Classification of noncommutative Hirzebruch surfaces

Izuru Mori

Shizuoka University, JAPAN

April 11, 2024, SLMath, University of California, Berkeley, U.S.A.

Contents:

 $\boxed{1}$ Commutative \mathbb{P}^1 -bundles (review)

 $\boxed{2}$ Noncommutative \mathbb{P}^1 -bundles

 $\boxed{3}$ Classification of noncommutative Hirzebruch surfaces

 $\boxed{4}$ Commutativity with shifts

⁵ 5 Conjecture

 $k = \overline{k}$, char $k = 0$.

X, Y : smooth projective schemes over *k*.

Based on joint work with Shinnosuke Okawa and Kazushi Ueda (MOU).

$\overline{1}$ Commutative \mathbb{P}^1 -bundles

- *•* Mod *X* : the category of quasi-coherent sheaves on *X*.
- *•* mod *X* : the category of coherent sheaves on *X*.

Definition

- (1) Z is a \mathbb{P}^1 -bundle over $X:\iff \exists \mathcal{E} \in \mathop{\rm mod}\nolimits X$ locally free of rank 2 s.t. *Z* \cong $\mathbb{P}_X(\mathcal{E})$:= $\text{Proj} S_X(\mathcal{E})$ where $S_X(\mathcal{E})$ is the symmetric algebra of *E* over *X*.
- (2) Z is a ruled surface : $\Longleftrightarrow Z$ is a \mathbb{P}^1 -bundle over a curve X .
- (3) *Z* is a Hirzebruch surface $:\iff Z$ is a \mathbb{P}^1 -bundle over \mathbb{P}^1 .

 $\mathcal{E} \in \text{mod } X$ is locally free of rank 2 : $\Leftrightarrow \mathcal{E}_p \cong \mathcal{O}_{X,p} \oplus \mathcal{O}_{X,p}$ $\forall p \in X$

 Z is a \mathbb{P}^1 -bundle over $X \Longrightarrow \exists f: Z \to X$ a structure morphism s.t. $f^{-1}(p) \cong \mathbb{P}^1 \ \forall p \in X.$

Example

If $\mathcal{E} = \mathcal{O}_X \oplus \mathcal{O}_X$, then

$$
\mathbb{P}_X(\mathcal{O}_X \oplus \mathcal{O}_X) = \text{Proj} S_X(\mathcal{O}_X \oplus \mathcal{O}_X) = \text{Proj} \mathcal{O}_X[x, y] \cong X \times \mathbb{P}^1
$$

where $f: X \times \mathbb{P}^1 \to X; \; (p,q) \to p$ is a structure morphism so that $f^{-1}(p) = p \times \mathbb{P}^1 \cong \mathbb{P}^1.$

 $\mathcal{L} \in \text{mod } X$ is invertible : $\Longleftrightarrow - \otimes_X \mathcal{L} : \text{Mod } X \to \text{Mod } X$ is an autoequivalence $\operatorname{Pic} X := \{\mathcal{L} \in \operatorname{mod} X \mid \mathcal{L} \text{ is invertible}\}$

Theorem

Let $\mathcal{E}, \mathcal{E}' \in \mathop{\mathrm{mod}}\nolimits X$ be locally free of rank 2. $\exists \mathcal{L} \in \text{Pic } X \text{ s.t. } \mathcal{E}' \cong \mathcal{E} \otimes_X \mathcal{L} \Longleftrightarrow \mathbb{P}_X(\mathcal{E}) \cong \mathbb{P}_X(\mathcal{E}').$

Lemma

- (1) Pic $\mathbb{P}^1 = \{ \mathcal{O}_{\mathbb{P}^1}(a) \mid a \in \mathbb{Z} \}.$
- (2) $\mathcal{E} \in \text{mod } \mathbb{P}^1$ is locally free of rank $2 \iff ∃a, b \in \mathbb{Z}$ s.t. $\mathcal{E} \cong \mathcal{O}_{\mathbb{P}^1}(a) \oplus \mathcal{O}_{\mathbb{P}^1}(b).$

Corollary

Z is a Hirzebruch surface $\Longleftrightarrow Z \cong \mathbb{P}_{\mathbb{P}^1}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(d))$ ∃*d* ∈ N.

Definition

 $\mathbb{F}_d := \mathbb{P}_{\mathbb{P}^1}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(d))$: Hirzebruch surface of degree *d*.

 $\mathbb{F}_0 = \mathbb{P}_{\mathbb{P}^1}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}) \cong \mathbb{P}^1 \times \mathbb{P}^1.$

$\overline{2}$ Noncommutative \mathbb{P}^1 -bundles

Let *R, S* be commutative rings.

- *•* Mod *R* : the category of *R*-modules
- *•* BiMod(*R*-*S*) : the category of *R*-*S* bimodules

There are two ways to characterize an *R*-*S* bimodule:

 (a) BiMod(R -*S*) \cong Mod($R \otimes S$) \cong Mod($Spec(R \otimes S)$) \cong $Mod(Spec R \times Spec S)$ (b) BiMod(R -*S*) \cong {− ⊗*R* M : Mod $R \rightleftarrows$ Mod S : Hom_{*S*}(M , −) | adjoint pair of functors*}*

Definition

(a) Let $\mathcal{E} \in \text{mod}(X \times Y)$, and

 $W := \text{Supp}\,\mathcal{E} = \{p \in X \times Y \mid \mathcal{E}_p \neq 0\} \subset X \times Y$. E is a sheaf X - Y bimodule if the restrictions of the projections $u := pr_1|_W : W \to X, v := pr_2|_W : W \to Y$ are both finite.

(b) $\mathcal E$ is an $X-Y$ bimodule if $\mathcal E$ is an adjoint pair of functors

 $-\otimes_X \mathcal{E}$: Mod $X \rightleftarrows$ Mod $Y : \mathcal{H}om_Y(\mathcal{E},-).$

- \bullet bimod $(X-Y)$: the category of sheaf $X-Y$ bimodules
- *•* BiMod(*X*-*Y*) : the category of *X*-*Y* bimodules

Theorem [Van den Bergh (2012)]

There exists a fully faithful functor $bimod(X-Y) \rightarrow BiMod(X-Y)$.

Definition

- (1) *Z* is a noncommutative \mathbb{P}^1 -bundle over X : $\Longleftrightarrow \exists \mathcal{E} \in \text{bimod}(X-X)$ locally free of rank 2 s.t. $Z \cong \mathbb{P}_X(\mathcal{E}) := \text{Proj}_{\text{nc}} S_X(\mathcal{E})$ where $Proj_{\text{nc}}S_X(\mathcal{E})$ is the "noncommutative projective scheme" associated to the "noncommutative symmetric algebra" $S_X(\mathcal{E})$ of $\mathcal E$ over X .
- (2) Z is a noncommutative ruled surface $:\iff Z$ is a noncommutative \mathbb{P}^1 -bundle over a curve $X.$
- (3) *Z* is a noncommutative Hirzebruch surface :*⇐⇒ Z* is a noncommutative \mathbb{P}^1 -bundle over $\mathbb{P}^1.$

 $\mathcal{E} \in \text{bimod}(X \text{-} X)$ is locally free of rank 2 : \Longleftrightarrow $(\mathcal{O}_X \otimes_X \mathcal{E})_p \cong \mathcal{O}_{X,p} \oplus \mathcal{O}_{X,p}$ $\forall p \in X$

Theorem

Let $\mathcal{E}, \mathcal{E}' \in \mathrm{bimod}(X \text{-} X)$ be locally free of rank 2. $\exists \mathcal{L}_1, \mathcal{L}_2 \in \text{bimod}(X \text{-} X)$ invertible s.t. $\mathcal{E}' \cong \mathcal{L}_1 \otimes_X \mathcal{E} \otimes_X \mathcal{L}_2 \Longrightarrow$ P*X*(*E*) *∼*= P*X*(*E ′*). (Converse??)

 $\mathcal{L} \in \text{bimod}(X-X)$ is invertible : $\Longleftrightarrow - \otimes_X \mathcal{L} : \text{Mod }X \rightarrow \text{Mod }X$ is an autoequivalence

3 **Classification of noncommutative Hirzebruch surfaces**

Artin's conjecture (1997)

Every noncommutative integral surface *Z* is birationally equivalent to either

- (1) a noncommutative projective plane $q\text{-}\mathbb{P}^2$ (classified),
- (2) a noncommutative ruled surface $\mathbb{P}_X(\mathcal{E})$ (X is a commutative curve),
- (3) a noncommutative surface which is finite over its center.

Aim

To classify noncommutative ruled surfaces $\mathbb{P}_X(\mathcal{E})$:

- (1) Classify commutative curves *X* (classical).
- (2) Classify locally free $\mathcal{E} \in \text{bimod}(X-X)$ of rank 2 for each commutative curve *X*.

✓Setup **✏**

 $\mathcal{E} \in \text{bimod}(X-Y)$ locally free of rank 2, $\iota: W := \operatorname{Supp} \mathcal{E} \to X \times Y$ embedding,

- $u := pr_1|_W : W \to X, v := pr_2|_W : W \to Y.$
- *•* CM(*W*) := *{U ∈* mod *W | U* is maximal Cohen-Macaulay*}*

✒ ✑

Lemma

 $\exists ! \mathcal{U} \in \mathrm{CM}(W)$ s.t. $\iota_* \mathcal{U} \cong \mathcal{E}.$

Aim

Classify $(W, U \in CM(W))$ instead of $\mathcal{E} \in \text{bimod}(X-Y)$.

Theorem [MOU]

From now on, we focus on the case $X = Y = \mathbb{P}^1$.

For $W,W'\subset \mathbb{P}^1\times \mathbb{P}^1$, we define $W \sim W' : \Longleftrightarrow \exists \tau_1, \tau_2 \in \text{Aut}\mathbb{P}^1 \text{ s.t. } (\tau_1 \times \tau_2)(W) = W'.$

Lemma

Let $\mathcal{E}\in\mathrm{bimod}(\mathbb{P}^1\text{-}\mathbb{P}^1)$ be locally free of rank 2, $W=\mathrm{Supp}\,\mathcal{E}\subset\mathbb{P}^1\times\mathbb{P}^1.$ $W' \sim W \Longrightarrow \exists \mathcal{E}' \in \mathrm{bimod}(\mathbb{P}^1\text{-}\mathbb{P}^1)$ locally free of rank 2 s.t.

$$
\operatorname{Supp} \mathcal{E}' = W' \text{ and } \mathbb{P}_{\mathbb{P}^1}(\mathcal{E}) \cong \mathbb{P}_{\mathbb{P}^1}(\mathcal{E}').
$$

Aim

To classify noncommutative Hirzebruch surfaces $\mathbb{P}_{\mathbb{P}^1}(\mathcal{E})$:

- (1) Classify $W \subset \mathbb{P}^1 \times \mathbb{P}^1$ up to \sim .
- (2) Classify CM(*W*) for each *W*.

Theorem [Patrick (1997), MOU]

∀E ∈ bimod(P 1 -P 1) locally free of rank 2, *W* = Supp *E ⊂* P ¹ *×* P 1 is a Cartier divisor of bidegree (1*,* 1) or (2*,* 2). In fact, it is equivalent to one of the following types: α Type P Type EC Type NC Type CC Type S Type T Type WL

Type P

 $Sine W \sim \Delta_{\mathbb{P}^1} := \{(p, p) \in \mathbb{P}^1 \times \mathbb{P}^1 \mid p \in \mathbb{P}^1\}$, $\mathbb{P}_{\mathbb{P}^1}(\mathcal{E}) \cong \mathbb{F}_d \; \exists d \in \mathbb{N}$ (commutative Hirzebruch surface)

For the rest of the types, we define the non-invertible locus of $U \in CM(W)$ by

$$
Ninv(\mathcal{U}) = \{ p \in W \mid \mathcal{U}_p \ncong \mathcal{O}_{W,p} \} \subset Sing(W).
$$

We classify *U* by analyzing $\text{IndCM}(\mathcal{O}_{W,p})$ (or $\text{IndCM}(\widehat{\mathcal{O}_{W,p}})$) for $p \in \text{Ninv}(\mathcal{U})$.

 $\boxed{\text{Type EC}}$ (smooth)

Since $\text{Sing}(W) = \emptyset$, $\mathcal{U} \in \text{Pic } W \cong W \times \mathbb{Z}$.

$\boxed{\text{Type NC}, \text{CC}, \text{S}, \text{T}}$ (singular, reduced)

 $\mathsf{For}\,\,p\in\textnormal{Sing}(W),\,\,\widehat{\mathcal{O}_{W,p}}\cong k[[x,y]]/(y^2-x^{n+1})\,\,\mathsf{for}\,\,n=1,2,3.\,\,\,\mathsf{Using}\,\,\mathsf{the}$ $\tilde{\omega}_{p}$ classifications of ${\rm IndCM}(\widehat{\mathcal{O}_{W,p}})$, we can show that $\widehat{\mathcal{U}_{p}}\cong {\rm End}_{\widehat{\mathcal{O}_{W,p}}}(\widehat{\mathcal{U}_{p}})$ viewed as an $\mathrm{End}_{\widehat{\mathcal{O}_{W,p}}}(\mathcal{U}_p)$ -module.

Theorem [MOU]

If $\mathcal{U} \notin \mathrm{Pic}\,W$, then $\exists \widetilde{\mathcal{U}} \in \mathrm{Pic}\,\widetilde{W}$ s.t. $\nu_* \widetilde{\mathcal{U}} \cong \mathcal{U}$ where $\nu : \widetilde{W} := \mathcal{S}pec\ \mathcal{E}nd_W(\mathcal{U}) \rightarrow W.$

Type WL (non-reduced)

 $\mathsf{For}\,\,p\in\mathrm{Sing}(W)=W,\,\,\mathcal{O}_{W,p}\cong k[x,y]_{(x)}/(y^2).$ Using the classification of ${\rm IndCM}(\mathcal{O}_{W,p})$, we can show that $\mathcal{U}_p \cong (x^n,y) \lhd k[x,y]_{(x)}/(y^2)$ for some $n \in \mathbb{N}$.

Theorem [MOU]

 $\sharp(\text{Ninv}(\mathcal{U})) < \infty$ and $\exists \mathcal{L} \in \text{Pic } W \cong k \times \mathbb{Z}$ s.t.

$$
0 \to \mathcal{U} \to \mathcal{L} \to \mathcal{O}_{\text{Ninv}(\mathcal{U})} \to 0
$$

is exact.

4 **Commutativity with shifts**

In the commutative case, for $\mathcal{E} = \mathcal{O}_{\mathbb{P}^1}(a) \oplus \mathcal{O}_{\mathbb{P}^1}(b)$, $a \leq b$, $\mathcal{O}_{\mathbb{P}^1}(k) \otimes_{\mathbb{P}^1} \mathcal{E} \cong \mathcal{O}_{\mathbb{P}^1}(a+k) \oplus \mathcal{O}_{\mathbb{P}^1}(b+k)$ for every $k \in \mathbb{Z}$, so $\mathbb{P}_{\mathbb{P}^1}(\mathcal{E}) \cong \mathbb{F}_d$ if and only if $b - a = d$.

What happens in the noncommutative case?

Definition

 $\mathcal{F} \in \mathrm{bimod}(\mathbb{P}^1\text{-}\mathbb{P}^1)$ locally free of rank 2 and $k\in\mathbb{Z}$, we define $a_k, b_k \in \mathbb{Z}$ by $\mathcal{O}_{\mathbb{P}^1}(k) \otimes_{\mathbb{P}^1} \mathcal{E} \cong \mathcal{O}_{\mathbb{P}^1}(a_k) \oplus \mathcal{O}_{\mathbb{P}^1}(b_k)$, $a_k \leq b_k$. We say that $\mathcal E$ commutes with shifts if $\mathcal O_{\mathbb P^1}(k) \otimes_{\mathbb P^1} \mathcal E \cong (\mathcal O_{\mathbb P^1} \otimes_{\mathbb P^1} \mathcal E)(k)$ (ie. $a_k = a_0 + k$, $b_k = b_0 + k$ for every $k \in \mathbb{Z}$).

Remark

A first example of *E* which does not commute with shifts was given by Ingalls and Patrick (2002).

Let $\mathcal{U} \in \text{Pic } W$, and $\mathcal{E} = \iota_* \mathcal{U}$. For $j \in \mathbb{Z}$, we define $\mathcal{U}_j := \mathcal{U} \otimes_W v^* \mathcal{O}_{\mathbb{P}^1}(j)$ and $\mathcal{E}_j := \iota_* \mathcal{U}_j$. If $\mathcal{O}_{\mathbb{P}^1}(k) \otimes_{\mathbb{P}^1} \mathcal{E} \cong \mathcal{O}_{\mathbb{P}^1}(a_k) \oplus \mathcal{O}_{\mathbb{P}^1}(b_k)$, then

$$
\mathcal{O}_{\mathbb{P}^1}(k) \otimes_{\mathbb{P}^1} \mathcal{E}_j \cong \mathcal{O}_{\mathbb{P}^1}(a_k + j) \oplus \mathcal{O}_{\mathbb{P}^1}(b_k + j)
$$

so deg $\mathcal{U}_j = \deg \mathcal{U} + 2j$.

Replacing U by U_j for a suitable $j \in \mathbb{Z}$, we may reduce to the cases $\deg \mathcal{U} = 0$ or $\deg \mathcal{U} = 1$ in computing $\{(a_k, b_k)\}_{k \in \mathbb{Z}}$.

Lemma

If $\mathcal{U} \in \operatorname{Pic}^0 W$ is "tame", then

$$
\mathcal{O}_{\mathbb{P}^1} \otimes_{\mathbb{P}^1} \mathcal{E} \cong \begin{cases} \mathcal{O}_{\mathbb{P}^1}(-2) \oplus \mathcal{O}_{\mathbb{P}^1} & \text{ if } \mathcal{U} \cong \mathcal{O}_W \\ \mathcal{O}_{\mathbb{P}^1}(-1) \oplus \mathcal{O}_{\mathbb{P}^1}(-1) & \text{ if } \mathcal{U} \not\cong \mathcal{O}_W. \end{cases}
$$

Theorem [MOU]

All possible $\{(a_k, b_k)\}_{k \in \mathbb{Z}}$ are computed in terms of U .

Case 1

If *W* is irreducible (Type EC, NC, CC, WL), and *U ∈* Pic *W*, then $(a_k, b_k) = \left(\frac{\deg U}{\log k}\right)$ $\frac{2}{2}$ + k − 2, $\frac{\text{deg } U}{2}$ $\frac{8k}{2} + k$ $\overline{ }$ $b_k - a_k = 2$ *if* $\mathcal{U} \simeq u^* \mathcal{O}_{\mathbb{P}^1}(-k) \otimes_W v^* \mathcal{O}_{\mathbb{P}^1}(j) \; (\exists j \in \mathbb{Z}) \text{ (so } \deg \mathcal{U} \equiv 0 \operatorname{mod} 2),$ $(a_k, b_k) = \left(\frac{\deg U}{2}\right)$ $\frac{2}{2}$ + k − 1, $\frac{\text{deg } U}{2}$ $\frac{8}{2} + k - 1$ $\overline{ }$ $b_k - a_k = 0$ *if* $\mathcal{U} \not\cong u^*\mathcal{O}_{\mathbb{P}^1}(-k) \otimes_W v^*\mathcal{O}_{\mathbb{P}^1}(j) \; (\forall j \in \mathbb{Z})$ and $\deg \mathcal{U} \equiv 0 \operatorname{mod} 2$, $(a_k, b_k) = \left(\frac{\deg U - 1}{2}\right)$ $\frac{\mathcal{U}-1}{2} + k - 1, \frac{\deg \mathcal{U}-1}{2}$ $\frac{1}{2} + k$ $\overline{ }$ $b_k - a_k = 1$ if deg $U \equiv 1$ mod 2.

Case 2

If $W = W_1 ∪ W_2$ is reducible (Type S, T), and $U ∈ \text{Pic } W$ with $\deg(\mathcal{U}|_{W_1}) \leq \deg(\mathcal{U}|_{W_2})$, then

$$
\{a_k, b_k\} = \{\deg(\mathcal{U}|_{W_1}) + k, \deg(\mathcal{U}|_{W_2}) + k - 2\}
$$

$$
b_k - a_k = |\deg(\mathcal{U}|_{W_2}) - \deg(\mathcal{U}|_{W_1}) - 2|.
$$

Case 3

If *W* is non-reduced (Type WL) and $\mathcal{U} \notin \mathrm{Pic}\,W$, then

$$
\{a_k, b_k\} = \left\{\frac{\chi(\mathcal{U}) - \#(\text{Ninv}(\mathcal{U}))}{2} + k, \frac{\chi(\mathcal{U}) + \#(\text{Ninv}(\mathcal{U}))}{2} + k - 2\right\},\
$$

$$
b_k - a_k = |\#(\text{Ninv}(\mathcal{U})) - 2|
$$

Case 4

If *W* is reduced (Type NC, CC, S, T) and $\mathcal{U} \notin \mathrm{Pic}\, W$, then

where ν : $\widetilde{W} := \mathcal S pec\ \mathcal End_{\mathcal O_W}(\mathcal U) \to W$ and $\widetilde{\mathcal U} \in \operatorname{Pic} \widetilde{W}$ such that *ν** $\widetilde{\mathcal{U}} = \mathcal{U}$.

Corollary

(1) If *W* is integral (but not of Type P), then $b_k - a_k \in \{0, 1, 2\}$ for every $k \in \mathbb{Z}$.

- (2) If *E* does not commute with shifts, then
	- \blacktriangleright *W* is integral,
	- ▶ *U ∼*= *u [∗]O*P¹ (*i*) *⊗^W v [∗]O*P¹ (*j*) for some *i, j ∈* Z, and
	- ▶ *u [∗]O*P¹ (*i*) *̸∼*⁼ *^v [∗]O*P¹ (*i*) for some *i ∈* Z.

For a noncommutative Hirzebruch surface $\mathbb{P}_{\mathbb{P}^1}(\mathcal{E}),$ we may define a $\text{``sequence of structure morphisms''} \ f_i: \mathbb{P}_{\mathbb{P}^1}(\mathcal{E}) \to \mathbb{P}^1 \ \text{for} \ i \in \mathbb{Z}.$

Theorem [MOU]

 $\mathcal{D}^b(\text{mod }\mathbb{P}_{\mathbb{P}^1}(\mathcal{E})) = \langle f_{i+1}^*\mathcal{D}^b(\text{mod }\mathbb{P}^1), f_i^*\mathcal{D}^b(\text{mod }\mathbb{P}^1) \rangle$

is a semi-orthogonal decomposition for every *i ∈* Z.

For $i = 0$, the dual gluing functor is given by $-\otimes_X \mathcal{E}$.

 $\mathsf{W}\mathsf{e}$ write $\mathcal{O}(i, j) := f^*_{-i}(\mathcal{O}_{\mathbb{P}^1}(j)) \in \operatorname{mod} \mathbb{P}_{\mathbb{P}^1}(\mathcal{E})$ for $i, j \in \mathbb{Z}$.

Theorem [MOU]

$$
\mathcal{O}(-1,-j-1), \mathcal{O}(-1,-j), \mathcal{O}(0,-1), \mathcal{O}(0,0) =: \mathcal{O}_{\mathbb{P}_{\mathbb{P}^1}(\mathcal{E})}
$$

is a full strong exceptional sequence for $\mathcal{D}^b(\mathrm{mod}\, \mathbb{P}_{\mathbb{P}^1}(\mathcal{E}))$ if and only if *a*−1 $≥$ −*j* − 1 (eg. $(a_0, b_0) = (0, d)$, *j* = 1, and *E* commutes with shifts). ${\sf In\ this\ case,\ } {\mathcal D}^b(\operatorname{mod}\mathbb P_{\mathbb P^1}({\mathcal E}))\cong{\mathcal D}^b(\operatorname{mod} R)$ where

 $R = \text{End}_{\mathbb{P}_{\mathbb{P}^1}(\mathcal{E})}(\mathcal{O}(-1, -j-1) \oplus \mathcal{O}(-1, -j) \oplus \mathcal{O}(0, -1) \oplus \mathcal{O}(0, 0)).$

We need to know (a_k, b_k) for all $k \in \mathbb{Z}$ in order to construct a "full geometric helix" for $\mathcal{D}^b(\operatorname{mod}\mathbb{P}_{\mathbb{P}^1}(\mathcal{E})).$

5 **Conjecture**

Definition

- $Z \text{ is a } q\text{-}\mathbb{F}_d : \iff Z \cong \mathbb{P}_{\mathbb{P}^1}(\mathcal{E}) \exists \mathcal{E} \in \text{bimod}(\mathbb{P}^1\text{-}\mathbb{P}^1) \text{ s.t.}$ $\mathcal{O}_{\mathbb{P}^1}(k) \otimes_{\mathbb{P}^1} \mathcal{E} \cong \mathcal{O}_{\mathbb{P}^1}(k) \oplus \mathcal{O}_{\mathbb{P}^1}(k+d) \ \forall k \in \mathbb{Z}.$ (i.e. $(a_0, b_0) = (0, d)$ and $\mathcal E$ commutes with shifts).
- (b) *Z* is a q -(\mathbb{P}^1 \times \mathbb{P}^1) : \Longleftrightarrow *Z* \cong Proj_{nc}*S* for some 3-dimensional cubic AS-regular Z-algebra *S*.
- $\mathcal{L}(c)$ *Z* is a q - $Q \subset q$ - \mathbb{P}^3 : $\Longleftrightarrow Z \cong \text{Proj}_{\text{nc}} S/(g)$ for some 4-dimensional quadratic AS-regular algebra *S* and an (irreducible) regular normal element $g \in S_2$.

Theorem [Van den Bergh (1996)]

A "generic" $q\text{-}Q\subset q\text{-}\mathbb{P}^3$ is isomorphic to some $q\text{-}\mathbb{F}_0.$

Theorem [Van den Bergh (2011)] Every q - $(\mathbb{P}^1 \times \mathbb{P}^1)$ is isomorphic to some q - $Q \subset q$ - \mathbb{P}^3 . Theorem [M-Ueyama (2021), M-Nyman (preprint)]

A "standard" $q\text{-}Q\subset q\text{-}\mathbb{P}^3$ is isomorphic to some $q\text{-}({\mathbb P}^1\times {\mathbb P}^1).$

Theorem [MOU]

A "generic" $\,q\text{-}\mathbb{F}_0$ is derived equivalent to some $q\text{-}({\mathbb{P}}^1\times{\mathbb{P}}^1)$, and vice versa.

