F-regularity and finite generation Joint of KARL SCHWEDE and KEVIN TUCKER

Throughout, $\left(\mathbf{l} \right)$ k := perfect field of char. p 70; K := finitely generated extension of R; R := k - subalgebra of K with Frac(R) = K. (not assuming R is noeth.)

Defⁿ R is split F-regular (SFR) ∀ re R-{0}, I e e Z₇₀ and an R-linear map R'pe $\longrightarrow \mathcal{R}$. $r^{1/p^e} \mapsto 1$

2

When R is noetherian this notion is called STRONGLY F-REGULAR [Hochster-Huncke]

HOCHSTER, HUNEKE, BENITO, MULLER, RAJCHGOT, SMITH

· GENERIC DETERMINANTAL rings.

· LOCALLY ACYCLIC Cluster algebras.

· R is Excellent REGULAR.

CRITICISM All examples are noeth.

 $\frac{\text{CONJECTURE [SINGH, SCHWEDE]}}{\text{R is SFR}} \xrightarrow{\text{R is noeth.}}$

CONSEQUENCES IF CONJECTURE HOLDS

2) [WATANABE, DE STEFANI - MONTAÑO-NÚÑEZ-BETANCOURT] (R,m) is noeth.local, SFR and I is a pure ht 1 ideal (i.e. divisorial ideal) ↓ ⊕ I⁽ⁿ⁾ is SFR n EN

3) [ABERBACH - HUNEKE - POLSTRA] F-regular ⇒ strongly F-regular follows from 2).

ENIDENCE FOR CONJECTURE

) [HACON-XU, BIRKAR, HARA-WATANABE,
SCHWEDE-SMITH]
Divisorial symb. Rees-algs. are noeth. if

$$-R$$
 is SFR + e.ft /k,
 $-dim(R) \leq 3$ and
 $-p > 5$.

2) [D-SMITH] \mathbb{R} is a SFR valuation ring of $K/_k \Rightarrow \mathbb{R}$ is eft $/_k$.

MAIN THEOREM [D- SCHWEDE - TUCKER]

(8)

BACKGROUND FROM CONNEX GEOMETRY

► σ ⊂ ℝ^d is a CONVEX CONE if V x, y e σ, s, t e ℝ₇₀, sx + t y e σ. ., 0 e σ

The DUAL of
$$\sigma$$
 is
 $\sigma^{\vee} := \begin{cases} \varphi : \mathbb{R}^{d} \to \mathbb{R} \text{ s.t.} \\ & \varphi(\sigma) \subseteq [0, \infty) \end{cases}$
• σ^{\vee} is a closed convex cone in $(\mathbb{R}^{d})^{\vee}$
• $(\sigma^{\vee})^{\vee} = \overline{\sigma}$.

The LINEALITY SPACE $L(\sigma)$ of σ is the LARGEST linear space in σ . $L(\sigma) = \sigma \Lambda - \sigma$.

- π(σ) is pointed;
- σ ≃ L(σ) x ⊼ (σ) ↑ not canonical

WARNING {extremal rays} $\varphi \mid \sigma \cap \varphi^{\perp} : \varphi \in \sigma^{\vee} \}.$

A ray τ of σ is RATIONAL if $\exists a \text{ NONZERO}$ $z \in \tau \cap \mathbb{Z}^d$. Then $\tau = \mathbb{R}_{\geq 0} \cdot \varkappa$.

▶ σ is full dim'l in $\mathbb{R}^d \Rightarrow$ $\mathbb{Z}(\sigma \cap \mathbb{Z}^d) = \mathbb{Z}^d$ { x-B | x, BE ONZd }

13

NOTATION & E ON 72 my X E k[on 2d].

$$\frac{\text{Observations}}{\mathbb{R}^{d}}$$

a) Any
$$\frac{1}{p^{e}}$$

 $k[\sigma \cap \mathbb{Z}^{d}] \longrightarrow k[\sigma \cap \mathbb{Z}^{d}]$
extends to
 $k[\mathbb{Z}^{d}]^{\frac{1}{p^{e}}} \longrightarrow k[\mathbb{Z}^{d}].$

 $k[\mathbb{Z}^d]$ is a localization of $k[\sigma \cap \mathbb{Z}^d]$.

b) VEEZ₇₀, R[Z^d] has a CANONICAL Frobenius splitting. $\lambda_{o,e} : \mathbb{k}[\mathbb{Z}^d]^{l/p^e} \longrightarrow \mathbb{k}[\mathbb{Z}^d]$ $(X^{\alpha}) \xrightarrow{\mu_{p^{e}}} \begin{cases} X^{\alpha/p^{e}} & \text{if } \alpha \in p^{e} \mathbb{Z}^{d} \\ 0 & \text{otherwise} \end{cases}$ ∀ e ∈ ℤ_{γo}, αε ση ℤ^d Notation / Definition define $\mathbb{Z}_{\alpha,e}^{d} := \left\{ \beta \in \mathbb{Z}^{d} \mid \mathbb{P}^{e}\beta + \alpha \in \sigma \right\}$

(15)

Example $\mathbb{Z}_{o,e}^{d} = \{\beta \in \mathbb{Z}^{d} \mid p^{e}\beta \in \sigma\}$ = rnZ⁴.

c) $\forall \alpha \in \sigma \cap \mathbb{Z}^d$, \exists $\lambda_{\alpha,e} : \mathbb{k} \left[\sigma \cap \mathbb{Z}^{d} \right]^{l_{q^{e}}} \longrightarrow \mathbb{k} \left[\sigma \cap \mathbb{Z}^{d} \right]$ $(X^{\alpha})^{l_{q^{e}}} \longmapsto l$

IF AND ONLY IF

Ζ^d_{α,e} <u></u>σ. (depends only on o, Zd, e)

 $\mathbb{R}ecall, \ \mathbb{Z}_{\alpha,e}^{d} = \{\beta \in \mathbb{Z}^{d} \mid p^{e}\beta + \alpha \in \sigma\}$ (6) \implies Extend $\lambda_{\alpha,e}$ to $\widetilde{\lambda}_{\alpha,e} : \Bbbk[\mathbb{Z}^d]^{l_p e} \longrightarrow \Bbbk[\mathbb{Z}^d].$ For BE Zda,e $X^{\beta} = X^{\beta} \hat{\lambda}_{\alpha,e} ((X^{\alpha})^{1/p^{e}})$ $= \widetilde{\lambda}_{\alpha,e} \left(\left(\chi^{p^{e}_{\beta}+\alpha} \right)^{1/p^{e}} \right)$ $= \lambda_{\alpha, e} \left(\left(\times^{p^{e_{\beta}} + \alpha} \right)^{1/p^{e}} \right)$ E R[onzd] ·· BE on Zd.

$$\begin{array}{c} \operatorname{Recall}, \ \mathbb{Z}_{\alpha,e}^{d} = \{ \beta \in \mathbb{Z}^{d} \mid p^{e} \beta + \alpha \in \sigma \} \end{array} \quad (a) \\ \hline \\ & [\Leftarrow] \\ & [\neq e \\ \\ & k [\mathbb{Z}^{d}]^{l/pe} \xrightarrow{(X^{-\alpha})}{} k [\mathbb{Z}^{d}]^{l/pe} \xrightarrow{\lambda_{0,e}} k [\mathbb{Z}^{d}] \\ & sends \\ & (X^{\Upsilon})^{l/pe} \xrightarrow{\left\{ X \xrightarrow{\mathbb{P}^{e}}{p^{e}} \text{ if } \Upsilon_{-\alpha} \in p^{e} \mathbb{Z}^{d} \\ & 0 & \text{otherwise} \end{array} \end{array}$$

$$Z_{\alpha,e}^{d} \subseteq \sigma \implies \text{the above map}$$
restricted to
$$k[\sigma \cap \mathbb{Z}^{d}]^{l/p^{e}}$$
maps into $k[\sigma \cap \mathbb{Z}^{d}]$.

Recall, $\mathbb{Z}_{\alpha,e}^{d} = \{\beta \in \mathbb{Z}^{d} \mid p^{e}\beta + \alpha \in \sigma\}$

$U_{pshot} \quad i) \quad k \left[\sigma \cap \mathbb{Z}^{d} \right] = k \left[\sigma \cap \mathbb{Z}^{d} \right]$

2) $\overline{\sigma}$ generated by $\overline{\sigma} \cap \mathbb{Z}^d$ $\Rightarrow \sigma = \overline{\sigma}$.

Proof of d) BEFNZd

 $\Rightarrow p^{e}\beta + \alpha \in \operatorname{Relint}(\sigma)$

 $\Rightarrow \beta \in \mathbb{Z}_{\alpha, e}^{d} \subseteq \sigma \cap \mathbb{Z}^{\ell}.$

20

$k[\sigma n \mathbb{Z}^2] = k[x^a y^b | a, b \in \mathbb{N}, b \in \pi a]$

$(1,1) \in \operatorname{Relint}(\sigma) \cap \mathbb{Z}^2.$

- Contradiction De'll show $\forall e \in \mathbb{Z}_{>0}$, $\mathbb{Z}^{2}_{(1,1),e} \notin \sigma$. $\mathbb{Z}^{2}_{(1,1),e} \notin \sigma$. $\mathbb{Z}^{2}(m,n) \in \mathbb{Z}^{2} \mid (p^{e}m+1, p^{e}n+1) \in \sigma$
 - $\begin{array}{c} \overbrace{\text{DANT}}{\text{(m,n)}} \in \mathbb{Z}^{2} \sigma \quad \text{s.t.} \\ (p^{e}m + 1, p^{e}n + 1) \in \sigma. \\ (p^{e}m + 1, p^{e}n + 1) \in \sigma. \\ (m,n) \quad \circ (p^{e}m + 1, p^{e}n + 1) \\ \hline \\ \mathbb{R}_{7,0} \cdot (1, \sigma) \end{array}$

2) $0 \leq p^{e}n+1 \leq \pi (p^{e}m+1)$ $\iff 0 \leq n$, $n - \pi m \leq \frac{\pi - 1}{p^e}$

3) TM ZN 2)+3) $\longrightarrow 0 < n-\pi m < \frac{\pi}{\gamma e}$

23

Pigeonhole P. $\Longrightarrow \{\{\pi m\}: m \in \mathbb{Z}_{70}\}$ is dense in [0,1].

Choose $m \in \mathbb{Z}_{70}$ s.t. $\left|-\left\{\pi m\right\} \leq \frac{\pi - 1}{P^{e}},$

i.e. $|+\lfloor \pi m \rfloor - \pi m \geq \frac{\pi - 1}{p^e}$ Taking n = 1 + L T m J we win 1

Key tools for MAIN THM in higher dim

1) Diophantine approximation from [BIRKAR-CASCINI - HACON - MCKERNAN '10] Higher dim'l analog of previous density result.

k[onZd] is SFR ⇒ a) on - o is rat'l

b) of is pointed ⇒ its extremal rays are rat'l.

c) $\sigma = \overline{\sigma}$ and is general by $\sigma \cap \mathbb{Z}^d$.

UPSHOT Reduce to the case of a - closed, full dim'l, rational, pointed convex cone and show that its extremal rays Do NOT accumulate.

For this we need :

2) $k[\sigma \cap \mathbb{Z}^d]$ SFR $\Rightarrow \sigma^{\vee}$ is rat 'L.

3) Induction on dimension :

$\begin{array}{c} k[\sigma n \mathbb{Z}^{d}] \text{ is } SFR \implies \\ k[\sigma_{H_{\alpha}} n \mathbb{Z}^{d}] \text{ is } SFR \end{array}$