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Throughout, I

k := perfect field of char. . p > O ;

K : = finitely generated extension of R;
R : = R-subalgebra of K with

Frac (R) = K
.

(not assuming R is noeth. )

Def R is split F-regular (SFR)

if
v = R- 403,

= eco and an R-linear map

RP -> R
.

plpe 1->
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When R is noetherian this notion is

called STRONGLY F-REGULAR.

[ Hochster - HuncRe]

R is SFR

↓,

R is a summand of finite extensions

↓ (SPLINTER)

R is normal



EXAMPLES HOCHSTER
,

HUNEKE
,

BENITO
, MULLER

, 3

RATCHGOT
,

SMITH

· Coordinate
ring of an AFFINE NORMAL

toric R-variety .

· RIG OF INVARIANTS of a finite
group

6 acting om
R[X

1 >
000

> Xn]

such that p / G
. (Moregeneraare to (

Hashimoto

· GENERIC DETERMINANTAL rings .

· LOCALLY ACYCLIC cluster algebras.

· R is EXCELLENT REGULAR
·
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CRITICISM All examples are noeth.

CONJECTURE [SIGH
,
SCHWEDE)

R is SFR R is noeth .

CONSEQUENCES IF CONJECTURE HOLDS

[SMITH, HASHIMOTO]
X is globally F-regular +

D is an effective Cartier divisor on X

H,

+ ↑ (x
,
nD)

nEN
is SFR

.
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2) [WATANABE
,

DESTEFAN1 - MONTANO-

UNEZ-BETAN COURT]

(R ,m) is noeth. local
,

SFR and I

is a pure ht 1 ideal (i. e. divisorial

ideall
↓,

+ I(M) is SFR

n EN

Upshot Rings in 1 + 2) are

noetherian if Conjectura holds.
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3) [ABERBACH - HUNEKE-POLSTRA]

F-regular= > strongly F-regular
follows from 2) .

EVIDENCE FOR CONJECTURE

D [HACO-XU
,

BIRKAR
,

HARA-WATANABE
,

SCHWEDE-SMITH]

Divisorial symb . Rees-algs .
are noeth

. If
- R is SFR + 2 .ft . /k,

- dim(R) 13 and

-

p > 5
.
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2) [D-SMITH] R is a SFR valuation

ring of K/p => R is oft/R .

MAIN THEOREM [D-SCHWEDE-TUCKER]

OIR is a full dim't CONVEX CONE ;

DET
.

The monoid alg . RCO9] is SFR

↓,
10 = F

,

4 - is rational polyhedral .
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Gordan's Lemma => RTO] is a

f .

g
. R-alg .

Caratheodory's Thm + normality of SFR

rings

↓

COROLLARY [DST]

Let M be a sub-monoid of19 .

RSM SFR M is a f.g . monoid



BACKGROUND FROM CONEX GEOMETRY 9

* o Rd is a CONVEX CONE If
x

,yeo ,

S
,
t eR

>,o

Sx + ty c 5.

:. 0 O

= The DUAL of O is

Y : = E 4 : I -> I s . t . )P(o) [0
,
a)

· O" is a closed convex cone in (RMY
.

· (0X/Y = F
.

The LINEALITY SPACE L(o) of 0

is the LARGEST linear space in 5
.

↓ (0) = 01 - 0
.



10

is POINTED if
L(0) = 203 .

T : Ra
proj
. RY/L (O)

·a lot is pointed ;
· = L(0) x + (o)

↑

not canonical

D A
ray T of O is EXTREMAL if
x

,yet ,
x +yet = x

, y
-T .

o has extremal rays => 0 is

pointed
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WARNINGSextremal rays]
↑ (0ng+

: y + r
+ 3

.

* CLOSED POINTED CONES are

generated by their extremal rays .

* A ray - of 5 is RATIONAL If
= a NONZERO

=TRIP

Then I = Ry
,
02 .



12

The RELATIVE INTERIOR Of O

Relint (o)

is the topological interior of or in

Span (O).

Relint(o) = Intlo) if o is full dime .

· x eRelintlo) , ye F,

x+ y e Relint(o) .

* o is full diml in Ra =

(OnM) = Id
I

da -B(x , BE Only
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NOTATION & CONER X "ERCON
.

my

Observations O = full dim'l cone in

RP

a) Any /pa
&[On] -> RION]

extends to
/pa

R[29] > [R].

RS] is a localization of
R(ONI]

.
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6) He t
> o ,
RTI) has a

CANONICAL Frobenius splitting .

Yo,e : Re > RIM

(a)"+ 2 x
**
if depc

O otherwise
.

Notation/Definition & E
70 ,

& t o n Il

define
#

a: = 2BEI - + x + ob
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Example #0
,
e

= [BEI (p (0]

= RIP

) x cond, F

Ya : RC > Ron

(XY" 1 I

IF AND ONLY IF

d E 0
.

x
,
2

(depends only on o , e)



Recall
, I e = + 03 16

-> Extend
ae

to

*
a

,
e

% &[R"pe > &[M
.

For BE Ide

x = xP Ja
,

e((X4
**
)

= xxe(x* +ye

- ↑
a

,

e((xP +y

/ "pe)
42+xERIO

E k[ona]

.. Be on Id.



Recall
, I e = Ed +e03 a

E

RI"pe <X-)Ypeupe xo, REAT

sends

(Y)"*
- 2x if

U-x e+
d

I ↓

O otherwise

-d E 0 => the above mapX,
2 -

restricted to

&[R]"

maps
into Rond)

.
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Example We have seen

ch

_
d

T = 0 n1
0

,
e

: The canonical F-splitting of
[A]

restricts to an F-splitting of
R[OnM

for ANYO.

d) Suppose F x Relint (ofa
d

and

RSONIR]"pe > RTOnd].

(x4"pe #- 1

Then On
d

= onId.



Recall
, I e =< p+ E0]

19

Upshot D Ron 97 = RT n 9]

2) E generated by = na

=> o = F
.

Proof ofd) BE EnEd

=> p + x E Relint(o)

=>BEI E Onl
c)
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Low dimensional illustration of MAIN THM

- .

IIII/R
C

(R >
,
0. (1 , 0)

[02] = k[x*

yp(a ,
be

,
b = ]

Assume for CONTRADICTION that

k[Onz]

is split F-regular.
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11 , 1) E Relint (o) &
2

.

Contradiction We'll show H E
>o >

I
41, e

5.

II

((m ,n)t[21(pm + 1
, pen + 1) (0]

2
TWANT (M ,

n) E ↓ - o S . [ .

(p(m + 1
, pen+ 1) E O

.

R
>,
(1, π)

Imn)
· (p(m + 1

, pin + )

R , (1 , 0)
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WANT

10 [ pm + 1

E> 01 m

2) 0 <pin + 1 = x(p-m + 1)

#) On
,

n-xm L N - 1
--

pe

3) <m < n

2) + 3) m> 0 < -Am E
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Pigeonhole P . => <(m3 : MEE cob
is dense in 50

,
17

.

Choose m t
yo

S . t.

1 - [m] L
- =

i . e. I (M1-m [ El.

p2

Taking n = It 15 m1 we win !
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Key tools for MAIN THM in higher dim

1) Diophantine approximation from
[BIRKAR-CASCII - HACON-MCKERNAN 10]

Higher dim't analog of previous
density result.

RION] is SFR =>

a) En-o is rate

1) F is pointed => its extremal

rays are rat'l.

c) 0 = 5 and is gen . by On .
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UPSHOT Reduce to the case of a

- closed
, full dim'l ,

rational,

pointed convex cone

and show that its extremal rays

Do NOT accumulate
.

For this we need

2) RCOnd] SFR > RY is rat'l
.
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3) Induction on dimension :

H = RATIONAL AFFINE hyperplane of ;
& tonHnd ;

Ha = H - x (honest hyperplane)
&
H

= convex cone in
a generated

by (0 n H) -

x

-

↑

~
:

↑

↑ ↑

: ↑

-

↑

↑.
H

show extremal rays cannot accumulate.
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R[OnI] is SFR >

RSO,] is SFR
.


