Combinatorial
Contracts

Michal Feldman
Tel-Aviv University

SLMath Workshop
November 8, 2023

Joint Work with:
Paul Duetting, Tomer Ezra, Yoav

Gal Tzur, and Thomas Kesselheim
(FOCS’21, STOC’23, SODA’24)

Algorithms and Incentives

Hidden preferences

Algorithmic

Mechanism
Design
- L

algorithms incentives

Algorithms and Incentives

Hidden preferences

Algorithmic
Mechanism
Design 2
— B
) Algorithmic . .
algorithms Contract incentives
Design

Hidden actions

T

Algorithms and Incentives

Hidden preferences

Algorithmic
Mechanism
Design

Algorithmic

aIgO rithms Contract

Design

Hidden actions

2

incentives

value
oracle

GS
dditiv

[Nisan Ronen 99]
[Lehmann Lehmann Nisan 01]

Within a Broader Perspective

An emerging frontier in Algorithmic Game Theory on optimizing the effort of others
(two recent workshops in STOC'22 and EC’22)

Contracts with multiple agents / multiple actions:

[Feldman Chuang Stoica Shenker EC’05] [Babaioff Feldman Nisan EC’06] [Emek Feldman WINE’'0Q9]
[Babaioff Feldman Nisan Winter JET'12] [Dutting Ezra Feldman Kesselheim FOCS’21, STOC'23]

Contracts with multiple outcomes:

[Ditting Roughgarden Talgam Cohen EC'19] [Dltting Roughgarden & Talgam Cohen SODA’20] [Alon
Dobson Procaccia Talgam Cohen Tucker-Foltz AAAI'20] [Alon Lavi Shamash Talgam Cohen EC’21] [Alon
Ditting Talgam Cohen EC'21]

Optimal scoring rules: [Chen and Yu '21] [Li et al., ‘22]

Delegation:

[Azar Micali TE'18] [Kleinberg Kleinberg EC’18] [Bechtel & Dughmi ITCS’21] [Braun Hahn Hoefer &
Schecker 22]

Strategic classification:

[Kleinberg & Raghavan EC’19] [Ghalme Nair Eilat Talgam Cohen Rosenfeld ICML’21] [Nair Ghalme Talgam
Cohen Rosenfeld ’22]

5

Emerging Frontier

e Simple vs optimal contracts: [Dutting Roughgarden & Talgam-Cohen EC'19], [Alon
Dutting Li Talgam-Cohen EC’'23]

* Combinatorial contracts: [Lavi & Shamash EC'19], [Dutting Roughgarden &
Talgam-Cohen SODA’20], [Dutting Ezra F. & Kesselheim FOCS’21], [Alon Lavi Shamash &
Talgam-Cohen EC’21], [Dutting Ezra F. & Kesselheim STOC’23], [Babaioff F. Nisan EC'12],
[Castiglioni et al. EC’23], [Dutting F. & Gal-Tzur, SODA’24], [Ezra F. Schlesinger’23]

* Contract design for social goods: [Li Immorlica & Lucier WINE'11], [Ashlagi Li & Lo
Management Science’23+]

* Typed contracts: [Guruganesh Schneider & Wang EC’21], [Alon Dutting & Talgam-Cohen
EC'21], [Castiglioni et al. EC ‘21], [Castiglioni et al. EC ‘22], [Guruganesh Schneider &
Wang EC'23]

* Learning contracts: [Ho Slivkins & Vaughn EC’14], [Cohen Deligkas & Koren SAGT'22],
[Zhu et al. EC’23], [Dutting Guruganesh Schneider & Wang ICML’'23]

“Optimizing the Effort of Others”

Contracts with multiple agents:
[Feldman Chuang Stoica Shenker EC'05] [Babaioff Feldman Nisan EC’06] [Emek
Feldman WINE’09] [Babaioff Feldman Nisan Winter JET'12]

Contracts with multiple outcomes:

[Ditting Roughgarden Talgam Cohen EC’19] [Ditting Roughgarden & Talgam Cohen
SODA’20] [Alon Dobson Procaccia Talgam Cohen Tucker-Foltz AAAI’20] [Alon Lavi
Shamash Talgam Cohen EC’21] [Alon Dutting Talgam Cohen EC’'21]

Contracts with multiple actions:
[Dutting Ezra Feldman Kesselheim FOCS'21]

Delegation:

[Azar Micali TE'18] [Kleinberg Kleinberg EC'18] [Bechtel & Dughmi ITCS’21] [Braun
Hahn Hoefer & Schecker ‘22]

Strategic classification:

[Kleinberg & Raghavan EC'19] [Ghalme Nair Eilat Talgam Cohen Rosenfeld ICML'21]
[Nair Ghalme Talgam Cohen Rosenfeld "22]

Algorithmic Contract Design
within a Broader Perspective

An emerging frontier in Algorithmic Game Theory on optimizing
the effort of others (two recent workshops in STOC’22 and EC’22)

*Algorithmic contract design [e.g., Dutting et al., 2019, 2021a,b]
*Strategic classification [e.g., Kleinberg and Raghavan, 2019; Bechavod et al., 2022
*Optimal scoring rule design [e.g., Chen and Yu, 2021; Li et al., 2022]

¢ Delegation [e.g., Kleinberg and Kleinberg, 2018; Bechtel et al., 2022]

Contract Design

One of the pillars of microeconomic theory
[Ross’73, Holmstrom’79]

“The 2016 Nobel Prize in Economics was awarded Monday to
Oliver Hart and Bengt Holmstrom for their work in contract
theory — developing a framework to understand agreements
like insurance contracts, employer-employee relationships
and property rights.”

* As markets for services move online, they grow in scale and complexity
(freelance services, legal services, marketing services, etc.)
* An algorithmic / computational approach is timely and relevant

The Algorithmic/Computational Lens

* The algorithmic lens has been traditionally useful
* Reveals structure
* |dentifies tractability frontier
* Informs the design of simple mechanisms

* Many examples in Algorithmic Mechanism Design

*E.g., greedy algorithms, substitutes as a frontier of tractability,
submodularity as simplicity frontier, hardness of NE, ...

* Study Contract Design from a computational/algorithmic perspective

| won’t be able to monitor his
work. Who knows? he might go to
the beach instead of focusing on
the event

Organizing this event is gonna be so
much work. I'll need to talk with

speakers, manage the schedule, do
logistics, ...

O

Would you please organize TCS+ for me?

How much would you pay me?

principal turns out to be a huge success

I’ll only pay you if the event \s

The Principal-Agent Problem

Defines contract a € [0,1]

Chooses action a

Gets reward 1 with probability f (a) Incurs cost c(a)

Expected payment: Pays a f (a) Receives a f(a)
Expected utility: (1 — a)f(a) af (a) — c(a)

Defining features: hidden action, stochastic outcome, limited liability

The Principal-Agent Problem

>
| | | | -
Known Principal designs Agent takes Agent’s actions Principal pays time
setting: f, ¢ a contract unobserved produce an the agent based
(payment for costly actions outcome, on observed
every outcome) stochastically outcome

Objective: maximize the expected utility of the principal

Many Additional Examples

* Freelance services
* Legal services

* Marketing services
* Course grading

As contracts move online, they’re growing in scale and complexity

Algorithmic

Mechanism
Q Design

. Algorithmic . t
algorithms Contract incentives

Design

Sources of Complexity in Contract Design

Multiple agents

[F Chuang Stoica Shenker EC'05,
Babaioff F Nisan EC'06, Emek F WINE‘09,
Ezra Duetting F Kesselheim, STOC'23]

Multiple actions

[Ezra Duetting F Kesselheim FOCS’21,
Duetting Feldman Gal-Tzur SODA’24,
Ezra F Schlesigner 2023]

Multiple actions

[Ezra Duetting F Kesselheim FOCS’21,
Duetting Feldman Gal-Tzur SODA’24,
Ezra F Schlesigner 2023]

Single Agent, Many Actions

Unit
Demand

snactions A = {1,...,n}, agent chooses a set S

 c(a) = 0: cost of action a
* c(S) = Za Esc(a) [additive cost]

{2 24 - [0,1] success probability function
* f(S): success probability for actions S € A
* Not necessarily additive

 Reward: 1 for success, O for failure

Submodular

Submodular: f(j|S)=f(I T)forS S T,jnotinT

(decreasing marginal value)

Subadditive: f(S) + f(T) = f(SUT)

Single Agent, Many Actions

snactions A = {1,...,n}, agent chooses a set S

 c(a) = 0: cost of action a
* c(S) = Za ESC(CL) [additive cost]

{2 24 - [0,1] success probability function
* f(S): success probability for actions S € A
* Not necessarily additive

 Reward: 1 for success, O for failure

Optimal Contract Problem (2-stage):
Find a that maximize (1 — «)f (S) [principal’s utility]
where S maximizes o f (S) — c(S) [agent’s utility]

Unit
Demand

N ——”

Submodular

Computing Optimal Contracts

= |f the agent only takes one action: Simple polynomial-time algorithm

* For each action find smallest a that incentives the agent to take this action
(e.g., by solving a poly-size LP)

 Among these: Choose contract that maximizes the principal’s expected utility

* Our question: What if the agent takes multiple actions?

* Agent has 2™ choices = Naive approach inefficient

Main Results

Gross substitutes: for every price vectors p < p’ and a
setS € D(f,p) there exists S" € D(f,p") that includes
all elements whose price did not increase

D(f,p): demand set ---
sets S maximizing utility u(S) = f(5) — 2 esp;

Useful property: for every price vector p, adding

elements with maximal marginal utility greedily
returns a set in D(f,p)

Unit
Demand

Submodular

Main Results

Theorems
* A polynomial-time algorithm for gross substitutes functions

* For submodular functions (i.e., decreasing marginal contribution),
it is NP-hard to compute the optimal contract

Gross substitutes constitutes a frontier, similar to

- welfare maximization tractability in combinatorial auctions [Nisan Segal
2006]

- market equilibrium existence [Kelso Crawford 1982, Gul Stacchetti 1999]

Upper Envelope: Agent’s Perspective

Agent’s
utility {1, 2}
af(S) —c(S)
.l
Contract «a

c(1) =0.1,¢(2) =0.1,¢(3) = 0.4,¢(S) = 2 c(a)

aEs

f(1) =03,f(2) =0.2,f(3) =0.5,/(5) = Z f(@ (additive)

aEes

Upper Envelope: Agent’s Perspective

Agent’s
af(S) —c(S)
.l
%
Contract

c(1) = 0.1,c(2) = 0.1,¢(3) = 04,¢(5) =).
f(1) =03,f(2) =0.2,f(3) =05,f(5) = 2 f(@ (additive)

aces

c(a)
€S

Upper Envelope: Agent’s Perspective

Agent’s
af(S) —c(S)
‘a. {1}
%
Contract

c(1) = 0.1,c(2) = 0.1,¢(3) = 04,¢(5) =).
£(1) = 03,£(2) = 02,f(3) = 0.5,/ (5) = Z f@ (additive)

aces

c(a)
€S

Upper Envelope: Agent’s Perspective

Agent’s (, 2,
utility :{}’ 2}
af(S)—c(S)
15
— %) ,
Contract «

c(1) = 0.1,c(2) = 0.1,¢(3) = 04,¢(5) =).
£(1) = 03,£(2) = 02,f(3) = 0.5,/ (5) = Z f@ (additive)

aces

c(a)
€S

Agent’s
utility
af (S) —c(S)

.

Upper Envelope: Agent’s Perspective

1, 2
3, 2;
1, 35
3

/ {23}
e

——— // Contract «
c(1) =0.1,¢(2) =0.1,c(3) = 04,¢(S) = z c(a)
aes
f(1) =03,f(2) =0.2,f(3) = 0.5,/(5) Z f(@ (additive)
aes

Agent’s
utility
af (S) —c(S)

.

Upper Envelope: Agent’s Perspective

o " {1, 2} {1, 2, {1, 2,
5 ' ' 33, 2}

{1, 3}

{13

! ! 3}
%}3}
=

7 Contract a

c(1) =0.1,¢(2) =0.1,c(3) = 04,¢(S) = z c(a)
aes

() =03,f(2) =02f(3) =05,/(5) =) f(a) (additive)
aes

Upper Envelope: Agent’s Perspective

Agent’s Z 11} i1, 2} i, 2 »
utility 3}

af(S) —c(S) §

. /

Contract «

c(1) = 0.1,c(2) = 0.1,¢(3) = 04,¢(5) =).
f(1) =03,f(2) =0.2,f(3) =0.5,/(5) = Z f(@ (additive)

aEes

c(a)
ES

Upper Envelope: Principal’s Perspective

Principal’s % (1) (1, 2! (1,2,

) — T~

principa

Contract «

c(1) = 0.1,c(2) = 0.1,¢(3) = 04,¢(5) =).
f(1) =03,f(2) =0.2,f(3) =0.5,1(5) = Z f(@ (additive)

aces

c(a)
€S

“Critical a’s” and an Algorithm

« Simple observation: can restrict attention to set of critical a’s
(i.e., transition points of agent’s best response)
* Naive algorithm: Go over all critical alphas and take the best; requires:

e computing next critical alpha
e computing agent’s best response

e an upper bound on number of critical alphas

Theorem: For gross substitutes £, this yields a polynomial-time algorithm

Agent’s
utility

Computing Optimal Contract for GS
Functions

%) {1 {2} (1,2} {1,2,3}

Phe agent’s problem: given «,
find S that maximizes af (S) — c(S)
=

find S that maximizes f(S) — %c(S) —

Contract a

demand set with “prices” c/a

(in markets for goods)

Demand Set (in Markets for Goods)

= Demand set D(f, p) = a set S maximizing utility u(S) = f(S) — Xesp;

* Key property of gross substitutes - GREEDY algorithm solves the demand
set problem (add element with maximal marginal utility)
[Tie-breaking: high-cost, then low index, include actions with marginal utility O]

Step 1: Next Critical a

» Demand set D(f, p) = a set S maximizing utility u(S) = f(S) — Xesp;

* Let S, = (a4, a,, ...,ay) and S, be respective demand sets of «, o’
e Either: S, |i] # S, |i] forsomei < d,or|S, | > d

* Suffices to consider finitely many potential values for a’ (for each action
and index), and take the smallest one that is larger than «

!

SCZ Sal
|
a

|
|
a

* Generic cost: at most one iteration in greedy in which tie breaking
occurs (in particular, c(al)\neq c(a2)).
* For generic cost: at most n(n+1)/2 critical points
* By showing that the potential of sum of ranks is increasing in critical alphas

e Perturbations do not introduce new sets into the demand

* Draw cost uniformly at random in [c,c+epsilon], new cost is generic with
probability 1

Agent’s
utility

.

Step 2: Poly-Many Critical a’s

%) {1 {2} (1,2} {1,2,3}

Phe agent’s problem: given «,
find S that maximizes af (S) — c(S)
=

find S that maximizes f(S) — %c(S)

Contract a

 Lemma: at each critical point:
* an actionisaddedto S, or
* an action from S is replaced by one
with higher cost

(obtained by perturbing cost, so that
GREEDY has at most one tie-breaking)

Reorder actions: c(aq) < --- < c(ay)

Define ¢p(a;) =i, P(S) = Xes P ()

¢ is aninteger < n(n + 1)/2, which
increases at every critical a

Conclusion: O(n?) critical points for GS
* (thisis tight)

Proof Sketch: For GS |C¢ (| is polynomial in n

Agent’s Z t1} {2} {1,2} {1,2,3} * This is precisely a demand query!

utility

.

* Non-standard: All prices go down
: 1
simultaneously, at rate -

* Theorem: For GS functions, at each
Contract a critical point:

e an action is added to S, or
Phe agent’s problem: given «, e an action from S is replaced by

find S that maximizes af (S) — ¢(S) one with higher cost
&

find S that maximizes f(S) — %c(S)

e Potential function argument showing
that |C; .| = O(n?)

Beyond Gross Substitutes m
Demand

Submodular: (i |S)=f(i | T)forSST
(decreasing marginal value)

XOS: maximum over additive
(also: fractionally subadditive)

Submodular

Subadditive: [(S) + f(T) = f(SUT)

Beyond Gross Substitutes m
Demand

* Theorem [EDFK’21]: For submodular rewards:
» exponentially many critical points
* Optimal contract is NP-hard

* Inapproximability results [EFS'23]:
* No PTAS for submodular rewards with value queries

* No constant-approximation for XOS rewards with
value queries

* Value query: Given §, return f(S)

* Demand query: Given action “prices” pq, ..., Pn,
return S maximizing f(S) — X;es P

N ——”

Submodular

Is Gross Substitutes a frontier?

» Theorem [DFG’24]: For every f, ¢, a demand oracle (i.e., agent’s BR) is
sufficient for enumerating all critical values

* Proof idea: For a segment |,], use the oracle to get S, and S;.
If S¢ = Sp: the utility is linear in [a, f]

c(Sa)—c(Sp)

f(Sa)_f(SB)

If c(S) — c(Sp): the utility is linear in [a,y) and in [y,f]
Otherwise, there are more than 2 linear pieces;

solve recursively for [a,y] and [y,[]

* Upshot: For every monotone f, ¢, a demand oracle and poly-many
critical values are sufficient to find the optimal contract

Otherwise, query again aty =

* Corollary: an efficient algorithm for supermodular f and submodular ¢

E%\’C Multiple Actions: Summary

~ Key take-aways:

* Gross substitutes is a frontier of tractability” for combinatorial contracts
* (Perhaps) surprising connection to auctions

* Additional results in the paper:

* FPTAS for general functions f, under access to demand oracle
* Robust optimality of linear contracts for non-binary outcomes

* Extension of computational results to linear contracts for non-binary
outcomes

* Open problems:

* Polynomial-time algorithm for submodular valuations with demand queries?
* Extension to multiple agents

Multiple agents
[F, Chuang, Stoica, Shenker EC’05,
Babaioff F Nisan EC'06, Emek F ‘09,

Ezra Duetting F Kesselheim, STOC’23]

Combinatorial Agency Model

[Babaioff F Nisan 2006] -

=1 agents V‘

* Binary action: 4; = {0,1} ‘
(0: no effort, 1: effort)
* Cost ¢;: cost of effort (no effort = no cost) @

* Binary outcome: {0,1}

* Principal receives reward 1 for success
* Success probability function f:{0,1}"— [0,1]

Contracts and Objective

« Optimal (=linear) contract: a = (ay, ..., a,)
a; = 0: payment to agent i for success

* Agent’s perspective: Agent i prefers effort” over no effort” iff

\aif(S) — G > flif(S —{i})

agent i’s utility agent i’s utility
under effort under no effort

Contracts and Objective

« Optimal (=linear) contract: a = (ay, ..., a,)
a; = 0: payment to agent i for success

* Agent’s perspective: Agent i prefers effort” over no effort” iff

a;f(S) —c¢ = a;f(§ —{i})

Contracts and Objective

« Optimal (=linear) contract: « = (a4.,....)
a; = 0: payment to

_ || “margin” of i w.r.t. S: y - o
* Agent’s perspectiv FGS—10) t" over 'no effort” iff

al =fO-fS-0 F{iD)

L Ci : : . . .
A= T sTh s~ reDest way to incentivize agent i

* Principal’s perspective: Find the set of agents S that maximizes

g8) =f(SA-X <)

LES f(ils—i)
* Problem: compute optimal contract for submodular/x0S/subadditive f

* Challenge: even if [is highly structured, g is highly non-structured

Contracts and Objective

Additive

XOS

/

/—\/\

Size of

Warmup: Additive f

Theorem: The problem is NP-hard even for additive f, but admits an FPTAS
Proof: via reduction from Partition:

* Partition: given {wy, ... } of positive integers summing to I/, can it be
partitioned into two sets ’?hat sum to I/ /2 each?

2
Wi

* Contract instance: additive f, every agent has value w; and cost ¢; = o
* To incentivize agenti: a; = w; /W
* Principal’s utility: g(S) = Y ;esw; (1 — Zieg%)

* Maximizedwhen) ;cow; = W /2
* Thus, Partition is solvable iff g(S*) = W /4

Warmup: Additive f

Fheorem: The problem is NP-hard even for additive f, but admits an
FPTAS

Proof: via reduction from PARTITION

* PARTITION: given a multiset of integers that sum to I/, determine
whether one can partition them into to sets that sumto W/ /2

* Construct a contract instance (i.e., {f;}, {c;}) where the principal’s
utility is maximized when the sum of agent values sum to W/ /2

Submodular/XOS/Subadditive f

Unit
Demand

Submodular: (i |S)=f(i | T)forSST
(decreasing marginal value)

XOS: maximum over additive
(also: fractionally subadditive)

Submodular
Subadditive: [(S) + f(T) = f(SUT)

Unweighted Coverage Function (submodular)

agents tasks
¥ f (set of agents) =
tasks covered by these agents
Agent Blue
o) e.g.:
h-d

FUG) =

AgentRed f(@|@) — 1
2

Agent Green

Unweighted Coverage Function (submodular)

agents tasks

- Principal’s objective:

9(8) = 1~) Fere)
ES

Agent Blue
[
o)
h-d

Total # tasks # tasks covered

Agent Red covered by § uniquely by agent i
o9

Agent Green

Unweighted Coverage Function (submodular)

agents tasks

— e
] L]

Agent Blue

C)
by o

Agent Red
=

Agent Green

Principal’s objective:

Ci
9(8) = (1=) =—d—)
/ L f(i|S—10)
LES \
Total # tasks # tasks covered
covered by S uniquely by agent i

Unique coverage is hard to approximate within a
constant factor [Demaine Feige Hajiaghayi
Salavatipour 2006]

Approximation Results for Submodular/X0S/Subadditive

[Dutting Ezra Feldman Kesselheim, STOC’23]

Results:

* (+) There is a polynomial-time algorithm for finding a O(1)-
approximate contract for submodular f, using value oracle, and for
XOS f, using demand oracle

* (-) No better than constant-approximation for XOS f, using demand
and value oracles

* (-) No better than Q(\/n)-approximation for subadditive f, using
demand and value oracles (even for f constant close to submodular)

Approximation Results for Submodular/X0S/Subadditive

Main Results:

* (+) There is a polynomial-time algorithm for finding a O(1)-
approximate contract for submodular f, using value oracle, and for
XOS f, using demand oracle

Approximation Results for Submodular/X0S/Subadditive

Main Results:

* (+) There is a polynomial-time algorithm for finding a O(1)-
approximate contract for submodular f, using value oracle, and for
XOS f, using demand oracle

* (-) No better than Q(\/n)-approximation for subadditive f, using
demand and value oracles (even for f constant close to submodular)

* No better than constant-approximation for XOS f, using demand and value oracles
* For additive it is NP-hard to find the optimal contract, but there is a FPTAS

9(8) = f(S)1~) zere—)

Proof Sketch (XOS)

~ Goal: find S satisfying g(S) = const - g(5§*), where S* is optimal set

Assume: (i) f(S§™) is known, (ii) individual contributions are negligible
Lemma 1: }};c5:/C; < VF(S™)
Lemma 2:Ifforalli €S, f(i|S\1i) = V2¢;f(S), then g(S) > %f(S)

* Non-conventional use of demand queries:

* Define a “price” p; = %\/cl-f(S*), and consider “demand set” T (maximizing f(S) — ¥;cs Di)
¢ (1) 2 f(T) = Lierpi = f(S7) — Sies+pi = 5 £(S*) [by def. of demand and Lemma 1]
e Also: f(i|T\i)=p; = %\/cif(S*) we wish this to be > v2¢;f(T) to use Lemma 2

* A novel scaling property of XOS: can scale down value of f(T) to f(U) by removing
items, and keeping the marginals of remaining items large

Altogether we get: g(U) = %f(U) > const- f(T) = const- f(§*) = const- g(S*) =

9(8) = f(S)1~) zere—)

Proof Sketch (XOS)

~ Goal: find S satisfying g(S) = const - g(5§*), where S* is optimal set

* Let T be the demand set under prices p; = %\/Cif(S*)

* Lemmal: f(T) = %f(S*) [so we can get a set that approximates f(S™)]

* Lemma 2: ForeverysetS,if f(i|S—i) = \/Zcif(S) foralli € S, then g(§) = %f(S)
(so, sufficient to approximate f, instead of messy g)

* SinceTisademandset, f(i |IT—i)=p; = %\/cif(S*)

9(8) = f(S)1~) zere—)

Proof Sketch (XOS)

~ Goal: find S satisfying g(S) = const - g(5§*), where S* is optimal set

* Let T be the demand set under prices p; = %\/cif(S*)

* Lemmal: f(T) = %f(S*) [so we can get a set that approximates f(S™)]

* Lemma 2: ForeverysetS,if f(i|S—i) = \/Zcif(S) foralli € S, then g(§) = %f(S)

(so, sufficient to approximate f, instead of messy g) ,
Desired

-—

: : : : 1 "

* Since Tisademandset, f(i | T—i)>p; = 5\/cl~f(5) 2y26f(T) " (to use Lemma 2)
* Problem: f(T) may be too large
* Idea: remove agents from T until inequality is satisfied
* Problem: marginals may decrease (unlike submodular)

* Thm: a novel scaling property of XOS: scale down f(T) and keep marginals high enough
* Altogether: g(S) > %f(S) > const - f(T) = const- f(§*) = const- g(§*) .

Two Birds with One Stone: Scaling Property of XOS

/ Key Lemma: Givena set T and a parameter x < f(T)

it is possible to find in polytime using value queries a set U € T such that:

W

(1) ~<f)sx _g
\(2) f(i|U\i)2f(i'Z\i)forauiey L Up to one agent
Algorithm: Start withU =T
Each turn, delete the agent with the minimal value of f(fi(l ll]T\\i)i)
I There must be a point here .) N\
T N RS
TR e eTTT— \ 3 TN~
8 ; I — w0s —

Constant Approximation for XOS

Pheorem [Dutting Ezra Feldman Kesselheim, working paper]

There is a polynomial-time algorithm for finding a O(1)-approximate
contract for XOS f.

(assuming demand oracle access to f)

How? Novel relaxation of OPT that exploits local-optimality criteria, prices
derived from that + approximated demand query

Also: For f subadditive, may need exponentially many value queries to
get 0 (y/n) approx.

Key Insight: Novel Relaxation

€onsider relaxation, for parameter 0 < y < 1:
maximize f(S™)
subjectto (f(i| ™ —{iD)* = cif (S™)/y

Lemma [D., Ezra, Feldman, Kesselheim 2022]

If for the optimal set of agents S* andsome 0 < e < v, f(i) < €f(5§")
foralli € S, then for the optimal solution S** to the relaxation it
holds that

fS7) =y —a)f(S7).

From Relaxation to Contract (Sketch)

~ Suppose we know f(5**) (just the objective value, not the set itself)

e let A; = \/ci f(5**)/y and run the following algorithm:

1. Post prices A; /2
2. T < approximate demand query at these prices

3. U maximal subset of Ts.t. Y,y f(P I T —{i}) < f(§™)

* Argue thatif f(i) < &f(S*) foralli € S* then this yields an O(1)-
approximation

How this Fits into Known Results

% Babaioff F Nisan (2006):
* For general f: exp. many value queries
* For f encoded as read-once network: #P-complete
* Poly-time algorithm for AND read-once networks

e Conjecture: Polynomial-time algorithm for series-
parallel read-once networks

 F Emek (2009):
e NP-hard + FPTAS for OR read-once network

* "Almost FPTAS" for series-parallel read once networks

> K X2

(a) AND technology

X1

-

/ X2 "\\

/ S Gl \\

b O

CA ¢ AU

a / p—
/

3 /

\\/ /
Xn

(b) OR technology

O—>(t)

(8)OO eoe(

W

@@ Multiple Agents: Summary

* Key take-aways:

* First constant-factor approximation for a contract problem
* Non-standard use of demand queries
* New scaling property of XOS functions, that may be of independent interest

* Open problems:

* Beyond binary actions? [some progress in a working paper]
* Approximation algorithm for general series-parallel graphs?

Main Take Aways

e Contract theory is a new frontier in AGT

* Complexity and approximation shed new light on
contract design

* Interesting connections to combinatorial auctions
and other combinatorial optimization problems

*E.g., gross substitutes as tractability frontier
* Many fundamental problems still open

Thank You!

