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The smallest denominator function

qmin(x, δ) = min
{
q ∈ N : ∃pq ∈ Q ∩ (x− δ

2, x+ δ
2)
}
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Expected value

Theorem A. (Chen & Haynes 2023)

∫ 1

0
qmin(x, δ)dx =

16

π2
δ−1/2 +O(log2 δ)
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Discrete sampling

q̃min(x, δ) = min
{
q ∈ N : ∃pq ∈ Q ∩ [x, x+ δ)

}
' qmin(x+ 1

2δ, δ)

q̃min( jN ,
1
N ) = min

{
q ∈ N : ∃pq ∈ Q ∩ [j, j + 1

N )
}
, j = 0, . . . , N − 1
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The Kruyswijk-Meijer conjecture, 1977

Theorem B. (Balazard & Martin 2023)

1

N

N−1∑
j=0

q̃min( jN ,
1
N ) =

16

π2
N1/2 +O(N1/3 log2N)
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The limit distribution (continuous sampling)
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Theorem C. (JM 2024, cf. also Artiles 2023)
For any interval D ⊂ [0,1] and L > 0, we have

lim
δ→0

vol
{
x ∈ D : δ1/2qmin(x, δ) > L

}
= volD

∫ ∞
L

η(s) ds

with the probability density

η(s) = 6
π2 ×


s if s ∈ [0,1]

−s+ 2s−1 + 4s−1 log s if s ∈ [1,2]

−s+ 2s−1 + 2s
√

1
4
− s−2 − 4s−1 log

(
1
2

+
√

1
4
− s−2

)
if s ≥ 2,
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The limit distribution (continuous sampling)
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Theorem C. (JM 2024, cf. also Artiles 2023)
For any interval D ⊂ [0,1] and L > 0, we have

lim
δ→0

vol
{
x ∈ D : δ1/2qmin(x, δ) > L

}
= volD

∫ ∞
L

η(s) ds

with the probability density

η(s) = 6
π2 ×


s if s ∈ [0,1]

−s+ 2s−1 + 4s−1 log s if s ∈ [1,2]

−s+ 2s−1 + 2s
√

1
4
− s−2 − 4s−1 log

(
1
2

+
√

1
4
− s−2

)
if s ≥ 2,
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The limit distribution (discrete sampling)
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Theorem D. (JM 2024)
For any interval D ⊂ [0,1] and L > 0, we have

lim
N→∞

#
{
j
N ∈ D : q̃min( jN ,

1
N ) > LN1/2

}
N volD

=
∫ ∞
L

η(s) ds

with the same η(s) as before.
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Note: The same law describes the shortest cycle length of a large random circu-
lant directed graph of (in- and out-) degree 2:
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Extreme events for horocyles
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Extreme value law for horocyle flow
Γ = SL(2,Z)

Y = Γ\H hyperbolic surface with at least one cusp, X = T 1(Y)
hs horocycle flow on X , µ Liouville measure on X , π : X → Y canonical projection

Theorem E. (JM & Pollicott 2024; cf. also Kirsebom & Mallahi-Karai 2022)
Fix y ∈ Y, Borel probability measure λ � µ. Then there exists a probability density ωy ∈ L1(R)
with ωy(s) � e−|s| such that, for every H ∈ R,

lim
T→∞

λ{x0 ∈ X : sup
0<s≤T

distY(y, π ◦ hs(x0)) > H + logT} =

∫ ∞
H

ωy(s)ds.

Dynamical logarithm laws: Sullivan (1982), Kleinbock & Margulis (1999) for geodesics/diagonal
actions, . . . , Athreya & Margulis (2009), Kelmer & Mohammadi (2012), Yu (2017) for unipotents
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Extreme events for horocyles
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Extreme value law for horocyle flow
Γ = SL(2,Z)

Y = Γ\H hyperbolic surface with at least one cusp, X = T 1(Y)
hs horocycle flow on X , µ Liouville measure on X , π : X → Y canonical projection

ρ(s) =
3

π2
×


−e−s + 2 + 2e−s

√
1
4
− es − 4 log

(
1
2

+
√

1
4
− es

)
if s ∈ (−∞,−2 log 2]

−e−s + 2− 2s if s ∈ [−2 log 2,0]

e−s if s ∈ [0,∞).
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Proof of Theorem C

Farey fractions of level Q:

FQ =

{
p

q
∈ [0,1) : (p, q) ∈ Ẑ2, 0 < q ≤ Q

}
where Ẑ2 = set of primitive lattice points. Note: #FQ ∼ σQ := 3

π2Q
2, Q→∞

Key point:

qmin(x, δ) > Lδ−1/2

⇔
{

(p, q) ∈ Ẑ2 : 0 < q ≤ Lδ−1/2, p
q
∈
(
x− δ

2
, x+ δ

2

)}
= ∅

⇔ FQ ∩
(
x− s

2σQ
, x+ s

2σQ

)
+ Z = ∅

for Q = Lδ−1/2, s = 3
π2L

2,

As proved by Kargaev & Zhigljavsky (1997) (for D = [0,1], see JM 2013 for general D), the
Lebesgue measure of the set of x ∈ D has a limit, namely the void distribution

P (s) =

∫ ∞
s

H(s) ds′,

whose density is the Hall distribution for the gap probabilities in the Farey sequence (Hall 1970).
The limit is therefore ∫ ∞

3

π2L
2

H(s) ds

and the formula for η(s) follows by differentiation from Hall’s formula. QED
12



Moments

Theorem F. (JM 2024)
For any interval D ⊂ [0,1] and α ∈ C with |Reα| < 2, we have

lim
δ→0

δα/2
∫
D
qmin(x, δ)αdx = volD M(α) (∗)

and

lim
N→∞

N−1−α/2
N−1∑
j=0

q̃min

(
j

N
,

1

N

)α
= M(α). (∗∗)

with

M(α) =
∫ ∞

0
sαη(s) ds =

24

π2α(α+ 2)

(
2

α
+ 2αB

(
−
α

2
,
1

2

))

The formula forM(α) follows from Kargaev & Zhigljavsky’s 1997 study of the void statistics for the

Farey sequence. For α = 1, (∗) implies the Chen-Haynes theorem and (∗∗) the Kruyswijk-Meijer

conjecture. Indeed, M(1) = 16
π2 .
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Explicit formulas for generalised moments

By dominated convergence, we also get convergence for the generalised moment

lim
δ→0

δα/2

volD

∫
D
qmin(x, δ)α

(
log qmin(x, δ) + 1

2 log δ
)n
dx = µn,α

for |Reα| < 2, n = 0,1,2, . . ., and

µn,α :=
∫ ∞

0
sα(log s)nη(s) ds =

dn

dαn

∫ ∞
0

sαη(s) ds =
dnM(α)

dαn

so n = 0 gives moments, α = 0 logarithmic moments

α µ0,α µ1,α µ2,α µ3,α

−1 12(4−π)
π2

12(4−π log 4)
π2

192−π(π2+24+48 log2 2)
π2

6(96−3πζ(3)−π log 2 (π2+24+16 log2 2))
π2

0 1 6ζ(3)
π2 − 1

2
3π2

40
+ 1

2
− 6ζ(3)

π2

9(ζ(3)+3ζ(5))
π2 − 9π2

80
− 6ζ(3)+3

4

1 16
π2

16(3π−7)
3π2

32(34+3π(6 log 2−7))
9π2

4(9π3−1136+48π(17+9 log2 2−21 log 2))
9π2

α µ0,α µ2,α

−1
2

16
π2

(
8−

√
2πΓ(1

4)
Γ(3

4)

)
16
9π2

(
1408−

√
2πΓ(5

4)(144G+9π2+224+12π(4+3 log 2)+12 log 2(8+3 log 2))

Γ(3

4)

)
1
2

96
5π2

(
4 +

√
2πΓ(−1

4)
Γ(1

4)

)
24

125π2

(
11008 +

√
2πΓ(−1

4)(−400G+25π2+440π+2752+100 log2 2−20(44+5π) log 2)
Γ(1

4)

)
G = Catalan’s constant
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Coming up. . .

• Smallest denominators in higher dimensions

• Convergence of moments proof of Theorem E (i)

• Discrete sampling proof of Theorem D, Theorem E (ii)

• Moments of the Farey distance function; pigeon hole statistics

• Extreme events for horocycles
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Smallest denominators in higher dimensions

• A ⊂ Rn with non-empty interior

• qmin(x, δ,A) = min
{
q ∈ N : ∃p

q
∈ Qn ∩ x + δA

}
• G = SL(n+ 1,R), Γ = SL(n+ 1,Z)

• µ is the Haar probability measure on Γ\G and

• C(A) = {(x, y) ∈ Rn × (0,1] : x ∈ σ−1/n
1 yA} ⊂ Rn+1

• P (0,A) = µ{g ∈ Γ\G : Ẑn+1g ∩ C(A) = ∅}
where Ẑn+1 set of primitive lattice points in Rn+1

Theorem G. (JM 2024, cf. also Artiles 2023)
ForA ⊂ Rn bounded andD ⊂ [0,1]n, both with boundary of Lebesgue measure
zero and non-empty interior, L > 0, we have

lim
δ→0

vol
{
x ∈ D : δn/(n+1)qmin(x, δ,A) > L

}
volD

= EA(L)

with EA(L) = P (0, σ
1/n
1 L1+1/nA).

Note P (0, sA) � s−n as s→∞ (Strömbergsson 2011), and so EA(L) � L−(n+1) for L→∞.
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Proof
Farey fractions of level Q:

FQ =

{
p

q
∈ [0,1)n : (p, q) ∈ Ẑn+1, 0 < q ≤ Q

}

where Ẑn+1 = set of primitive lattice points. Note:

#FQ ∼ σQ :=
Qn+1

(n+ 1) ζ(n+ 1)
, Q→∞

As in the one-dimensional case, key point is

qmin(x, δ,A) > Lδ−n/(n+1) ⇔ FQ ∩ x + σ
−1/n
Q sA+ Zn = ∅, (∇)

with Q = Lδ−n/(n+1) and s = σ
1/n
1 L1+1/n.

Known results on Farey statistics (JM 2013, based on JM & Strömbergsson 2010)
state that the volume of the set of x ∈ D satisfying (∇) converges to P (0, sA).
QED
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Moments

Theorem H. (JM 2024)
ForA ⊂ Rn bounded andD ⊂ [0,1]n, both with boundary of Lebesgue measure
zero and non-empty interior, α ∈ C with |Reα| < n+ 1, we have

lim
δ→0

δαn/(n+1)

volD

∫
D
qmin(x, δ,A)αdx =

∫ ∞
0

Lα dEA(L).

Proof if Reα = 0

Theorem F can be restated as

lim
δ→0

1

volD

∫
D
F (δn/(n+1)qmin(x, δ,A))dx =

∫ ∞
0

F (L) dEA(L)

Apply this with F (t) = tα, which is bounded continuous for Reα = 0. QED
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Proof if Reα > 0

δαn/(n+1)

∫
D
qmin(x, δ,A)αdx = α

∫ ∞
0

Lα−1 vol
{
x ∈ D : δn/(n+1)qmin(x, δ,A) > L

}
dL

Therefore need to show “no escape of mass at infinity”:

lim
R→∞

lim sup
δ→0

∫ ∞
R

LReα−1 vol
{
x ∈ D : δn/(n+1)qmin(x, δ,A) > L

}
dL = 0 (�)

We have

qmin(x, δ,A) > Lδ−n/(n+1)

⇔ FQ ∩ x + σ
−1/n
Q sA+ Zn = ∅

⇔ Ẑn+1h(x)a(Q) ∩ C(sA) = ∅
⇔ Ẑn+1h(x)a(δ−n/(n+1)) ∩ LC(σ1/n

1 A) = ∅

with Q = Lδ−n/(n+1), s = σ
1/n
1 L1+1/n, and

h(x) =

(
1n t0
−x 1

)
, a(y) =

(
y1/n1n t0

0 y−1

)
We thus need to estimate the measure of x for which the primitive lattice Ẑn+1h(x)a(δ−n/(n+1))

avoids the cone LC(σ1/n
1 A) for large L. Combining results of Strömbergsson (2011) and Kim

& JM (2022), one can show that this is uniformly bounded above by � L−(n+1) which in turn
implies (�) for 0 < Reα < n+ 1. QED
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Proof if Reα < 0

δαn/(n+1)

∫
D
qmin(x, δ,A)αdx = −α

∫ ∞
0

Lα−1 vol
{
x ∈ D : δn/(n+1)qmin(x, δ,A) ≤ L

}
dL.

Therefore need to show “no escape of mass at zero”:

lim
r→0

lim sup
δ→0

∫ r

0
LReα−1 vol

{
x ∈ D : δn/(n+1)qmin(x, δ,A) ≤ L

}
dL = 0. (�)

We have

qmin(x, δ,A) ≤ Lδ−n/(n+1)

⇔ FQ ∩ x + σ
−1/n
Q sA+ Zn 6= ∅

⇔ Ẑn+1h(x)a(Q) ∩ C(sA) 6= ∅
⇔ Ẑn+1h(x)a(δ−n/(n+1)) ∩ LC(σ1/n

1 A) 6= ∅

with Q = Lδ−n/(n+1), s = σ
1/n
1 L1+1/n, and

h(x) =

(
1n t0
−x 1

)
, a(y) =

(
y1/n1n t0

0 y−1

)
We thus need to estimate the measure of x for which the primitive lattice Ẑn+1h(x)δ−n/(n+1)

has a point in the cone LC(σ1/n
1 A) for small L, so in particular has a short vector of length� L.

A classical estimates yields that this is bounded above by � Ln+1 which turn implies (�) for
−(n+ 1) < Reα < 0. QED
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Discrete sampling

Recall: h(x) =

(
1n t0
−x 1

)
, a(y) =

(
y1/n1n t0

0 y−1

)
The following equidistribution theorem is the key input in the continuous sampling
case / void statistics of Farey fractions:

Theorem I. (Margulis’ thesis 1970, Eskin & McMullen 1993, . . . )
For f : Γ\G→ R bounded continuous, we have

lim
Q→∞

1

volD

∫
D
f
(
h(x)a(Q)

)
dx =

∫
Γ\G

f(g) dµ(g)

In the discrete sampling case we need to replace this by:
Theorem J.
For f : Γ\G→ R bounded continuous, c > 0, we have

lim
N,Q→∞

cQn+1≤Nn

1

Nn volD
∑

j∈Zn/NZn∩ND
f
(
h(x0+N−1j)a(Q)

)
=
∫

Γ\G
f(g) dµ(g)

21



Proof of discrete equidistribution
Define sequence of probability measures νi on Γ\G by

νi(f) =
1

#(Zn/NiZn ∩NiD)

∑
j∈Zn/NiZn∩NiD

f
(
h(x0 +N−1

i j)a(Qi)
)

Need to show converges weakly to the probability measure µ.

h(x0 +N−1j)a(Q) = h(x0)a(Q)h(Q1+1/nN−1j) (∆)

hence points are finite distance apart (in terms of any left-invariant Riemannian
metric on G), and can use escape-of-mass estimate in continuous setting to
show (νi)i is tight and thus each subsequence contains a convergent subse-
quence. Can now assume w.l.o.g. that f has compact support and is therefore
uniformly continuous. Restrict to subsequences along which Q1+1/n

i N−1
i → τ0

for some τ0 ∈ [0, c−1/n].

If τ0 = 0, the discrete average is uniformly close to the continuous average (by
uniform continuity of f ), and thus the limit is given by µ.
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Proof of discrete equidistribution (cont’d)

If τ0 > 0, then by (∆) every weak limit is invariant under the map Γ\G→ Γ\G, Γg 7→ Γgh(τ0j)
for any j ∈ Zn. Since G-action on Γ\G by right multiplication is mixing with respect to µ (Howe &
Moore 1979), we have that action of the subgroup Hτ0 = {h(τ0j) : j ∈ Zn} is µ-ergodic.

Given ε > 0, define

νεi(f) = νi(fε), fε(g) :=
1

εn

∫
[− ε

2
, ε

2
]n
f
(
gh(x)

)
dx.

µi(f) =
1

volD

∫
D
f
(
h(x)a(Qi)

)
dx,

νεi =
µi − εnνεi

1− εn
.

Suppose νεi → νε along a converging subsequence. As µi → µ (along any subsequence), by
construction νεi → νε along the same subsequence as νεi , and the limits satisfy the relation

ενε + (1− ε)νε = µ.

All three limit measures are Hτ0-invariant. Since the action of Hτ0 is µ-ergodic, by the extremality
of ergodic measures, we conclude νε = νε = µ for every given ε > 0. Because f is uniformly
continuous, we have

lim
ε→0

sup
i
|νi(f)− νεi(f)| = 0

and thus every limit point of (νi)i must be equal to µ. QED
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Moments of the Farey distance function

• FQ =
{
p
q ∈ [0,1)n : (p, q) ∈ Ẑn+1, 0 < q ≤ Q

}
• #FQ ∼ σQ := Qn+1

(n+1) ζ(n+1), Q→∞

• dist(x,FQ) = min{‖x + r + m‖ : r ∈ FQ, m ∈ Zn}

Theorem K. (JM 2024)
For D ⊂ [0,1]n with boundary of Lebesgue measure zero and non-empty inte-
rior, β ∈ C with |Reβ| < n, we have

lim
Q→∞

σ
β/n
Q

volD

∫
D

dist(x,FQ)βdx =
∫ ∞

0
sβ dFB1

(s),

with FB1
(s) = P (0,Bs) = µ{g ∈ Γ\G : Ẑn+1g ∩ C(Bs) = ∅}.

This generalizes Kargaev and Zhigljavsky (1997) to higher dimensions.
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Pigeon hole statistics for the Farey sequence

• FQ =
{
p
q ∈ [0,1)n : (p, q) ∈ Ẑn+1, 0 < q ≤ Q

}
• #FQ ∼ σQ := Qn+1

(n+1) ζ(n+1), Q→∞

Theorem L. (JM 2024)
For s > 0, k ∈ Z≥0, we have

lim
N→∞

#
{
j ∈ [0, N)n : #

(
FQ ∩

j
N +

[
0, 1
N

)n)
= k

}
Nn

= P (k, s)

where Q = QN so that σQ = snNn and

P (k, s) = µ
{
g ∈ Γ\G : #(Ẑn+1g ∩ C([0, s)n)) = k

}
.

See also Pattison (2023) for pigeonhole statistics of
√
n mod 1.
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Proof of extreme value theorem for horocyles
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Extreme value law for horocyle flow
Γ = SL(2,Z)

Y = Γ\H hyperbolic surface with at least one cusp, X = T 1(Y)
hs horocycle flow on X , µ Liouville measure on X , π : X → Y canonical projection

Theorem E. (JM & Pollicott 2024; cf. also Kirsebom & Mallahi-Karai 2022)
Fix y ∈ Y, Borel probability measure* λ� µ. Then there exists a probability density ωy ∈ L1(R)
with ωy(s) � e−|s| such that, for every H ∈ R,

lim
T→∞

λ{x0 ∈ X : sup
0<s≤T

distY(y, π ◦ hs(x0)) > H + logT} =

∫ ∞
H

ωy(s)ds.

*can allow for a general class of more singular measures
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Proof of extreme value theorem for horocyles

(from Athreya & Cheung 2014)

1. Key idea: relate extreme events to hitting times of the horocycle flow to Athreya & Cheung’s
Poincaré section truncated high in the cusp

2. Show that the the distance from entering the cusp to hitting the section is relatively small
3. Use the scaling property of the section under the geodesic flow to pull it back from the cusp
4. Mixing of geodesic flow implies that the pushforward of λ under geodesic flow converges to

Haar probability measure µ
5. Why is the extreme value law the same as the log distribution of smallest denominators?

The return times for the horocycle flow with µ random initial data give the limit distribution of
the Farey sequence – which in turn gives the limit distribution of small denominators
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Extreme events for horospherical actions

• G = SL(n,R), Γ = SL(n,Z), X = Γ\G

• Rk action hs(x) = xU(s), U(s) =

1m 0 0
0 1k 0
0 −s 1

 , s ∈ Rk

• “distance” from the “origin” o = Γ ' Zn to x = Γg ' Zng:

α1(x) = max
v∈Zng\{0}

1

‖v‖

• Athreya & Margulis (2009, 2017):

lim sup
T→∞

sup
‖s‖<T

logα(hs(x0))

logT
=
k

n
.
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Extreme events for horospherical actions

Theorem M. (JM 2025)
For Borel probability measure λ� µ

lim
T→∞

λ

{
x ∈ X : sup

‖s‖<T
logα(hs(x)) > Y +

k

n
logT

}
= Dk(Y ),

where complementary distribution function Dk : R → [0,1] is continuous, and
there exist constants 0 < C1 < C2 <∞ such that

C1e−nY ≤ Dk(Y ) ≤ C2e
−nY , Y ≥ 0,

C1e−n|Y | ≤ 1−Dk(Y ) ≤ C2e−n|Y |, Y ≤ 0.

Same proof strategy as for n = 2. Continuity and tail estimates follow (respectively) from JM-
Strömbergsson (2010), Strömbergsson (2011), JM-Strömbergsson (2014) via the formula

Dk(Y ) = µ
({

Γg ∈ Γ\G : Zng ∩ C(e−Y ) 6= ∅
})

where C(σ) is a certain cone of volume σn.

Related to void distribution of directions in lattices and multi-dimensional Farey fractions.
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