mathematical function. In a one sentence description:
piecewise linear maps.



Some current or future problems with Al
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Big Black Box

contributing to:

- reliability problem

- fairness and bias problem

- alignment problem

- Size and speed problem

- copyright and privacy problem
- extracting knowledge problem



Some current or future problems with Al

L/

Big Black Box

contributing to:

- reliability problem

- fairness and bias problem

- alignment problem

- Size and speed problem

- copyright and privacy problem
- extracting knowledge problem

- Taking-over-the-world problem
- Killing-us-all problem



The Economist, June 24, 2023
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e i
Artificial intelligence same time. And even once the training is
. o complete, actually using the resulting
Tl me fOl‘ a dlet model can be expensive as well. The bigger

the model, the more it costs to run. Earlier
this year Morgan Stanley, a bank, guessed
that, were half of Google’s searches to be
handled by a current GPT-style program, it
could cost the firm an additional $6bn a
year. As the models get bigger, that number
will probably rise.
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If AI is to keep getting better, it will have to do more with less
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2. A statistical problem— deep learning



Linear regression

Find y = ax + b

that minimizes the errors.

0 | ‘ CE
Smallest neural network
@ L 2 o y = U(x)
€T [] Y



A problem of statistics

Underfitted Good Fit/Robust Overfitted

even worse with polynomials: g

.



Neural networks

Input Hidden layers Output
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Neural networks

A layer is a transformation 7' : x — o(Ax + b)

A a matrix and b a vector.

where o(t) is an activity function, a non-linear function applied coordinatewise.
For example, o(t) = max0,t (ReLLU) or o(t) = tanh(¢) (TanH).

Logistic, 1
sigmoid,or | __—— | o(z) = —
soft step l+e
i itv!
Hyperbolic - Nonlinearity!
tangent tanh(z) = ———
(tanh) e’ +e
(" )

Rectified 0 ifz<0
linear unit xz ifz>0
(ReLU)!

= max{0,z} = x1,-¢




Perceptron, or McCulloch-Pitts neuron, 1943

Inputs  Weights Net input Activation
function function

9_; output

Frank Rosenblatt, 1950s, built “embryo” of computer from these,
and claimed it learns by itself, and in future can do many things.



%%%YYB%) %YO]](;?G The New York Times, July 8, 1958

Psychologist Shows Embryo

of Computer Designed to The “brain” 18 designed to
Read and Grow Wiser o A
- remember images and informa-,
e tion it has perceived itself. Ordi-
e nary computers remember only
e what ig fed into them on punch

cards or magnetic tape. .
i aERE Later Perceptrons will be able
Sy to recognize people anc

S their names and instantly trans-

m late speech in one language 1o
e e speech or writing in another
anguage, it was predicted.

S Mr. Rosenblatt said in prin-

TonintEIL
‘;glg éh?i-‘_

3
<
]
:
L
SgES 9
Yhot §
gvEy =2

|

wriva:
LY
3
3

ciple it would be possible to
build brains that could repro-
duce themselves on an assembly
line and which would be con-
scious of their existence, |
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Deep learning

Find parameters A;, b; such that with g;(z) = o(A;x + b;)




Deep learning

Find parameters A;, b; such that with g;(z) = o(A;x + b;)

f(9192...gn0)

How to find these many parameters? Possible not to overfit 1?



Training the network

NG..0,) ',

0,

H

Finding the global minimum of the error function.
Where to start? Random initialization.
Then stochastic gradient descent to local minimum.

Regularization by drop-out procedure.
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Training the network

Finding the global minimum of the error function.

Where to start? Random initialization.
Then stochastic gradient descent to local minimum.

Regularization by drop-out procedure.

Involve a random product of noncommuting operations.



3. An ergodic theorem for the composition of
noncommuting operations



Limit law for noncommutative operations

The Law of Large Numbers asserts that for i.i.d X, X5, X3, ...
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Is there a similar law for
X1-Xo-...- X7

Where X; are noncommuting operations, for example elements of an arbitrary
group.



Limit law for noncommutative operations
The Law of Large Numbers asserts that for i.i.d X, X5, X3, ...

1

Is there a similar law for
X1-Xo-..- X7

Where X; are noncommuting operations, for example elements of an arbitrary

group. Duke Math. J. 1954

LIMIT THEOREMS FOR NON-COMMUTATIVE OPERATIONS. I
By RicEARD BELLMAN

1. Introduction. In this paper a start is made in the construction of a
general theory involving the limiting behavior of systems subjected to non-
commutative effects.
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The metric category

Let X be a metric space. f : X — X is nonexrpansive it

d(f(x), f(y)) < d(z,y)

for all z,y € X.



The metric category

Let X be a metric space. f : X — X is nonexrpansive it

d(f(x), f(y)) < d(z,y)

for all z,y € X.

Ex: Compositions; ISOMETRIES.



Nonexpanding maps appear in many contexts

Geometry: Riemannian geometry, Banach spaces, etc
Linear algebra / Lie groups, operator theory, diffeomorphisms

Complex analysis, group theory, cone maps, ...
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Nonexpanding maps appear in many contexts

Geometry: Riemannian geometry, Banach spaces, etc
Linear algebra / Lie groups, operator theory, diffeomorphisms
Complex analysis, group theory, cone maps, ...

and certain neural networks.

A.K. From liner to metric functional analysis, PNAS 2021



Metrics 2

Thompson metric

yz} '(f‘««“l'b)

L4

d(z,y) = max{log max; '*, log max;

The Thurston asymmetric distance on Teichmuller space

l
L(z,y) = log sup () @@

aeS lw (CV) |

X,y represent metrics on a surface,
and homeomorphisms are isometries.



An example

An observation in D. Blackwell, Discounted Dynamic Programming, 1965:

Let S be a set and B(S) the space of functions on S, equipped with sup-norm.

Let T : B(S) — B(S) such that
o f<gimpliesTf <Tyg

e T'(f+C)=Tf+ BC certain $ € (0, 1] all constants C

Then ||[Tf —Tgl|| < B[|f — g]| for all f,g.



An example

An observation in D. Blackwell, Discounted Dynamic Programming, 1965:

Let S be a set and B(S) the space of functions on S, equipped with sup-norm.

Let T : B(S) — B(S) such that
o f<gimpliesTf <Tyg

e T'(f+C)=Tf+ BC certain $ € (0, 1] all constants C

Then ||[Tf —Tgl|| < B[|f — g]| for all f,g.

Example:

T f(s) = max,{7.(s) + Zt pst(a)f(t)}



A noncommutative ergodic theorem

Let (X, d) be a weak metric space,

i.e. d(z,x) =0 and

dlz,y) < d(x,z)+d(z,vy).

Let g; be i.i.d. selected nonexpansive maps X — X.

Let

u(n,w) := g1 0 g2 © g3 0 ... 0 gy,.

Assume everything measurable and

Ud(z, g())] < oo




A noncommutative ergodic theorem
Let

u(n,w) = g19293---9n

be an integrable ergodic cocycle of nonexpansive maps of X.

Theorem (K.-Ledrappier, Ann Prob ’06 ; Gouézel-K., JEMS ’20)
For a.e. w there exists a metric tunctional h = h% s.t.
1

. 1 .
nh_)n;o—ﬁh(u(n,w)x) = nh_)n;O ﬁd(x,u(n,w)aﬁ).



A noncommutative ergodic theorem

Let
u(n,w) = g19293---9n

be an integrable ergodic cocycle of nonexpansive maps of X.

Theorem (K.-Ledrappier, Ann Prob ’06 ; Gouézel-K., J]
For a.e. w there exists a metric functional h = h% s.t.

1

SMS ’20)

lim —lh(u(n,w)x) = lim —d(z,u(n,w)x).

n—o0o0 N n—o00 N,

| Kingman’s subadditive
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ergodic theorem



Proof based on substantial refinement of the subadditive ergodic theorem,




Rough idea of the proof

There exist good times n; when the subadditive cocycle
d(x,u(n,w)x) is nearly additive.

u(ng,w)x

Take a weak limit point of hu(ni,w)az for these special orbit points. QED.



Special cases of the noncommutative ergodic theorem

1. Oseledets multiplicative ergodic theorem

When applied to X = Pos and G = GL(n,R)

2. Random mean ergodic theorems (Ulam-von Neumann,...)

When applied to X =Hilbert space and g;(z) = U;x 4+ v

3. Operator multiplicative ergodic theorems (Ruelle,...)
4. Muliplicative ergodic theorem for CAT(0)-spaces (K.-Margulis)

5. Random walks on groups and Brownian motion (with Ledrappier, 2007)

6. A Furstenberg-Khasminskii type formula (with Ledrappier, 2007)



3. Deep learning:
metric frameworks



Providing a metric and dynamical framework

Avelin, B, Karlsson, A, Deep limits and a cut-off phenomenon for neural networks,
Journal of Machine Learning Research, 2022
NeurlPS 2022 presentation

In this paper we:

- Display invariant metrics or associated metric spaces on
which the layer maps act by nonexpansive maps.

- Apply the noncommutative ergodic theorem

- Found evidence for a cut-off phenomenon



Instances of recent deep learning literature

“The Principles of Deep Learning Theory:
An Effective Theory Approach to Understanding Neural Networks”
Daniel A. Roberts and Sho Yaida
based on research in collaboration with
Boris Hanin
Cambridge Univ. Press, 2022

“Beyond illuminating the properties of networks at the start of training, the
analysis of random neural networks can reveal a great deal about networks
after training as well.” Boris Hanin, 2021

Benoit Dherin, Michael Munn, Mihaela Rosca, David G.T. Barrett, Why neural
networks find simple solutions: the many regularizers of geometric complexity,
NeurlPS (2022)



“Direct” metrics

Positive models

T(x) =0c(Az + b)

where A;; > 0, b; > 0 and o = sigmoid or ReLU.

Thompson or Blackwell



“Direct” metrics

Positive models
T(x) =0(Ax + b)
where A;; > 0, b; > 0 and o = sigmoid or ReLU.

Thompson or Blackwell

Residual neural networks, “ResNets”
T(x) =Wlo(Wx+0)

where ||W]| <1 and o = one of the standard.

The norm



“Associated” metrics

Distances on space of metrics

( d d )
Ex. D(dy,ds) =log|maxsup 2(2,9) su {(#,9)

, SUP
| T#Y dl(w,y) TF+Y dZ(CC?y))

Distance on the set of decision functions

‘}}(—9.192---97233()) — fn (CCO )



Sample result, “ResNets”

U
Theorem(Avelin-K. ’20) Given layer maps x — Wo(Ax 4+ b) where W, A, b
are selected iid (or stationary) with ||W||, ||A]| < 1, and o(¢) = max{0,¢}. Then
there is a random vector v such that

1
—U1Us...U,,x9g — 0. n — oo
n




Sample results

Take X = [—1,1]" and activation function o(t) = tanh(¢)
and invertible weights A. As before U(x) = o(Ax + b).
Select at random say with finite support.

Theorem (Avelin-K. 21) There is a well-defined maximal exponential rate

separating two nearby points. And when it is strictly positive,
there is moreover a random point x whose neighborhood is stretched

with this maximal rate.

T R E R O
N=00 \ x#£y |z —y




Summary and outlook

e Main idea in deep learning, hence Al, is mathematical, simple to understand

e Lack of theoretical understanding contributes to the main problems of Al

 Products of noncommuting operations is a feature of deep
learning, and several other scientific contexts, as are metrics

e There is a general noncommutative ergodic theorem
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THANK YOU FOR YOUR ATTENTION!



