Riemannian and Kahler flying wing steady Ricci solitons
Connections Workshop: New Frontiers in Curvature & Special Geometric Structures and Analysis August 21, 2024 - August 23, 2024
Location: SLMath: Eisenbud Auditorium, Online/Virtual
Riemannian and Kahler flying wing steady Ricci solitons
Steady Ricci solitons are fundamental objects in the study of Ricci flow, as they are self-similar solutions and often arise as singularity models. Classical examples of steady solitons are the most symmetric ones, such as the 2D cigar soliton, the O(n)-invariant Bryantsolitons, and Cao’s U(n)-invariant Kahler steady solitons. Recently we constructed a family of flying wing steady solitons in any real dimension n≥3, which confirmed a conjecture by Hamilton in n=3. In dimension 3, we showed all steady gradient solitons are O(2)-symmetric. In the Kahler case, we also construct a family of Kahler flying wing steady gradient solitons with positive curvature for any complex dimension n≥2. This answers a conjecture by H.-D.Cao in the negative. This is partly collaborated with Pak-Yeung Chan and Ronan Conlon.
Riemannian and Kahler flying wing steady Ricci solitons
Please report video problems to itsupport@slmath.org.
See more of our Streaming videos on our main VMath Videos page.