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is also an invariant of V . It is a totally real number field, of degree at most g over
Q, satisfying

(2.9) K = Q(trA)

for any hyperbolic element A ∈ SL(X,ω). Moreover K = Q if and only if (X,ω) is
the pullback of a form of genus one.

3. All generators of V lie in the same stratum ΩMg(p), so this too is an invariant
of V .

The trace field and stratum are known for all the Teichmüller curves V we will
discuss below. The lattice SL(X,ω), on the other hand, is often inaccessible. Nev-
ertheless, topological invariants of V , such as its Euler characteristic, can frequently
be determined.

3. Billiards

We now turn to the remarkable connection between Teichmüller curves and bil-
liards in polygons.

The first nontrivial Teichmüller curves V ⊂ Mg were discovered in 1989 by
Veech. They play a key role in his proof of:

Theorem 3.1. Billiards in a regular polygon P has optimal dynamics.

Here optimal dynamics means that any unit speed billiard trajectory τ : R → P
satisfies the Veech dichotomy ; it is either

(i) periodic: meaning τ (t) = τ (t + T ) for some T > 0; or
(ii) uniformly distributed : meaning τ (R) is dense, and

lim
T→∞

1

T

∫ T

0
f(τ (t)) dt =

1

area(P )

∫

P
f(z) |dz|2

for any continuous function f : P → R.

Which alternative holds—(i) or (ii) above—depends only on the initial slope of the
trajectory. See Figure 3.1 for examples.

In this section we describe the series of Teichmüller curves associated to regular
polygons, and present the proof of Theorem 3.1, following [V1] and [Mas2]. We also
summarize, in Theorem 3.9, the known examples of triangles with optimal billiards.

A striking feature of Theorem 3.1 is that it describes the behavior of every
trajectory in P , and shows that only two, radically different types of behavior are

Figure 3.1. Three billiard trajectories in a regular pentagon.


