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Bank of England Problem

After Northern Rock bank run, Bank of England urgently wants to loan
funds to banks, etc., – willing to take weaker-than-usual collateral, but
only in return for higher interest rate.

i.e., wanted to sell related goods to banks (loans against different kinds of
collateral: “strong” (UK / US sovereign debt), “weak” (mortgage-backed
securities?!), etc.
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General Problem

Supplier wants to sell multiple versions of a product: multiple goods.

Goods might be divisible or indivisible. Focus on indivisible for today.

Seller costs depend on bundle of goods sold. So their preferred bundle to
sell depends on prices on all goods.

Bidders’ demand depends on prices on all goods.

Reason to prefer a sealed bid mechanism.
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Existing Approaches

Discrete Convex Analysis approaches, and related work

Kelso and Crawford (1982), Murota and co-authors (long literature);
Milgrom (2000), Ausubel (2006); Paes Leme and Wong (2015)

Focus on finding Walrasian equilibrium

Preference data either gathered dynamically or assumed already
known and aggregated

“Bidding language” approaches

Milgrom (2009); Nisan (2006); Klemperer (2008, 2010)

Focus on gathering bid data

Does set of preferences communicated in the language align with nice
economic properties?

Mostly in context of “strong substitute” preferences (see later)
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Our Contribution: Bidding Languages via Geometry

Bidding languages so we can build out of simple pieces any valuation
from a given class of valuations:

Strong substitutes

Competitive equilibrium with indivisible goods is guaranteed.

We have efficient algorithms to find it.

All substitutes

valuing integer bundles, or concavifying such a valuation.

Competitive equilibrium may not exist

So focus on strong substitutes for today

Auction Setting:

(Approximately) competitive bidding behaviour

Seller maximises efficiency.

Seller preferences can be as rich as buyers (or richer!)
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Simple Bids (Bank of England auction, Klemperer 2010)

A bid b = (r, 1) represents utility vb(x)− p · x, valuation vb : ∆n → R,

vb(0) = 0, vb(e
i) = ri
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Simple Bids (Bank of England auction, Klemperer 2010)

A bid b = (r, 1) represents utility vb(x)− p · x, valuation vb : ∆n → R,

vb(0) = 0, vb(e
i) = ri

p1

p2
(0, 0)

demanded

(0, 1) demanded

(1, 0)

demanded r

Demand set Db(p) = argmaxx∈∆n
(vb(p)− p · x)

So demand goods maximising ri − pi ≥ 0, or nothing.

Bid for at most one unit, of good with with best price pi relative to ri.
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Simple Bids (Bank of England auction, Klemperer 2010)

A bid b = (r, 1) represents utility vb(x)− p · x, valuation vb : ∆n → R,

vb(0) = 0, vb(e
i) = ri

p1

p2
(0, 0)

demanded

(0, 1) demanded

(1, 0)

demanded r

Gul and Stacchetti (1999) “unit demand”

Simple case of Milgrom (2009) integer assignment messages.
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Simple Bids (Bank of England auction, Klemperer 2010)

A bid b = (r, 1) represents utility vb(x)− p · x, valuation vb : ∆n → R,

vb(0) = 0, vb(e
i) = ri

p1

p2
(0, 0)

demanded

(0, 1) demanded

(1, 0)

demanded r

Easy to aggregate many bids.

Bid b = (r,m) with multiplicity m ∈ Z+ aggregates m identical bids.
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Simple Bids (Bank of England auction, Klemperer 2010)

A bid b = (r, 1) represents utility vb(x)− p · x, valuation vb : ∆n → R,

vb(0) = 0, vb(e
i) = ri

p1

p2
(0, 0)

demanded

(0, 1) demanded

(1, 0)

demanded r

Finding market clearing price:

Optimise individual bids via linear / integer programming

Aggregate these linear programs by adding them up

E. Baldwin, P. Klemperer, E. Lock Implementing Walrasian Equilibrium June 2023 6 / 21



Simple Bids (Bank of England auction, Klemperer 2010)

A bid b = (r, 1) represents utility vb(x)− p · x, valuation vb : ∆n → R,

vb(0) = 0, vb(e
i) = ri

p1

p2
(0, 0)

demanded

(0, 1) demanded

(1, 0)

demanded r

Associate “Locus of Indifference Prices” (LIP) Lb, with “facets”:

Where bidder indifferent between nothing and unit of good i

Where bidder indifferent between good i and good j
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Simple Bids (Bank of England auction, Klemperer 2010)

A bid b = (r, 1) represents utility vb(x)− p · x, valuation vb : ∆n → R,

vb(0) = 0, vb(e
i) = ri

(1,1,1)

p
1

p
2

p
3

Associate “Locus of Indifference Prices” (LIP) Lb, with “facets”:

Where bidder indifferent between nothing and unit of good i

Where bidder indifferent between good i and good j
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Facets and LIPs

More generally, given

Valuations v : A → R on finite domain A ⊊ Z
quasilinear utility v(X)− p · x

Identify what is demanded where: consider where demand changes.

Definition: “Locus of Indifference Prices (LIP)”

Lv={ prices p ∈ Rn where |Dv(p)| > 1}.

p
1

p
2

(0,1)

(1,0)

(0,0)

(1,1)

facet

Composed of linear pieces: facets.
Here v is indifferent between bundles
uniquely demanded on either side.
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What do facets of LIPs “mean”?
p2

(0, 1)

(2, 0)

(1, 1)

p1

(0, 0)

(1, 0)

(0, 2)

If p is in a facet then the agent is indifferent between two bundles:

u(x)− p.x = u(y)− p.y

⇐⇒ p.(y − x) = u(y)− u(x)
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What do facets of LIPs “mean”?
p2

(
1
1
)

(0, 1)

(2, 0)

(1, 1)(
−1
1

)

p1

(0, 0)

(1, 0)

(0, 2)

If p is in a facet then the agent is indifferent between two bundles:

u(x)− p.x = u(y)− p.y ⇐⇒ p.(y − x) = u(y)− u(x)

The change in bundle is in the direction normal to the facet.
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What do facets of LIPs “mean”?
p2

(
1
1
)

(0, 2)

(4, 0)

(2, 2)(
−1
1

)

p1

(0, 0)

(2, 0)

(0, 4)

2

2

2
2

2

2 2

2

2

If p is in a facet then the agent is indifferent between two bundles:

u(x)− p.x = u(y)− p.y ⇐⇒ p.(y − x) = u(y)− u(x)

The change in bundle is in the direction normal to the facet.

The change in bundle is ‘weight w > 0’ times the minimal facet normal.
Work with weighted LIPs (Lu,wu). Facet F has weight wu(F ) ∈ Z>0.
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Economics from Geometry

v
1

v
2

v
3

v
4

 

w
1

w
2

w
3w

4
Every LIP is balanced: around each
(n− 2)-cell,

∑
iwivi = 0.

Theorem (Mikhalkin 2004; the Valuation-Complex Equivalence Theorem)

A weighted rational polyhedral complex of pure dimension (n− 1) is the
LIP of a valuation iff it is balanced.

A LIP corresponds to an essentially unique concave valuation.

We can depict all valuations (of a certain class)
⇔

We can draw all pictures (with certain properties).
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Demand types
Suppose every facet normal v to the LIP Lu...
has at most one +ve, one -ve coordinate entry.

p2

p1

(0, 3)

(2, 0) (
−2
3

)

Decrease price i to cross a facet.

Demand changes from x to x+ v, where v is a facet normal.

By the law of demand, vi > 0.
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Demand types
Suppose every facet normal v to the LIP Lu...
has at most one +1, one -1 coordinate entry.

p2

p1

(0, 0)

(0, 1)

(1, 0)

(1, 1)

Decrease price i to cross a facet.

Demand changes from x to x+ v, where v is a facet normal.

By the law of demand, vi > 0.

⇒ vj ≤ 0 for all j ̸= i and goods trade-off 1-1.
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Demand types
Suppose every facet normal v to the LIP Lu...
has at most one +1, one -1 coordinate entry.

p3

p2

p1
Decrease price i to cross a facet.

Demand changes from x to x+ v, where v is a facet normal.

By the law of demand, vi > 0. ST
RO

NG

⇒ vj ≤ 0 for all j ̸= i and goods trade-off 1-1.
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Demand types
Suppose every facet normal v to the LIP Lu...
is in set D ⊂ Zn.

Decrease price i to cross a facet.

Demand changes from x to x+ v, where v is a facet normal.

By the law of demand, vi > 0.

These facts define structure of trade-offs.
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Demand types
Suppose every facet normal v to the LIP Lu...
is in set D ⊂ Zn.

Definition: “Demand Type”

u is of demand type D if every facet of Lu has normal in D.

The demand type is the set of all such valuations.

Decrease price i to cross a facet.

Demand changes from x to x+ v, where v is a facet normal.

By the law of demand, vi > 0.

These facts define structure of trade-offs.
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Multiple Bids Forming LIPs

A collection of positive bids b = (r;m) ∈ B
⇔ Aggregate valuation of {vb, b ∈ B}.
⇔ LIP LB =

⋃
b∈B Lb

weights are sum of multiplicities of bids assoc. with each facet

p1

p2
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A collection of positive bids b = (r;m) ∈ B
⇔ Aggregate valuation of {vb, b ∈ B}.
⇔ LIP LB =

⋃
b∈B Lb

weights are sum of multiplicities of bids assoc. with each facet

p1

p2
(0,0)

(0,1)

(0,3)

2
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Need for the Strong Substitute Bidding Language

So we can depict any valuation like this, in any dimension.

But not like this.

Works if we “subtract a bid”
Include bids with negative multiplicity

p2

(0, 2)

p1

(2, 0)
(3, 0)

(2, 1)

(0, 0)

(0, 1)

(0, 3)(1, 2)

(1, 0)

(1, 1)

Increase the richness of the language, while keeping it relatively easy to
understand, aggregate and optimise.
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Aggregating Z-weighted bids

B set of bids b = (r,m) where m ∈ Z.

Take the union of the LIPs.

Add multiplicities to get facet weights.

Remove 0-weighted facets

LB is balanced, but some facets might have negative weights.

p1

p2

Lb
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Remove 0-weighted facets

LB is balanced, but some facets might have negative weights.

p1

p2

1

1

1

-1

-1
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Aggregating Z-weighted bids

B set of bids b = (r,m) where m ∈ Z.
Take the union of the LIPs.

Add multiplicities to get facet weights.

Remove 0-weighted facets

LB is balanced, but some facets might have negative weights.

-ve
(0, 1)

(0, 2)

(1, 1)

(0, 0)
(1, 0)

(2, 0)

p2

p1
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Aggregating Z-weighted bids

B set of bids b = (r,m) where m ∈ Z.
Take the union of the LIPs.

Add multiplicities to get facet weights.

Remove 0-weighted facets

LB is balanced, but some facets might have negative weights.

Definition

A collection B of Z-weighted bids is valid if wB ≥ 0.

Lb is of strong subs demand type, so by valuation-complex equivalence
theorem:

If bids are valid, they represent a strong substitute valuation.

So can define (LB,wB) from a valid set B of Z-weighted bids.
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Demand from Positive and Negative Bids

Translating B to DB(p) := DvB(p) is easy when demand is unique.

DB(p) = DB+(p)−D|B−|(p)

where B+,B− are positive- and negative-weighted bids in B.

Demand goods
maximising ri − pi ≥ 0, or
nothing.In general, find all nearby unique demands and take discrete convex hull.

Use this principle to implement the auction. Details
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DB(p) = DB+(p)−D|B−|(p)

where B+,B− are positive- and negative-weighted bids in B.

p1

p2

Â

+1

+1

+1
p

Demand goods
maximising ri − pi ≥ 0, or
nothing.

DuB(p) = (0, 2)

In general, find all nearby unique demands and take discrete convex hull.
Use this principle to implement the auction. Details
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DuB(p) = (0, 1)

In general, find all nearby unique demands and take discrete convex hull.
Use this principle to implement the auction. Details
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p1

p2

+1

−1

+1

+1
p Demand goods

maximising ri − pi ≥ 0, or
nothing.

DuB(p)
= {(1, 0), (0, 1), (1, 1)}

In general, find all nearby unique demands and take discrete convex hull.
Use this principle to implement the auction. Details
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Extension: Bids that “shoot off the page”

If single positive bid looks like this,

how do we depict preferences like this?

p1

p2

Allow −∞ in coordinates of bids, for unacceptable goods.

Include a 0th coordinate, for the “reject good”. This takes value

0: a bid might be rejected for some prices.
−∞: a bid should never be rejected.

Can approximate these with regular bids on the boundary of a “bounding
box” containing all the action.
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Representation of Strong Substitute Valuations

Theorem (Characterisation of Strong Substitutes)

If a finite collection of positive and negative extended bids is valid then it
represents a strong substitutes valuation.

If valuation u : A → R is strong substitutes then it can be presented using
a valid finite collection of positive and negative extended bids.

First part already seen. Sketch proof of second part follows

See also Lin and Tran (2017).
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3-dimensional example

E. Baldwin, P. Klemperer, E. Lock Implementing Walrasian Equilibrium June 2023 17 / 21



Key tools for Proving the Representation Theorem

Tool 1: Valuation-complex equivalence theorem
Will use bids to draw a picture that matches Lv.

Tool 2: HIPs
Extend all facets in the LIP Lv to create a “HIP” Hv, a union of
hyperplanes: “hyperplanes of indifference prices”.

Facet weights are inherited from Lv, and so can be zero.

Every hyperplane in Hv contains a facet of non-zero weight.

Tool 3: Balancing
The LIPs and HIPs of valuations and p bids are all balanced.
Will imply we mainly need look at one orientation of hyperplanes (except
for “extended” bids).
Get the facet weights right there, and everything else follows.
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Tool 3: Balancing
The LIPs and HIPs of valuations and p bids are all balanced.
Will imply we mainly need look at one orientation of hyperplanes (except
for “extended” bids).
Get the facet weights right there, and everything else follows.

More detail
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All Substitutes Bidding Language

Now relax the “strong” assumption on substitutes. Use positive and
negative dots with non-trivial trade-offs to depict all preferences for
integer substitutes valuations.

p1

p2 (0, 0)

(0,mt2)

(mt1, 0)

r
mt2

mt1

m

(
−t1
t2

)

Bids now have “trade-offs”: b = (r; t;m)
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Expressivity of the All Substitutes Language

Theorem

If a finite collection of weighted positive and negative bids is valid then it
represents a substitutes valuation.

If A ⊊ Zn and u : A → R is a substitutes valuation then it can be
presented using a valid finite collection of weighted positive and negative
bids.

However, now competitive equilibrium is not guaranteed with integer
goods. Need divisibilities or wastage.
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Summary

Need for sealed-bid auctions simultaneously selling multiple goods

We can approach auction design using “bidding languages”

We can use geometry to design bidding languages and show their
expressivity.
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Summary

Need for sealed-bid auctions simultaneously selling multiple goods

We can approach auction design using “bidding languages”

We can use geometry to design bidding languages and show their
expressivity.

More details of representation theorem proof

Implementation of Strong Substitutes Auction

Failure of Competitive Equilibrium for general Substitutes
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Implementation of the Auction

Wish to sell bundle y. Two phases

1. Find an equilibrium price p so that y ∈ DB(p).

2. Find an allocation to bidders at that price

all making use of the strong substitute bidding language.

Address 1 & 2: “Solving Strong-Substitutes Product-Mix Auctions”.
(EB, Paul Goldberg, Paul Klemperer and Edwin Lock)
Mathematics of Operations Research, 2023.

Address 1: “Strong Substitutes: Structural Properties, and a New
Algorithm for Competitive Equilibrium Prices”
(EB, Martin Bichler, Maximilian Fichtl and Paul Klemperer)
Mathematical Programming, 2022.

Note that guarantee of competitive equilibrium for strong substitutes ⇒
no worries about indivisibilities on phase 1.
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Finding an Equilibrium Price Method 1 (BGKL)

Using bids, easy to calculate aggregate indirect utility
πB(p) = maxx∈A{vB(x)− p · x}

πB(p) =
∑

b=(r,m)∈B

mmax
i

(ri − pi)

Lyapunov function (Ausubel, 2006) minimised at p with y ∈ DU (p).

g(p) = πB(p) + p · y

Find minimal subset of goods such that increasing their price in step,
maximises decrease in g.

Find “long step” of how much to decrease these prices, using bids.
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Finding an Equilibrium Price Method 2 (BBFK)

The valuation vB+(y) of a bundle y by a set of positive bids can be
expressed as a linear programme:

maximise ri times allocation of good i to this bid, subject to bid and
resource constraints).
shadow prices are the equilibrium prices.

The valuation vB(y) given by a set B of positive bids B+ and
negative bids B− is

vB(y) = min
s

(
vB+(y + s) + v|B−|(s)

)
Use difference of convex functions programming to find this minimum
of difference of linear programmes.
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Find an equilibrium allocation at that price (BGKL)

Worst case rather a nuisance! What if many bids from many bidders
are marginal? What to give to whom?

Start by allocating everything ‘obvious’ (non-marginal).

Construct graph with nodes as goods, edges labelled with bidder
identity for existence of marginal bids.

Iteratively eliminate leaves (slightly more to this)

Break cycles labelled by more than one bidder by ‘tweaking’ bids up
slightly (requires defined order of priority). An allocation after a
sufficiently small tweak is a valid un-tweaked allocation.
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Find an equilibrium allocation at that price (BGKL)

Worst case rather a nuisance! What if many bids from many bidders
are marginal? What to give to whom?

Start by allocating everything ‘obvious’ (non-marginal).

Construct graph with nodes as goods, edges labelled with bidder
identity for existence of marginal bids.

Iteratively eliminate leaves (slightly more to this)

Break cycles labelled by more than one bidder by ‘tweaking’ bids up
slightly (requires defined order of priority). An allocation after a
sufficiently small tweak is a valid un-tweaked allocation.

Demand in Strong Substitutes Bidding Language Summary
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Allowing More General Substitute Trade-offs?

Suppose trade-offs are not all 1-1.

p1

p2 (0, 0)

(0, 1)

(1, 0)

(2, 0)

p1

p2

(0, 0)

(0, 1)

Equilibrium not guaranteed with indivisible goods:
Bundle (1, 1) “should” be demanded at price ∗ .
Weaken again to divisible goods (or allow a small number of units to be
“wasted”).
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Equilibrium and Unimodularity: (BK19)

p1

p2 (0, 0)

(0, 1)

(0, 2)

(1, 0)

(2, 0)

(2, 1)
∗

Area=2
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Equilibrium and Unimodularity: (BK19)

p1

p2 (0, 0)

(0, 1)

(0, 2)

(1, 0)

(2, 0)

(2, 1)
∗

Area=2

Is (1, 1) demanded at the star?

At price ∗
purple demands (0, 0) or (0, 1)
blue demands (2, 0) or (0, 1)

Aggregate demand set is Minkowski sum of demands

there is no way to demand the bundle in the middle

No!
And so it is not demanded anywhere (think supporting hyperplane)
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Equilibrium and Unimodularity: (BK19)

p1

p2 (0, 0)

(0, 1)

(0, 2)

(1, 0)

(2, 0)

(2, 1)
∗

(0,1+1)

(0,1)

(2,0)

(2,1)

Area=2

There exists a non-vertex bundle because the shape’s area is > 1

The area is the abs value of the determinant of vectors along its edges

Avoid problems iff all sets of n demand type vectors have det ±1 or 0.

Equilibrium exists for all collections of valuations of a demand type, iff the
set of vectors defining that type is unimodular.

Back to body text Back to Summary
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Proof Structure for Representation Theorem

Given a valuation v for strong substitutes

1. Define “Bounding box” containing all vertices of Hv.
Write [Hv] to also include edges of this box.

2. Create the set B of bids b = (r,m), where

r is a vertex of [Hv] (but not only of the box);
m defined by weights of adjacent facets with normal (en−1 − en);
“Extended” bids on boundaries, multiplicity defined using appropriate
adjacant facets;
Additional bid for only each good i, multiplicity Dv(p)i when pi ≫ 0.

3. Show Hv = HB

4. Show wv = wB

5. See that demands match for high enough prices on each good.

6. Dv = DB by “facet normal times weight equals change in demand”.
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m defined by weights of adjacent facets with normal (en−1 − en);
“Extended” bids on boundaries, multiplicity defined using appropriate
adjacant facets;
Additional bid for only each good i, multiplicity Dv(p)i when pi ≫ 0.

3. Show Hv = HB

4. Show wv = wB

5. See that demands match for high enough prices on each good.

6. Dv = DB by “facet normal times weight equals change in demand”.
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More Detail for n = 2: Creating the Bid List

Label weights of facets adjacant to a price p ∈ R2 as follows

wl wr

wd

wu

wne

wsw

p

Subscript will denote the valuation / bid(s) whose weight we are taking
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More Detail: Creating the Bid List

wl wr

wd

wu

wne

wsw

p

p1

p2

For each vertex p of [Hv] that is

inside the box, add a bid:

root r = (0, p1, p2)
multiplicity m = wsw − wne.

on the bottom boundary, add a bid:

root r = (0, p1,−∞)
multiplicity m = wu

v .

on the left boundary, add a bid

root r = (0,−∞, p2)
multiplicity m = wr

v.

on an upper boundary, add a bid:

root r = (−∞, p1, p2)
multiplicity m = wsw

v .
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More Detail: Key Lemma

1. Given a diagonal line H, and p ∈ H:

if p lies on the upper boundary, wsw
v = wsw

B

if p lies in the interior, wsw
v − wne

v = wsw
B − wne

B

True by definition for the bid b ∈ B with matching root.
All other bids return zero for these weight terms.

2. Given a horizontal line H and p ∈ H:

if p lies on the left boundary, wr
v = wr

B

if p lies in the interior, wr
v − wl

v = wr
B − wl

B

Boundary version true by definition as above.
Interior version follows from 1 by balancing condition.

3. Vertical version analogous to horizontal.
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More detail: Hv = HB

Fix a horizontal line H ⊆ Hv.

H contains a facet F with wv(F ) ̸= 0

Trace left along H from F . See H contains a point p such that either

p is on the lower boundary and wr
v ̸= 0

By key lemma, wr
B = wr

v ̸= 0

p is in the interior and wr
v ̸= wl

v

By key lemma, wr
B − wl

B = wr
v − wl

v ̸= 0

So H contains a facet F ′ with wB(F
′) ̸= 0

So H ⊆ HB.

Converse and other slopes identical.
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More Detail: wv = wB

Fix a horizontal line H ⊆ Hv = HB.

H composed of the same facets in both Hv and HB.

If F0 is the first facet on the left, then wv(F0) = wB(F0), by key lemma.

Difference in weights between two adjacant facets is the same for both
HIPs, by key lemma.

So weights of all facets in H are the same.

Argument analogous for vertical, diagonal.
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Sketch Proof of Representation in 2-D case: Reminder

Given a valuation v for substitutes

1. Extend all lines in the LIP Lv to create a “HIP” Hv, a union of
doubly-infinite lines: “hyperplanes of indifference prices”.

2. Define “Bounding box” containing all vertices of Hv. Write [Hv] to
also include edges of this box.

3. Create the bid list B, as just detailed.
Additional bid for only each good i, multiplicity Dv(p)i when pi ≫ 0.

4. See that, on each good, demands match for high enough prices.

5. See Hv = HB

6. See wv = wB

7. Dv = DB, for each good, by “facet normal times weight equals
change in demand”.

Back to text Summary
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Seller preferences: Method 1

Seller has preferences e.g. q1 + q2 is constant; q2 as a function of
p2 − p1. This is the ‘supply curve’.

For a set of relevant values of (q1, q2), find (minimum) prices (p1, p2)
such that (q1, q2) is demanded.

This allows us to derive a ‘demand curve’.

Intersect supply and demand to find the equilibrium.
p2 − p1

q2
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Seller has preferences e.g. q1 + q2 is constant; q2 as a function of
p2 − p1. This is the ‘supply curve’.

For a set of relevant values of (q1, q2), find (minimum) prices (p1, p2)
such that (q1, q2) is demanded.

This allows us to derive a ‘demand curve’.

Intersect supply and demand to find the equilibrium.

Advantages:

People in business and central bankers understand.

Can use for a wide range of seller preferences (not necessarily strong
substitute).

Disadvantage:

Could be ad-hoc and computationally inefficient.
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Seller preferences: Method 2

Suppose the seller has strong substitute preferences also.
That is, seller has a valuation vS : AS → R, where typically AS ⊊ Zn

−.
This valuation is concave and of the strong substitute demand type.

Definition

There exists competitive equilibrium between this seller and buyers with
aggregate valuation V if there exists p such that 0 ∈ Dvs(p) +DV (p).

Easy to avoid negative bundles:

Add a large enough constant bundle y to every seller demand

Let y be the supply available in the auction
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Seller preferences: Method 2

p2 − p1

q2

Auctioneer’s Supply Curve

p2

p1

Corresponding LIP showing
Auctioneer’s “demand”

Back
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