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The Ricci flow

The Ricci flow, first introduced by Hamilton, is the evolution equation

∂

∂t
gij = −2Rij

evolving a Riemannian metric by its Ricci curvature.

Success : use RF to classify closed 3-dim riem. manifolds (Perelman).

Obs : Kähler property preserved (Bando) → KRF.

Hope : use the KRF to classify compact Kähler manifolds.

Problem : requires efficient tools for weak KRF on singular varieties.

Lecture 1 : recent geometric estimates for smooth KRF.

Lecture 2 : properties of Kähler Green’s functions.
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The canonical bundle

Kähler cone

Let X be a compact complex manifold of complex dimension n.

ω =loc
∑

α,β gαβ idzα ∧ dzβ is Kähler if (gαβ) > 0 and dω = 0.

Induces a deRham cohomology class {ω} ∈ H1,1(X ,R).

Kähler cone K is open and convex in H1,1(X ,R).

Example

If X = P1 × P1 we set α1 = π∗1αFS and α2 = π∗2αFS . Then
K = {a1α1 + a2α2 a1, a2 > 0} ⊂ H1,1(P1 × P1,R) = R2.

Example

If π : X → P2 is the blow up at a point p ∈ P2, set α1 = π∗αFS and
α2 = π∗αFS − {E}. Then K = {a1α1 + a2α2 a1, a2 > 0} ⊂ H1,1(X ,R).

Vincent Guedj (IMT) Geometric estimates along the KRF September 3, 2024 3 / 31



The canonical bundle

Canonical bundle

Ric(ω) =loc − 1
π

∑ ∂2 log det(gpq)
∂zα∂zβ

idzα ∧ dzβ =Ricci curvature;

Ric(ω) =globally well defined closed (1, 1)-form representing c1(X ).

Definition

The canonical bundle KX is the line bundle of holomorphic n-forms.

Its first Chern class is c1(KX ) = −{Ric(ω)} = −c1(X ).

Example

Canonical bdle of smooth hypersurface of degree d in Pn is O(d − n − 1).
Trichotomy: either d < n + 1, or d = n + 1, orelse d > n + 1.

Definition

A cohomology class α ∈ H1,1(X ,R) is nef if it is a limit of Kähler classes.
An algebraic variety X is called a minimal model if c1(KX ) is nef.
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The canonical bundle

Positivity properties of KX govern the classification

Example

If n = 2 and π : X → Y is the blow up at a point p ∈ Y , then
KX = π∗KY + E . In particular KX · E = −1 hence KX is not nef.

Conjecture (after birational surgeries)

either KX is nef and ∃f : X → Y with c1(Xy ) = 0 and c1(KY ) > 0;

or ∃f : X → Y with Fano fibers c1(KXy ) < 0.

birational surgeries=blowing down curves in dimension 2.

OK in dim ≤ 3 [Mori 88] and [Höring-Peternell 16].

Smooth minimal models do not always exist in dimension n ≥ 3.

Abundance conjecture: KV nef and l.t. sing. ⇒ KV semi-ample ?

Building blocks: either KX > 0, or KX ∼ 0, orelse KX < 0.
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The Kähler-Ricci flow

Kähler-Ricci flow

Fix ω0 a Kähler form and consider the Kähler-Ricci flow
∂ω
∂t = −Ric(ω) with ω|t=0 = ω0

[Hamilton 82, DeTurck 83] : short time existence of the flow.

Cohom level α̇t = c1(KX ) and α0 = {ω0}, so αt = α0 + tc1(KX ).

Definition

We set Tmax = sup{t > 0 ; αt = α0 + tc1(KX ) is a Kähler class}.

If Tmax = +∞ then c1(KX ) = limt→+∞
αt
t is nef.

Conversely c1(KX ) nef ⇒ c1(KX ) > −εα0 for all ε > 0 hence

α0 + tc1(KX ) > (1− εt)α0 > 0 if t < 1
ε , thus Tmax = +∞.
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The Kähler-Ricci flow

Maximal existence

Theorem (Cao 85, Tsuji 88, Tian-Zhang 06)

The Kähler-Ricci flow admits a unique solution ω = ω(t, x) = ωt(x) on a
maximal domain [0,Tmax [×X , where

Tmax = sup{t > 0 ; {ω0} − tc1(X ) is Kähler }.

Moreover Tmax = +∞ iff KX is nef (smooth minimal model).

Much simpler than in the Riemannian case.

Tmax only depends on positivity properties of c1(KX ) and α0.

Can start the KRF from a singular initial datum ω0 [Di Nezza-Lu 17].

Same result on sing. varieties [Song-Tian 17, Eyssidieux-G-Zeriahi 16].

Note : if X is a Fano manifold (i.e. c1(X ) > 0) then Tmax < +∞.
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The Kähler-Ricci flow

Reduction to a parabolic Monge-Ampère equation

Since αt = α0 − tc1(X ) = {ω0} − t{Ric(ω0)}, seek for

ωt = ω0 − tRic(ω0) + ddcϕt,

where d = ∂ + ∂ and dc = (∂−∂)
2iπ hence ddc = i

π∂∂. We infer

−Ric(ω0) + ddcϕ̇t =
∂ωt

∂t

= −Ric(ωt) = −Ric(ω0) + ddc log
ωn
t

ωn
0

.

Thus KRF equivalent to scalar parabolic complex Monge-Ampère equation

(ω0 − tRic(ω0) + ddcϕt)
n = eϕ̇tωn

0 , with ϕ0 ≡ 0.
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The Kähler-Ricci flow

Smooth solutions of scalar parabolic equations

More generally fix 0 < T < +∞ and

let (θt)0≤t<T be a smooth family of closed differential forms
representing a smooth path of Kähler classes αt ∈ K ⊂ H1,1(X ,R);

let h(t, x) be a smooth function and dVX a volume form;

fix ψ0 ∈ Kθ0 an arbitray Kähler potential, i.e. θ0 + ddcψ0 ∈ K.

Theorem

There exists, for all 0 ≤ t < T , a unique ϕt ∈ Kθt such that

(θt + ddcϕt)
n = eϕ̇t+h(t,x)dVX with ϕ0 ≡ ψ0.

One can also consider smooth functions h(t, x , r) and equations

(θt + ddcϕt)
n = eϕ̇t+h(t,x ,ϕt)dVX .
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The Kähler-Ricci flow

Sketch of proof

Continuity method and a priori estimates:

There are three global estimates: fix T ′ < T ,
1 there exists C0 > 0 s.t. |ϕ(t, x)| ≤ C0 for all (t, x) ∈ [0,T ′]× X .
2 there exists C1 > 0 s.t. |ϕ̇(t, x)| ≤ C1 for all (t, x) ∈ [0,T ′]× X .
3 there exists C2 > 0 s.t. ∆ω0ϕ(t, x) ≤ C2 for all (t, x) ∈ [0,T ′]× X .

Then use (local) complex parabolic Evans-Krylov theory to obtain

||ϕ||C2, α2 ,α
([0,T ′]× X ) ≤ Cα

where 0 < α < 1 and Cα > 0.

Conclude by parabolic Schauder estimates and bootstrapping.
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The three building blocks

Calabi-Yau manifolds

Assume KX = 0, so cohomology class αt = α0 is constant.

In particular Tmax = +∞, hence X is a smooth minimal model.

There exists a unique Kähler Ricci flat metric ωKE ∈ α0 [Yau 78].

Theorem (Cao 85)

The Kähler-Ricci flow ∂ωt
∂t = −Ric(ωt) with arbitrary initial datum ω0

exists for all t > 0 and smoothly cv to the Calabi-Yau metric ωKE ∈ {ω0}.

Yields a parabolic proof of Yau’s solution to the Calabi conjecture.

Asymptotic behavior only depends on initial cohomology class.

Can be extended to non smooth minimal models [ST 17, EGZ 16].
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The three building blocks

Ample canonical bundle

Assume KX > 0, hence Tmax = +∞ and X smooth minimal model.

∃! K-E metric ωKE ∈ c1(KX ) [Aubin/Yau 78], Ric(ωKE ) = −ωKE .

Theorem (Cao 85)

Fix ω0 an arbitrary Kähler form on X . The Normalized Kähler-Ricci flow

∂ωt
∂t = −Ric(ωt)− ωt

with initial datum ω0 exists for all t > 0 and smoothly converges to ωKE .

From KRF to NKRF rescaling ωt = λ(t)ω̃s(t) with λ′ = −λ, λs ′ = 1.

NKRF αt = e−tα0 + (1− e−t)c1(KX ) =⇒ normalized volumes.

Can be extended to non smooth minimal models [ST 17, EGZ 16].
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The three building blocks

Fano manifolds

Assume KX < 0 so Tmax < +∞, and fix ω0 a Kähler form in c1(X ).

Theorem (Perelman 03)

If ∃ a unique Kähler-Einstein metric then the Normalized Kähler-Ricci flow

∂ωt
∂t = −Ric(ωt) + ωt, with initial datum ω0 ∈ c1(X )

exists for all t > 0 and smoothly cv to the K-E metric Ric(ωKE ) = ωKE .

Similar result by [Tian-Zhu 07] when there exists a K-R-Soliton.

Can be extended to Q-Fano varieties [Boucksom-Berman-EGZ 19].

Hamilton-Tian conjecture: (X , dωtj
) G-H cv to a KRS on (X∞, d∞).

↪→ proved by [Tian-Zhang 16], [Bamler 18] and [Chen-Wang 20].
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An ambitious program

An ambitious program

Difficult pbm : understand asymptotic behavior of (X , ωt) as t → Tmax .
[Song-Tian 17] have proposed the following conjectural scenario :

If Tmax < +∞ show that (X , ωt) converges to a mildly singular
Kähler variety (X1, S1) equipped with a singular Kähler metric S1.

Try and restart the KRF on X1 with initial data S1.

Repeat ftly many times to reach either dim < n or minimal model Xr .

If dim < n proceed by induction on dimension.

If KXr is nef study the long term behavior of the NKRF,{
∂ω
∂t = −Ric(ω)− ωt

ω|t=0 = Sr

and show that (Xr , ωt) converges to a canonical model (Xcan, ωcan).
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An ambitious program

Known results

Program achieved in dimension one [Hamilton 86, Chow 91].

More or less complete in dimension two (...[Song-Weinkove 13]).

Program largely open in dimension ≥ 3.

Many difficulties to overcome, among them

Degenerate initial data (Kähler current rather than Kähler form).
OK by [...Di Nezza-Lu 17].

Define the KRF on mildly singular varieties.
OK by [Song-Tian 17...G-Lu-Zeriahi 20].

Construct canonical limits and prove convergence.
In progress [Song-Tian 12, Tosatti-Weinkove-Yang 18,...].

Focus today: geometric cv of (X , dωt ) [Guo-Phong-Song-Sturm 24].
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Break

Short break: a 3d Calabi-Yau manifold
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Diameter bounds and non-collapsing

Diameter bounds and non collapsing

Lecture 1’ goal=proof of geometric estimates along the smooth NKRF:

Theorem (Guo-Phong-Song-Sturm 24)

Fix ε > 0. There is cε,D0 > 0 s.t. for all 0 ≤ t < Tmax , p ∈ X , 0 < r < 1,

diam(X , ωt) ≤ D0 and

cεr
2n+εVolωt (X ) ≤ Volωt (Bωt (p, r))

along the NKRF if

either Tmax = +∞ (smooth minimal model, global collapsing OK),

or Tmax < +∞ and VolωTmax
(X ) > 0 (global non-collapsing).

Estimating Volωt (X ) is easy=cohomological computation (next slide).

Open problem: diameter bound for collapsing finite time singularity.
↪→ Perelman’s diameter bound for Fano manifolds=particular case.
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Diameter bounds and non-collapsing

Computing global volumes

NKRF ∂ωt
∂t = −Ric(ωt)− ωt hence αt = e−tα0 + (1− e−t)c1(KX ).

If Tmax = +∞ then Volωt (X ) ∼ e−(n−ν(X ))t where
ν(X ) = numerical dim. of KX = sup{k ∈ N, c1(KX )k 6= 0}.

If Tmax < +∞ then

either Volωt (X ) ∼ 1 if αn
Tmax

> 0 (birational surgery),
or Volωt (X ) −→ 0 if αn

Tmax
= 0 (collapsing to lower dimension).

Example

If X = S1 × S2 with Sj=Riemann surface of genus g1, g2 ≥ 1. Then n = 2,
KX = π∗1KS1 ⊗ π∗2KS2 ≥ 0, hence Tmax = +∞ (minimal model) and

ν(X ) = 0 if g1 = g2 = 1; ν(X ) = 1 if g1 = 1 and g2 ≥ 2;

ν(X ) = 2 if g1 = g2 ≥ 2 (X is ”of general type” if ν(X ) = n).
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Diameter bounds and non-collapsing

Kähler Green’s functions

Key tool=properties of Green’s functions associated to Kähler forms.

Definition

Given ω Kähler form we consider Gω ∈ C∞(X × X \Diag,R) s.t.

Gω(x , y) = Gω(y , x) for all (x , y) ∈ X × Y ;

Gω(x , y) ∼ − 1
[dω(x ,y)]2n−2 if n ≥ 2;

the functions y 7→ Gω
x (y) = Gω(x , y) are ω-subharmonic with

1

Vω
(ω + ddcGω

x ) ∧ ωn−1 = δx ,

where Vω =
∫
X ω

n and δx=Dirac mass at point x .

Key result: uniform integral bds on ∇Gω under Lp bds on fω = ωn/Vω
ωn
X

.
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Diameter bounds and non-collapsing

Estimates for Green’s functions

Theorem (Guo-Phong-Song-Sturm 24 / G-Tô 24 / Vu 24)

Let (X , ωX ) be a compact Kähler manifold of cplx dim n with
∫
X ω

n
X = 1.

Fix A,B > 0 and p > 1. Let ω be another Kähler form such that∫
X ω ∧ ω

n−1
X ≤ A and

∫
X f pω ωn

X ≤ B, where fω = V−1
ω ωn/ωn

X .

Fix r < n
n−1 , s < 2n

2n−1 . There exists C ,D > 0 such that for all x ∈ X ,∫
X |G

ω
x |r ω

n

Vω
≤ C (p, r ,A,B) and

∫
X |∇G

ω
x |s ω

n

Vω
≤ D(p, s,A,B).∫

X ω ∧ ω
n−1
X ≤ A =⇒ Volω(X ) ≤ V (A).∫

X |∇G
ω
x |s ω

n

Vω
≤ Ds =⇒ bds on diameter+local non collapsing.

Proof of these results=Lecture 2.
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Diameter bounds and non-collapsing

Parabolic Monge-Ampère equation

NKRF can be reduced to scalar parabolic complex Monge-Ampère equation

1

Vt
ωn
t =

1

Vt
(θt + ddcϕt)

n = eϕ̇t+ϕt+h(x)ωn
X

where

θt = e−tω0 + (1− e−t)η, with η ∈ c1(KX );

h is a smooth (fixed) function, Vt =
∫
X ω

n
t ;

t 7→ ϕt is the unknown function (Kähler potential); ϕ0 ≡ 0.

PLAN:

observe that αt = {ωt} = {θt} remains bounded in H1,1(X ,R);

show that ϕ̇t(x) + ϕt(x) ≤ C and apply previous thm (p = +∞).
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Uniform estimates

Upper bound on ϕt

Lemma 1

There exists C0 > 0 such that ϕt(x) ≤ C0 for all (t, x) ∈ [0,Tmax [×X .

If I (t) =
∫
X ϕtω

n
X then I (t) ≤ supX ϕt ≤ I (t) + C ′0 (qpsh functions).

By concavity of the log (Jensen’s inequality), we obtain

I ′(t) + I (t) +

∫
X
hωn

X =

∫
X

(ϕ̇t + ϕt + h(x))ωn
X

=

∫
X

log

(
ωn
t /Vt

ωn
X

)
ωn
X

≤ log

∫
X

(
ωn
t /Vt

ωn
X

)
ωn
X

= 0.

Since I (0) = 0 we infer I (t) ≤ C ′′0 = −
∫
X hωn

X . �
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Uniform estimates

Upper bound on ϕ̇t

Lemma 2

There exists C1 > 0 such that ϕ̇t(x) ≤ C1 for all (t, x) ∈ [0,Tmax [×X if

either Tmax = +∞,

or Tmax < +∞ and VTmax > 0.

Consider H(t, x) = (et − 1)ϕ̇t(x)− ϕt(x)− b(t).

We choose b s.t. b(0) = 0 and b′(t) = n − (et − 1) d
dt logVt .

Exercise: Tmax = +∞ (or Tmax < +∞,VTmax > 0) =⇒ b(t) ≤ C ′1e
t .

Set ∆tu := ∆ωtu = n ddcu∧ωn−1
t

ωn
t

and Trωtθ := n θ∧ω
n−1
t

ωn
t

.

Lemma 3:
(
∂
∂t −∆t

)
H ≤ 0 . Max pple ⇒ H ≤ supx∈X H(0, x) = 0.

Lemma 1 + Exercise + Lemma 3 yield (et − 1)ϕ̇t(x) ≤ C ′′1 e
t . �
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Uniform estimates

Upper bound on ϕ̇t (end)

Lemma 3

If H = (et − 1)ϕ̇t − ϕt − b(t) and b′(t) = n − (et − 1) d
dt logVt , then(

∂

∂t
−∆t

)
H = −Trωt (ω0) ≤ 0.

Observe that ∂H
∂t = (et − 1)(ϕ̈t + ϕ̇t)− b′(t).

Now ϕ̇t +ϕt = log(ω
n
t /Vt

ωn
X

)− h(x) and ωt = e−t(ω0− η) + η+ ddcϕt .

Thus ϕ̈t + ϕ̇t = ∆t(ϕ̇t) + Trωt (e
−t(η − ω0))− d log Vt

dt , while

∆tH = (et − 1)∆t(ϕ̇t)−∆t(ϕt) = (et − 1)∆t(ϕ̇t)− n + Trωt (η + e−t(ω0 − η)).

⇒
(

∂
∂t −∆t

)
H = −Trωt (ω0)− (et − 1) d log Vt

dt − b′(t) + n = −Trωt (ω0). �
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Uniform estimates

Conclusion

Assume either Tmax = +∞ or Tmax < +∞ and VTmax > 0.

We have shown ωn
t

Vt
= ftω

n
X with ft = eϕ̇t+ϕt+h ≤ C2.

By [Guo-Phong-Song-Sturm 24] we obtain for all 0 ≤ t < Tmax ,

diam(X , ωt) ≤ D0;
cεr

2n+εVt ≤ Volωt (Bωt (x , r)) for all x ∈ X and 0 < ε, 0 < r < D;

Vt ≤ V0 since Vt
t→Tmax−−−−−→ V∞.

Theorem (Gromov)

The metric spaces (X , dωt ) are relatively compact in the G-H sense.

Problem

What is the Gromov-Hausdorff limit of (X , dωt ) as t → Tmax ?
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Smooth minimal models

Minimal model of general type

Assume X is a minimal model of general type, i.e.

KX is nef ⇐⇒ Tmax = +∞ (X smooth minimal model),

and KX is big ⇐⇒ Vmax > 0⇐⇒ ν(X ) = n.

Theorem (Birkar-Cascini-Hacon-McKernan 10)

There exists a holomorphic birational map f : X −→ Xcan, where

Xcan is a mildly singular projective variety (canonical model of X );

the canonical bundle KXcan > 0 is ample.

Theorem (Eyssidieux-G-Zeriahi 09)

There exists a unique Kähler-Einstein current TKE on Xcan, i.e.

a Kähler form on X reg
can such that Ric(TKE ) = −TKE ;

TKE has bounded local potentials near X sing
can .
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Smooth minimal models

Minimal model of general type (end)

Theorem (Cao 85 / Tsuji 88 / Tian-Zhang 06 / Song 14 / Wang 18)

Assume X min model of general type, fix ω0 an arbitray Kähler form on X .
The Normalized Kähler-Ricci Flow

∂ωt
∂t = −Ric(ωt)− ωt

with initial datum ω0 exists for all times t > 0 and

weakly converges, as t → +∞, to the Kähler-Einstein current f ∗TKE ;

convergence is smooth on the ample locus Amp(KX ) = f −1(X reg
can );

the diameter (X , dωt ) is uniformly bounded along the flow;

(X , dωt ) converges in the Gromov-Hausdorff topology to (Xcan, dKE ).

↪→ Problem: extend this to non smooth minimal models.
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Smooth minimal models

Intermediate Kodaira dimension

Assume X is a smooth, abundant, intermediate minimal model, i.e.

KX is semi-ample : KX = f ∗L where f : X → Y with L > 0 on Y ,

and 1 ≤ ν(X ) ≤ n − 1. In particular KX is nef (Tmax = +∞).

Set Y 0 = Y \
(
Y sing ∪ Singv(f )

)
; fibers Xy are smooth CY if y ∈ Y 0.

Theorem (Song-Tian 12)

There exists a twisted Kähler-Einstein current TKE , i.e.

TKE is a Kähler form on f −1(Y 0) with Ric(TKE ) = −TKE + ωWP ;

ωWP ≥ 0 is a Weil-Petersson type metric;

TKE has bounded local potentials near f −1(Y 0).

Partial ext. to sing min models [EGZ 18]. Regularity theory of TKE ?

Problem: get rid of abundance assumption.
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Smooth minimal models

Intermediate Kodaira dimension (end)

Theorem (Song-Tian 12 / Song-Tian-Zhang 19 / Hein-Lee-Tosatti 24)

Assume X is a smooth intermediate abundant minimal model. Fix ω0 an
arbitrary Kähler form on X . The Normalized Kähler-Ricci Flow

∂ωt
∂t = −Ric(ωt)− ωt

with initial datum ω0 exists for all times t > 0 and

weakly converges, as t → +∞, to the Kähler-Einstein current TKE ;

the convergence is smooth on f −1(Y 0);

(X , dωt ) converges in the G-H topology to (Y , dKE ) if ν(X ) = 1.

↪→ Pbm: extend this to ν(X ) 6= 1 and non smooth minimal models.
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