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Multi-unit
Auction

Seller brings multiple
identical units of a good

(e.g. chairs)

Set of buyers have money
and may be interested in

purchasing the goods.
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Multi-unit Auction — Model Reported values
(Declared

Auction format: the Walrasian mechanism. willingness
to pay)
Each player i submits bids b; = (bi,l, ...,bi,K).

Auctioneer sorts the bids from highest to lowest, sets a price p
per unit, and allocates the j-th unit to the player that submitted
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tie breaking). Player i’s utility = value — price (for bundle received)
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Example

.o Each quarter the
government sells a number

K of licenses, each for the ..
right to emit 1 ton of CO2. -

- The players submit bids,
then the auctionisrun and =
the licenses are allocated.

. The format used in
practice is based on the
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The Offline Problem
Input:

o aplayeri with valuation v; and

e ahistoryH_; = (bli,bzi, ...,bfl-) containing the bids of the

other players in rounds 1 through T.

The offline problem is: What is the best response (bid vector) for

player i given the historical data? That is:

—_ - e -



The Offline Problem: (K+1)-st price example
Suppose K = 2 and Alice’s valuation is v4;;ce = (3.1,2.99). Suppose T = 2

and n = 3. The history of bids of the other players (say Bob and Carol) are

depicted below.
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The Offline Problem: (K+1)-st price example
Suppose K = 2 and Alice’s valuation is v;;ce = (3.1,2.99). Suppose T = 2
and n = 3. The history of bids of Bob and Carol are depicted below. If Alice

bids b = vyice = (3.1,2.99): she gets 1 unit and pays 2.99 in each round,
with utility 3.1 — 2.99 = 0.11.
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The Offline Problem: (K+1)-st price example
Suppose K = 2 and Alice’s valuation is ;.. = (3.1,2.99). Suppose T = 2
and n = 3. The history of bids of Bob and Carol are depicted below. If Alice

bid b = (3.1,2) : she still gets 1 unit each round but pays only 2 each round, with
utility 3.1 — 2 = 1.1 > 0.11 each round (better than before)
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The Offline Problem: (K+1)-st price example
Suppose K = 2 and Alice’s valuation is v;;ce = (3.1,2.99). Suppose T = 2
and n = 3. The history of bids of Bob and Carol are depicted below.

Another possible bid vector of Aliceis b = (3.1,1.7) : then in round 1 Alice gets

0 units and pays 0; in round 2, Alice gets 1 unit and pays 1.7.

4
3.1 3.1
3
2
1.7 1.7
15,15
1,1 1



The Offline Problem

. - - -
For now we can assume the bids are restricted to discrete

domain
= {f-e|f € N}
Observation: There is an optimum bid vector

for player i in the following set of “candidate” bids:

= {0} u{bf |j € ]\ {i}, k € [K]}U
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Proof sketch: For any bid vector 3, write the cumulative utility

of the player when playing f while the others play according to
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DAG G; for the offline problem of player i
Vertices: Create a vertex z;jforeach s € §; and j € [K]. We

say vertex z. ;: isin layer j. Add source z_ and sink z_..
S,] -+

Example: K = 4 units;
Set of possible bid values
(“candidate” bids)

Si — {0, 1, 2}
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DAG G; for the offline problem of player i
Vertices: Create a vertex z;jforeach s € §; and j € [K]. We

say vertex zg ; is in layer j. Add source z_ and sink z,..

Layer 1 Layer 2 Layer 3 Layer 4

Example: K = 4 units;
Set of candidate bid values
S;=1{0,1,2}.
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DAG G; for the offline problem of player i
Edges: For each j € [K — 1] and pair of bids 7, s € S; withr > s,

create directed edge from vertex z, ; to zg ;1.
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Edges: For each j € [K — 1] and pair of bids 7, s € S; withr > s,
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DAG G; for the offline problem of player i
Edges: For each j € [K — 1] and pair of bids 7, s € S; withr > s,
create directed edge from vertex z,. ; to z j, ;. Also add edges

from source z_ to each vertexin layer 1 and from each vertexin

layer K to the sink z,.

Layer 1 Layer 2 Layer 3 Layer 4
Note: the nodes do not have
equal degrees. /



DAG G; for the offline problem of player i
Weights: For each edge e = (z,,Zsj41) ore = (zr,K,z+), let

B = (By, ..., Bx) be a bid vector with §; = r and ;1 = s.

¢
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DAG G; for the offline problem of player i
Weights: For each edge e = (z,,Zsj4+1) Ore = (zr,K,z+), let

B = (By, ..., Px) be a bid vector with §; = r and ;1 = s.

Define weight of edge e as the j-th term obtained when rewriting

the cumulative utility of the player with bid vector 8
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DAG G; for the offline problem of player i
Weights: For each edge e = (z,,Zsj41) Ore = (zr’K,er), let
B = (B1, ..., Bx) be a bid vector with f; = r and ;1 = s.

Define weight of edge e as the j-th term obtained when rewriting

the cumulative utility of the player with bid vector 8

Formally

we = i 1xi(B,bZ;) 2 j}(vij — 1) +
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DAG G; for the offline problem of player i
Weights: For each edge e = (z,,Z5j41) Ore = (zr’K,z+), let

B = (B1, ..., Bx) be a bid vector with §; = r and ;1 = s.

0 0 0
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DAG G; for the offline problem of player i
Weights: For each edge e = (z,,Zsj4+1) Ore = (zr,K,z+), let

B = (By, ..., Px) be a bid vector with §; = r and ;1 = s.

Define weight of edge e as the j-th term obtained when rewriting

the cumulative utility of the player with bid vector f3.
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DAG G; for the offline problem of player i
Weights: For each edge e = (7, Zsj41) Ore = (zr,K,z+), let

B = (B4, ..., Px) be a bid vector with §; = r and B;,; = s.

Define weight of edge e as the j-th term obtained when rewriting

the cumulative utility of the player with bid vector f3.

The edge weight depends on entire bid vector § o1 ovz oes oo

However, the same edge weight is obtained © © ;
' se Wele ®0 OO
for anv hidvertar R with R. = rand R.. . = ¢ / ’
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Algorithm

Algorithm: Construct set S; of candidate bids and the DAG G;.

There is a bijective map between paths from the source to the

sink in the DAG and bid vectors € S; of player i.

Compute a max weight path in G; and output the corresponding

bid vector.

0,
©0 0000
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Recall the Online Setting

Th eachroundt = 1,2, ..., the next steps take place:

The auctioneer announces K units for sale.

Each player i privately submits bids bt (bl 1 ,bit'K), where

b; ; is player i’s bid for a j-th unit at time ¢.

Auctioneer runs the auction with bids bt = (bf, . b,tl) and

reveals information (feedback) about the outcome to the players.




Recall the Online Setting

Th eachroundt = 1,2, ..., the next steps take place:

The auctioneer announces K units for sale.

Each player i privately submits bids bf = (bf;, ..., bf), where

b; ; is player i’s bid for a j-th unit at time ¢.

Auctioneer runs the auction with bids bt = (B¢, ..., b%) and

reveals information (feedback) about the outcome to the players.

Feedback: Full information — All the bids bt are public knowledge
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The Online Setting — Strategies

A pure strategy for player i at time t is a function nit that maps
the historical data available to the player to the next action to

play (for round t).

Mixed strategy: probability distribution over pure strategy. The
bid vector bit submitted by player i at time t is the realization of

the mixed strategy.

T; = (nil, e niT): the overall strategy of player i over the time
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.Given a bidding strategy r; = (nil, ...,niT) of player i, the regret
of the player is defined with respect to a history Hfi of bids by

other players:
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The Online Setting — Regret
.Given a bidding strategy m; = (nil, ...,niT) of player i, the regret

of the player is defined with respect to a history Hfl- of bids by

Cumulative utility of player i when using bid vector
B in each round while the others have bid profile b’ ; in
each round t

other players:

Reg;(m;, HL,) = max
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The Online Setting — Regret
.Given a bidding strategy m; = (n}, ...,niT) of player i, the regret
of the player is defined with respect to a history Hfl- of bids by

other players:

Reg;(m;, HL,) = max ZZ Vg — Lo, b’ )) Livi(8pt)>5)

Expected cumulative utlllty of player i when usmg mixed strategy n, in each
round | ' ! : \ rou
‘ ; the other players have bid proflle b_i in each
round t.



The Online Setting — Regret
.Given a bidding strategy m; = (nil, ...,niT) of player i, the regret
of the player is defined with respect to a history Hfi of bids by

other players:

Reg;(m;, HL,) = max ZZ Wid — )) Lz (8,6t )25}

K
Beslz‘ljl

. B
= Epemq-1y | D (vig —2(09)) - Loy
t=1 j=1

For the purpose of giving player i a bidding algorithm, we think of
the other players as adversarial, and aim to achieve small regret
regardless of H ;
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The bids bt are revealed at the end of each round t. Fix a player i.

Main idea: We construct a DAG Gt, which is the same as the one
from the offline setting, except the edge weights are based on

the current round (rather than the sum over all rounds as it was

in the offline setting).

That is, for each edge e = (zr'j,zs’jﬂ) ore = (zr,K,z+), let

B = (B, ..., Bx) be a bid vector with §; = r and ;1 = r (where

w'(e) = Lgy (gt )25 (vig —7) +7 [%w.bam} (r =)+ Lz nty=jy (r = p(B, bt-z:))]




The Online Setting — Full Information Feedback

The bids bt are revealed at the end of each round t. Fix a player i.
Main idea: We construct a DAG Gt, which is the same as the one

from the offline setting, except the edge weights are based on

the current round (rather than the sum over all rounds as it was

in the offline setting). OO OND)

000000
Create a set of experts, each corresponding to @-0-0-®

a path from source to sink in the DAG Gt and run MWU.
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The Online Setting — Full Information Feedback
Bidding algorithm. At each time t € [T], maintain a probability

distribution Pt over all the possible paths from the source to the
sink in G¢, and then sample a path bit, where Pt is defined as:

e Fort = 2, recursively define for all paths p

P~ (p) exp(n ) .ep w' ™ (€))
2q P17 (a) exp(n 2oceq w'™i(e))

P =



The Online Setting — Full Information Feedback
Note: The bidding algorithm described is also known as Hedge:

e N experts, each expert p € [N] is a path from source to sink

* |learning raten, time horizon T, maxreward L = K v;,

e initial distribution o over the experts: o, = P'(p) > 1/ [%]K
Forecaster starts with initial distribution o, then at each step predicts
according to an expert drawn from distribution, observes the utility
(i.e. how good it was to listen to each expert) and updates probability

of choosing each expert next time (less likely to listen to experts that

gave bad advice so far).
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, 1 1 TL?
The regret of the learner is at most — - maxlog (—) +—.
N pE[N] Tp 8

Setting discretization level to € = v; /K /T and learning rate to

n= v” l(i/gK_Z gives regret upper bound of O (Vi,1 : \/TK?’ log(T))
i1

for bidder i.
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: 1 1 TL?
The regret of the learner is at most — - maxlog (—) +—.
N pE[N] Tp 8

Setting discretization level to € = v; 1/K /T and learning rate to

n = v” l(i/gK_Z gives regret upper bound of O (vm : \/TK?’ log(T))
i1

for bidder i.



The Online Setting — Full Information Feedback
Polynomial time implementation.

For the efficient implementation, we follow the work of
Takimoto-Warmuth ‘03 on path kernels. Simulate MWU using an
“indirect” algorithm that maintains only probability per edge

rather than per each path.
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Pt (p) of choosing path p in the form Pt (p) = [l.ep P (e),
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probability distribution over the outneighbors of u.
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Conclusion for bandit feedback

Bandit feedback. Each player i submits the bids privately in

Dependence on T is sub-linear,
but on K is super-linear
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Regret lower bound

For both full information and bandit feedback.
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Sketch of construction: Let K = 2k and v;; = 1 forall j € [K].
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Regret lower bound
Sketch (cont.): K = 2k andv;; = 1forallj € [K].
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Regret lower bound
Sketch (cont.): K = 2k andv;; = 1forallj € [K].
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Regret lower bound
Sketch (cont.): K = 2k andv;; = 1forallj € [K].
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Regret lower bound
Sketch (cont.): K = 2k andv;; = 1forallj € [K].
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A few words about quality of equilibria

Bidders in an auction can collude to improve their utilities
together (e.g. bid low to keep the price small), pay each other
for favors. Repeated auctions allow bidders to use bid rotation
schemes as the history of bids can serve as a communication

device (e.g. Aoyagi '03).
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A few words about quality of equilibria

Collusion can emerge naturally even when the agents are not
trying to conspire but use g-learning algorithms to update their
strategies (e.g. Calvano-Calzolari-Denicolo-Pastorello 21, on

algorithmic collusion in markets such as Cournot oligopolies).
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Consider the game between the players (bidders).
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H K bids of value H > max;;vj;

K bids (some very large value)
All other bids zero.

True valuations,
in (0, H)
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A few words about quality of equilibria

Yrom prior work - see e.g. Kremer-Nyborg’04; Ausubel-

H K bids of value H > max; jv;;
K bids (some very large value)
All other bids zero.
Nobody can deviate and improve:

True valuations, * The winners pay zero.

in (0, H)

130



A few words about quality of equilibria

Yrom prior work - see e.g. Kremer-Nyborg’04; Ausubel-

H K bids of value H > max; jv;;

K bids (some very large value)

All other bids zero.

Nobody can deviate and improve:

* The winners pay zero.

* Thelosers would have to bid > H

But then they would pay
0 H > maxi jvij

True valuations,
in (0, H)
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A few words about quality of equilibria

Yrom prior work - see e.g. Kremer-Nyborg’04; Ausubel-
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A few words about quality of equilibria

Yrom prior work - see e.g. Kremer-Nyborg’04; Ausubel-

In contrast, no such equilibrium exists in the K-th
price auction.

E.g. this profile is not
a Nash equilibrium in
the K-th price auction
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A few words about quality of equilibria

Yrom prior work - see e.g. Kremer-Nyborg’04; Ausubel-

H
In contrast, no such equilibrium exists in the K-th
price auction. Why? If the priceis 0, it means the
K-th highest bid is 0 and all losing bids are 0. K-1 bids

All other bids
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A few words about quality of equilibria

Yrom prior work - see e.g. Kremer-Nyborg’04; Ausubel-

H
In contrast, no such equilibrium exists in the K-th
price auction. Why? If the priceis 0, it means the
K-th highest bid is 0 and all losing bids are 0. K-1 bids
When players are hungry there is a player i with
value v;; € (0,H) who can bid a small e > 0 and Vi1

get a unit => its utility willbe v;; —€ > 0. 0
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Core of the game between the bidders

Consider the game between the players (bidders) using the core

solution concept.
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Consider the game between the players (bidders) using the core

solution concept.

The core of auctions has been studied extensively, usually
allowing the auctioneer to collude together with the players

(see, e.g., Ausubel-Milgrom ‘02, Krishna-Maenner '01).
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Core of the game between the bidders

Consider the game between the players (bidders) using the core

solution concept.

The core of auctions has been studied extensively, usually
allowing the auctioneer to collude together with the players

(see, e.g., Ausubel-Milgrom ‘02, Krishna-Maenner '01).

We will assume the auctioneer chooses the auction format and
then does not take further actions except to run it. The bidders

may coordinate their actions.
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Core of the game between the bidders
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Core of the game between the bidders

Theorem. Consider K unitsandn > K hungry players. The core

Recall hungry players
means v;; > oOvi,j
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Core of the game between the bidders

Theorem. Consider K unitsandn > K hungry players. The core

Same construction as for Nash _
equilibrium of the (K + 1)-st auction. K bids

H > maxv;;
Y All other bids
This bid profile is stable

(no coalition can deviate and improve). 0
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Core with transfers
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Core with transfers

Theorem. Consider K unitsandn > K hungry players. The core

Welfare = sum of valuations

It really means the players

with highest valuations win.

In this setting these can be seen

as the players with most money. 155
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Recall the Online Setting

Th eachroundt = 1,2, ..., the next steps take place:

The auctioneer announces K units for sale.

Each player i privately submits bids bt (bl 1 ,bit'K), where

b; ; is player i’s bid for a j-th unit at time ¢.

Auctioneer runs the auction with bids bt = (bf, . b,tl) and

reveals information (feedback) about the outcome to the players.
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Recall the Online Setting

Th eachroundt = 1,2, ..., the next steps take place:

The auctioneer announces K units for sale.

Each player i privately submits bids bf = (bf;, ..., bf), where

b; ; is player i’s bid for a j-th unit at time ¢.

Auctioneer runs the auction with bids bt = (B¢, ..., b%) and

reveals information (feedback) about the outcome to the players.

Feedback: Full information — All the bids bt are public knowledge



