Kähler Green's functions

Vincent Guedj

Institut de Mathématiques de Toulouse Institut Universitaire de France Clay senior scholar

SLMath, Berkeley Special Geometric Structures and Analysis Introductory workshop

Quasi-subharmonic functions

• Let (X, ω) be a compact Kähler manifold of complex dimension n.

Definition

- A function $v: X \to \mathbb{R} \cup \{-\infty\}$ is quasi-subharmonic if it is locally the sum of a subharmonic and a smooth function.
- It is called ω -subharmonic if $(\omega + dd^c v) \wedge \omega^{n-1} \geq 0$. Equivalently

$$\Delta_{\omega} v := n \frac{dd^c v \wedge \omega^{n-1}}{\omega^n} \ge -n.$$

- We let $SH(X, \omega)$ denote the set of all ω -subharmonic functions.
- Goal: study properties of the map $\omega \longmapsto SH(X,\omega)$.
- Warning: $(\omega, v) \mapsto (\omega + dd^c v) \wedge \omega^{n-1}$ affine in v but non-linear in ω !

Kähler Green's function

Definition (Green's function)

Given ω Kähler form we consider $G^{\omega} \in \mathcal{C}^{\infty}(X \times X \setminus \mathrm{Diag}, \mathbb{R})$ s.t.

- $G^{\omega}(x,y) = G^{\omega}(y,x)$ for all $(x,y) \in X \times Y$;
- $G^{\omega}(x,y) \sim -\frac{1}{[d_{\omega}(x,y)]^{2n-2}}$ if $n \geq 2$;
- $y \mapsto G_x^{\omega}(y) = G^{\omega}(x,y) \in SH(X,\omega)$ with

$$\frac{1}{V_{\omega}}(\omega + dd^{c}G_{x}^{\omega}) \wedge \omega^{n-1} = \delta_{x} \iff \Delta_{\omega}G_{x}^{\omega} = n\left\{V_{\omega}\delta_{x} - \omega^{n}\right\},\,$$

where $V_{\omega} = \int_{X} \omega^{n}$ and $\delta_{x} = Dirac$ mass at point x;

- $y \mapsto G_x^{\omega}(y)$ is normalized by $\int_X G_x^{\omega}(y) \omega^n(y) = 0$.
- Classical: there exists a unique solution, the Green's function.
- Problem: study how $\omega \mapsto G^{\omega}(x,y)$ varies, uniformly wrt (x,y).

3/28

Key estimates

- Fix ω_X a reference Kähler form normalized by $\int_X \omega_X^n = 1$.
- Fix A, B > 0 and p > 1. Set $f_{\omega} = V_{\omega}^{-1} \omega^{n} / \omega_{X}^{n}$ and consider

$$\mathcal{K}(X,p,A,B) := \left\{ \omega \text{ K\"{a}hler s.t. } \int_X \omega \wedge \omega_X^{n-1} \leq A \text{ and } \int_X f_\omega^p \omega_X^n \leq B \right\}.$$

Theorem (Guo-Phong-Song-Sturm 24 / G-Tô 24 / Vu 24)

Fix $r < \frac{n}{n-1}$ and $s < \frac{2n}{2n-1}$. Then for all $x \in X$ and $\omega \in \mathcal{K}(X, p, A, B)$,

- $\bullet \sup_{y \in X} G_x^{\omega} \leq C_0 = C_0(n, p, A, B);$
- $\bullet \int_X |G_x^{\omega}|^r \frac{\omega^n}{V_{\omega}} \leq C_1 = C_1(n, p, r, A, B);$
- $\bullet \int_X |\nabla G_x^{\omega}|^s \frac{\omega^n}{V_{\omega}} \leq C_2 = C_2(n, p, s, A, B).$
- Goal of Lecture 2: proof of these uniform estimates.

• Assume $(\omega + dd^c v) \wedge \omega^{n-1} \geq 0$ with $\int_X v\omega^n = 0$. Then

$$v(x) = \int_X v \frac{(\omega + dd^c G_X^{\omega}) \wedge \omega^{n-1}}{V_{\omega}}$$

• Assume $(\omega + dd^c v) \wedge \omega^{n-1} \geq 0$ with $\int_X v\omega^n = 0$. Then

$$v(x) = \int_X v \frac{(\omega + dd^c G_x^{\omega}) \wedge \omega^{n-1}}{V_{\omega}} = \int_X v \frac{dd^c G_x^{\omega} \wedge \omega^{n-1}}{V_{\omega}}$$

• Assume $(\omega + dd^c v) \wedge \omega^{n-1} \geq 0$ with $\int_X v\omega^n = 0$. Then

$$v(x) = \int_{X} v \frac{(\omega + dd^{c} G_{x}^{\omega}) \wedge \omega^{n-1}}{V_{\omega}} = \int_{X} v \frac{dd^{c} G_{x}^{\omega} \wedge \omega^{n-1}}{V_{\omega}}$$
$$= \int_{X} G_{x}^{\omega} \frac{dd^{c} v \wedge \omega^{n-1}}{V_{\omega}}$$

• Assume $(\omega + dd^c v) \wedge \omega^{n-1} \geq 0$ with $\int_X v\omega^n = 0$. Then

$$v(x) = \int_{X} v \frac{(\omega + dd^{c} G_{x}^{\omega}) \wedge \omega^{n-1}}{V_{\omega}} = \int_{X} v \frac{dd^{c} G_{x}^{\omega} \wedge \omega^{n-1}}{V_{\omega}}$$
$$= \int_{X} G_{x}^{\omega} \frac{dd^{c} v \wedge \omega^{n-1}}{V_{\omega}} = \int_{X} G_{x}^{\omega} \frac{(\omega + dd^{c} v) \wedge \omega^{n-1}}{V_{\omega}}.$$

- Thus $v(x) \leq \sup_X G_x^{\omega} \leq C_0$.
- By Hölder inequality and symmetry $G_x^{\omega}(y) = G_y^{\omega}(x)$, we also obtain

$$\int_X |v|^r \frac{\omega^n}{V_\omega} \le C_1 \quad \text{and} \quad \int_X |\nabla v|^s \frac{\omega^n}{V_\omega} \le C_2.$$

• Thus proving key estimates for G_x^{ω} or arbitrary v is the same.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ②

Corollary

Under previous assumptions $\operatorname{diam}(X,\omega) \leq D = 2C_2(n,p,1,A,B)$.

- Fix $(a,b) \in X^2$ such that $d_{\omega}(a,b) = \operatorname{diam}(X,\omega)$.
- The function $\rho: x \in X \mapsto d_{\omega}(a, x) \in \mathbb{R}^+$ is 1-Lipschitz with $\rho(a) = 0$.
- Thus $0 = V_{\omega} \rho(a) = \int_{X} \rho(\omega + dd^{c} G_{a}^{\omega}) \wedge \omega^{n-1}$ yields, by Stokes,

$$\int_{X} \rho \omega^{n} = \int_{X} d\rho \wedge d^{c} G_{a}^{\omega} \wedge \omega^{n-1}$$

Corollary

Under previous assumptions $\operatorname{diam}(X,\omega) \leq D = 2C_2(n,p,1,A,B)$.

- Fix $(a,b) \in X^2$ such that $d_{\omega}(a,b) = \operatorname{diam}(X,\omega)$.
- The function $\rho: x \in X \mapsto d_{\omega}(a, x) \in \mathbb{R}^+$ is 1-Lipschitz with $\rho(a) = 0$.
- Thus $0 = V_{\omega} \rho(a) = \int_{X} \rho(\omega + dd^{c} G_{a}^{\omega}) \wedge \omega^{n-1}$ yields, by Stokes,

$$\int_{X} \rho \omega^{n} = \int_{X} d\rho \wedge d^{c} G_{a}^{\omega} \wedge \omega^{n-1} \leq \int_{X} |\nabla G_{a}^{\omega}|_{\omega} \omega^{n}$$

Corollary

Under previous assumptions $\operatorname{diam}(X,\omega) \leq D = 2C_2(n,p,1,A,B)$.

- Fix $(a,b) \in X^2$ such that $d_{\omega}(a,b) = \operatorname{diam}(X,\omega)$.
- The function $\rho: x \in X \mapsto d_{\omega}(a, x) \in \mathbb{R}^+$ is 1-Lipschitz with $\rho(a) = 0$.
- Thus $0 = V_{\omega} \rho(a) = \int_{X} \rho(\omega + dd^{c} G_{a}^{\omega}) \wedge \omega^{n-1}$ yields, by Stokes,

$$\int_{X} \rho \omega^{n} = \int_{X} d\rho \wedge d^{c} G_{a}^{\omega} \wedge \omega^{n-1} \leq \int_{X} |\nabla G_{a}^{\omega}|_{\omega} \omega^{n} \leq C_{2} V_{\omega}.$$

• Similarly $V_\omega
ho(b) = \int_X
ho \, \omega^n + \int_X
ho dd^c G_b^\omega \wedge \omega^{n-1}$ hence

$$\operatorname{diam}(X,\omega) = \rho(b)$$

Corollary

Under previous assumptions $\operatorname{diam}(X,\omega) \leq D = 2C_2(n,p,1,A,B)$.

- Fix $(a,b) \in X^2$ such that $d_{\omega}(a,b) = \operatorname{diam}(X,\omega)$.
- The function $\rho: x \in X \mapsto d_{\omega}(a, x) \in \mathbb{R}^+$ is 1-Lipschitz with $\rho(a) = 0$.
- Thus $0 = V_{\omega} \rho(a) = \int_{X} \rho(\omega + dd^{c} G_{a}^{\omega}) \wedge \omega^{n-1}$ yields, by Stokes,

$$\int_{X} \rho \omega^{n} = \int_{X} d\rho \wedge d^{c} G_{a}^{\omega} \wedge \omega^{n-1} \leq \int_{X} |\nabla G_{a}^{\omega}|_{\omega} \omega^{n} \leq C_{2} V_{\omega}.$$

• Similarly $V_\omega
ho(b) = \int_X
ho \, \omega^n + \int_X
ho dd^c G_b^\omega \wedge \omega^{n-1}$ hence

$$\operatorname{diam}(X,\omega) = \rho(b) \leq \int_X |\nabla G_a^{\omega}|_{\omega} \frac{\omega^n}{V_{\omega}} + \int_X |\nabla G_b^{\omega}|_{\omega} \frac{\omega^n}{V_{\omega}}$$

Corollary

Under previous assumptions $\operatorname{diam}(X,\omega) \leq D = 2C_2(n,p,1,A,B)$.

- Fix $(a,b) \in X^2$ such that $d_{\omega}(a,b) = \operatorname{diam}(X,\omega)$.
- The function $\rho: x \in X \mapsto d_{\omega}(a, x) \in \mathbb{R}^+$ is 1-Lipschitz with $\rho(a) = 0$.
- Thus $0 = V_{\omega} \rho(a) = \int_{X} \rho(\omega + dd^{c} G_{a}^{\omega}) \wedge \omega^{n-1}$ yields, by Stokes,

$$\int_{X} \rho \omega^{n} = \int_{X} d\rho \wedge d^{c} G_{a}^{\omega} \wedge \omega^{n-1} \leq \int_{X} |\nabla G_{a}^{\omega}|_{\omega} \omega^{n} \leq C_{2} V_{\omega}.$$

• Similarly $V_\omega
ho(b) = \int_X
ho \, \omega^n + \int_X
ho dd^c G_b^\omega \wedge \omega^{n-1}$ hence

$$\operatorname{diam}(X,\omega) = \rho(b) \leq \int_{X} |\nabla G_{a}^{\omega}|_{\omega} \frac{\omega^{n}}{V_{\omega}} + \int_{X} |\nabla G_{b}^{\omega}|_{\omega} \frac{\omega^{n}}{V_{\omega}} \leq 2C_{2}.$$

6/28

Application 2: Non collapsing

Corollary

Under previous assumptions $\frac{\operatorname{Vol}_{\omega}(B_{\omega}(x,r))}{V_{\omega}} \ge c_{\delta} r^{2n+\delta}$ for $0 < r < D, x \in X$.

- Fix $0 \le \chi \le 1$ with $\chi \equiv 1$ on $B_{\omega}(x, r/2)$ and $\chi \equiv 0$ off $B_{\omega}(x, r)$.
- As $|\nabla \chi|_{\omega} \leq \frac{6}{r}$ the function $\rho \chi$ is 7-Lipschitz, where $\rho(y) = d_{\omega}(x, y)$.
- Fix $0 < s < \frac{2n}{2n-1}$, $s^* = \text{conj exp.}$

Application 2: Non collapsing

Corollary

Under previous assumptions $\frac{\operatorname{Vol}_{\omega}(B_{\omega}(x,r))}{V_{\omega}} \ge c_{\delta} r^{2n+\delta}$ for $0 < r < D, x \in X$.

- Fix $0 \le \chi \le 1$ with $\chi \equiv 1$ on $B_{\omega}(x, r/2)$ and $\chi \equiv 0$ off $B_{\omega}(x, r)$.
- As $|\nabla \chi|_{\omega} \leq \frac{6}{r}$ the function $\rho \chi$ is 7-Lipschitz, where $\rho(y) = d_{\omega}(x, y)$.
- Fix $0 < s < \frac{2n}{2n-1}$, $s^* = \operatorname{conj} \exp$. By Green's formula at $y \notin B_{\omega}(x,r)$

$$\int \rho \chi \omega^n = \int d(\rho \chi) \wedge d^c G_y^\omega \wedge \omega^{n-1} \leq C_2(s) V_\omega^{\frac{1}{s}} \operatorname{Vol}_\omega (B_\omega(x,r))^{\frac{1}{s^*}}.$$

• Applying now Green's formula at $z \in \partial B_{\omega}(x, r/2)$ we obtain

$$\frac{r}{2} = \int \rho \chi \frac{\omega^n}{V_{\omega}} - \int d(\rho \chi) \wedge d^c G_z^{\omega} \wedge \frac{\omega^{n-1}}{V_{\omega}}$$

Application 2: Non collapsing

Corollary

Under previous assumptions $\frac{\operatorname{Vol}_{\omega}(B_{\omega}(x,r))}{V_{\omega}} \ge c_{\delta} r^{2n+\delta}$ for $0 < r < D, x \in X$.

- Fix $0 \le \chi \le 1$ with $\chi \equiv 1$ on $B_{\omega}(x, r/2)$ and $\chi \equiv 0$ off $B_{\omega}(x, r)$.
- As $|\nabla \chi|_{\omega} \leq \frac{6}{r}$ the function $\rho \chi$ is 7-Lipschitz, where $\rho(y) = d_{\omega}(x, y)$.
- Fix $0 < s < \frac{2n}{2n-1}$, $s^* = \text{conj exp.}$ By Green's formula at $y \notin B_{\omega}(x,r)$

$$\int \rho \chi \omega^n = \int d(\rho \chi) \wedge d^c G_y^\omega \wedge \omega^{n-1} \leq C_2(s) V_\omega^{\frac{1}{s}} \operatorname{Vol}_\omega (B_\omega(x,r))^{\frac{1}{s^*}}.$$

• Applying now Green's formula at $z \in \partial B_{\omega}(x,r/2)$ we obtain

$$\frac{r}{2} = \int \rho \chi \frac{\omega^n}{V_\omega} - \int d(\rho \chi) \wedge d^c G_z^\omega \wedge \frac{\omega^{n-1}}{V_\omega} \leq 2C_2 V_\omega^{-1 + \frac{1}{s}} \operatorname{Vol}_\omega (B_\omega(x, r))^{\frac{1}{s^*}}.$$

• The conclusion follows since $s^* = 2n + \delta \in (2n, +\infty)$. \square

Application 3: Uniform Sobolev inequalities

Theorem

Fix $1 < q < \frac{2n}{n-1}$ and $\omega \in \mathcal{K}(X, p, A, B)$. For all $u \in W^{1,2}(X)$, we have

$$\left(\frac{1}{V_{\omega}}\int_{X}|u-\overline{u}|^{2q}\omega^{n}\right)^{1/r}\leq C_{S}\frac{1}{V_{\omega}}\int_{X}|\nabla u|_{\omega}^{2}\omega^{n},$$

where $\overline{u} = \frac{1}{V_{\omega}} \int_{X} u \omega^{n}$ and $C_{S} = C_{S}(n, p, q, A, B) > 0$.

- Set $\mathcal{G}_{\mathsf{x}}^{\omega} = \mathcal{G}_{\mathsf{x}}^{\omega} \mathcal{C}_0 1$. We show later $\frac{1}{V_{\omega}} \int_{X} \frac{d\mathcal{G}_{\mathsf{x}}^{\omega} \wedge d^c \mathcal{G}_{\mathsf{x}}^{\omega} \wedge \omega^{n-1}}{(-\mathcal{G}_{\mathsf{x}}^{\omega})^{1+\beta}} \leq \frac{1}{\beta}$.
- Green's formula and Hölder inequality yield

$$|u(x) - \bar{u}| \leq \frac{1}{\beta^{1/2}} \left(\frac{1}{V_{\omega}} \int_{X} (-\mathcal{G}_{x}^{\omega})^{1+\beta} |\nabla u|_{\omega}^{2} \omega^{n} \right)^{1/2}.$$

Conclude by Minkowski's inequality+main estimate for gradient.

Condition on the cohomology class

- The first condition $\int_X \omega \wedge \omega_X^{n-1} \leq A$ is cohomological.
- It is equivalent to the fact that $\{\omega\} \in B(R_A) \subset H^{1,1}(X,\mathbb{R})$.
- By $\partial \overline{\partial}$ -lemma $\omega = \theta + dd^c \varphi_\omega$ with $-C_A \omega_X \le \theta \le C_A \omega_X$.
- Volume $V_{\omega} = \int_X \omega^n = \{\omega\}^n$ can collapse but no blowup $V_{\omega} \leq C_A^n$.

Example

- Assume $X = \mathbb{P}^1 \times \mathbb{P}^1$ is the product of two Riemann spheres, endowed with the Kähler form $\omega_{\lambda}(x,y) = \lambda \omega_{\mathbb{P}^1}(x) + \lambda^{-1}\omega_{\mathbb{P}^1}(y)$, where $\lambda > 0$.
- Note $\omega_{\lambda}^2 = 2\omega_{\mathbb{P}^1}(x) \wedge \omega_{\mathbb{P}^1}(y) = 2\omega_X^2$, hence $f_{\lambda} \equiv 2$, 2nd condition OK.
- Moreover volumes $V_{\omega_{\lambda}} = \int_{X} \omega_{\lambda}^{2} = \int_{X} 2\omega_{\mathbb{P}^{1}}(x) \wedge \omega_{\mathbb{P}^{1}}(y) = 2$ are constant, while $\operatorname{diam}(X, \omega_{\lambda}) \sim \lambda \to \infty$ as $\lambda \to \infty$.

Optimal condition on the density

- Similar results by [GPPS24] when $\int_X f_\omega(\log[7+f_\omega])^p \omega_X^n \leq B$, p > n;
- [G-Guenancia-Zeriahi 23] extend these to the quasi-optimal condition

$$(*)_p \int_X f_\omega(\log[7+f_\omega])^n(\log\log[7+f_\omega])^p\omega_X^n \leq B, \text{ with } p > 2n.$$

• Compare [Kolodziej 98]: $(*)_p \Longrightarrow \operatorname{Osc}_X(\varphi_\omega) \leq M_B$ if p > n.

Example

- Consider $\omega = dd^c \chi \circ L$, χ convex increasing, $L(z) = \log |z|$ in \mathbb{C}^n .
- Then $\omega^n = f_\omega dV_{eucl}$ with $f_\omega \sim \frac{\chi'' \circ L(\chi' \circ L)^{n-1}}{|z|^{2n}}$.
- For $\chi(t) = (\log(-t))^{-1}$ we obtain $\operatorname{diam}(\mathbb{B}^n, \omega) = +\infty$,

Optimal condition on the density

- Similar results by [GPPS24] when $\int_X f_\omega(\log[7+f_\omega])^p \omega_X^n \leq B$, p > n;
- [G-Guenancia-Zeriahi 23] extend these to the quasi-optimal condition

$$(*)_p \int_X f_\omega(\log[7+f_\omega])^n(\log\log[7+f_\omega])^p\omega_X^n \leq B, \text{ with } p > 2n.$$

• Compare [Kolodziej 98]: $(*)_p \Longrightarrow \operatorname{Osc}_X(\varphi_\omega) \leq M_B$ if p > n.

Example

- Consider $\omega = dd^c \chi \circ L$, χ convex increasing, $L(z) = \log |z|$ in \mathbb{C}^n .
- Then $\omega^n = f_\omega dV_{eucl}$ with $f_\omega \sim \frac{\chi'' \circ L(\chi' \circ L)^{n-1}}{|z|^{2n}}$.
- For $\chi(t) = (\log(-t))^{-1}$ we obtain $\operatorname{diam}(\mathbb{B}^n, \omega) = +\infty$, while

$$(*)_p$$
 satisfied by $f_\omega \iff p < 2n-1$.

Quasi-plurisubharmonic projection

Definition

- A function $\varphi: X \to \mathbb{R} \cup \{-\infty\}$ is quasi-plurisubharmonic if it is locally the sum of a plurisubharmonic and a smooth function.
- It is called ω -plurisubharmonic if $\omega + dd^c \varphi \ge 0$.
- $PSH(X, \omega)$ denotes the set of all ω -plurisubharmonic functions.
- Key tool: a priori estimates for solutions to cplx MA equations.
- Lower bound: if v is ω -sh then $\varphi = P_{\omega}(v) \leq v$ where

$$P_{\omega}(v) := \sup\{u \in PSH(X, \omega) \mid u \leq v\} \in PSH(X, \omega)$$

satisfies a complex Monge-Ampère equation associated to $\Delta_{\omega} v$.

• We actually use a twisted version of this rough idea.

Twisted complex Monge-Ampère equations

Proposition (G-Tô 24)

Let v (resp. φ) be a bounded ω -sh (resp. ω -psh) function such that

$$\left(\omega+dd^{c}v\right)\wedge\omega^{n-1}=e^{tv}g\omega^{n}\quad\text{and}\quad\left(\omega+dd^{c}\varphi\right)^{n}\geq e^{nt\varphi}g^{n}\omega^{n},$$

where t > 0, p > n and $0 \le g \in L^p(\omega^n)$. Then $\varphi \le v$.

- Definition : u is a ω -sh subsolution if $(\omega + dd^c u) \wedge \omega^{n-1} \geq e^{tu} g \omega^n$.
- Max pple+balayage: v is the envelope of bounded ω -sh subsolutions.
- The AM-GM inequality ensures that $(\omega + dd^c \varphi) \wedge \omega^{n-1} \geq e^{t\varphi} g \omega^n$.
- This allows one to conclude since $PSH(X,\omega) \subset SH(X,\omega)$. \square
- Application to follow: if p > n then v is uniformly bounded below.

Exponential integrability of ω -psh functions

Theorem

Fix A, B > 0 and p > 1. There exists $\alpha = \alpha(n, p, A, B) > 0$ such that for all $\omega \in \mathcal{K}(X, p, A, B)$ and $\varphi \in PSH(X, \omega)$ with $\sup_X \varphi = 0$,

$$\int_X \exp(-\alpha\varphi)\omega_X^n \le C,$$

where $C = C(\alpha, n, p, A, B) > 0$ is independent of ω, φ .

- [Skoda 72]: establishes exponential integrability of psh functions.
- [Tian 87]: uses α -invariant to study \exists of K-E metrics (ω fixed).
- [Demailly-Kollar 01]: relate α -invariants and log can thresholds.
- [Zeriahi 01]: very general uniform versions of Skoda's result.
- Thm follows from [Z 01], $\omega = \theta + dd^c \varphi$ and $\varphi P_{\theta}(0)$ bounded.

Uniform a priori estimates for MA potentials

Theorem (Kolodziej 98 . . . Di Nezza-G-Guenancia 23)

Fix p>1, A,B>0 and $\omega\in\mathcal{K}(X,p,A,B)$. Assume that there exists $\varphi\in PSH(X,\omega)\cap L^\infty(X)$, p'>1 and B'>0 s.t. $\int_X g^{p'}\omega_X^n\leq B'$ and

$$\frac{1}{V_{\omega}}(\omega + dd^{c}\varphi)^{n} = g\omega_{X}^{n}.$$

Then $\operatorname{Osc}_X(\varphi) \leq C = C(n, p, p', A, B, B')$.

- This is the key a priori estimate for everything that follows.
- Goes back to [Yau78], [Kolodziej 98], [Eyssidieux-G-Z 09], [EGZ08], [Demailly-Pali 10]. More recently [G-Lu 21], [Guo-Phong-Tong 23].
- Follows from previous thm + general L^{∞} a priori estimates [DNGG23].

Commercial break : Annales Faculté des Sciences de Toulouse

- Published since 1887 (Berkeley Univ. founded in 1868)
- Only Mathematics since 1979
- Green open access since 2017
- Some modest first contributors : Hilbert, Lyapunov, Poincaré,...
- Recent contributors : Brendle, DeLellis, Di Nezza, Sun, Tosatti,...
- Welcome good article of any size, average treatment=4 months

 → 382-page work by Guy David in 2022.
- High level editorial board and Editor-in-chief!

Lemma A

Fix p>1, A,B>0 and $\omega\in\mathcal{K}(X,p,A,B)$. Fix a>0 and let v be a quasi-sh function on X such that $\Delta_{\omega}v\geq -a$ and $\int_Xv\omega^n=0$. Then

$$\sup_{X} v \leq C_1 \left[a + \frac{1}{V_{\omega}} \int_{X} |v| \omega^n \right],$$

where $C_1 = C_1(n, p, A, B) > 0$ is independent of v and ω .

- Statement and assumptions are homogeneous of degree 1, wlog a = n.
- Set $v_+ = \max(v, 0)$ and consider $\varphi \in PSH(X, \omega)$ bounded solution of $(\omega + dd^c \varphi)^n = \frac{1+v_+}{1+M}\omega^n$,

with
$$\sup_X \varphi = -1$$
, where $M = \int_X v_+ \frac{\omega^n}{V_-} = \frac{1}{2} \int_X |v| \frac{\omega^n}{V_-}$.

• GOAL: φ bounded below and $v_+ \lesssim (-\varphi)^{\alpha}$, with $\alpha = \frac{n}{n+1}$.

- Set $H = 1 + v_+ \varepsilon(-\varphi)^{\alpha}$, where $\alpha = \frac{n}{n+1}$ and $\frac{\varepsilon^{n+1}\alpha^n}{(1+\alpha\varepsilon)^n} = 1 + M$.
- As $-dd^c(-\varphi)^{\alpha} = \alpha(1-\alpha)(-\varphi)^{\alpha-2}d\varphi \wedge d^c\varphi + \alpha(-\varphi)^{\alpha-1}dd^c\varphi$, get

$$\Delta_{\omega}(-\varepsilon(-\varphi)^{\alpha}) \geq \alpha \varepsilon(-\varphi)^{\alpha-1} \Delta_{\omega} \varphi \overset{\mathsf{AM-GM}}{\geq} \mathsf{n} \alpha \varepsilon(-\varphi)^{\alpha-1} \left[\left(\frac{1+\mathsf{v}_{+}}{1+\mathsf{M}} \right)^{\frac{1}{n}} - 1 \right].$$

- Therefore $\Delta_{\omega} H \ge -n + n\alpha \varepsilon (-\varphi)^{\alpha-1} \left[\left(\frac{1+\nu_+}{1+M} \right)^{\frac{1}{n}} 1 \right]$.
- Using $(-\varphi)^{1-\alpha} \geq 1$, we get at x_0 such that $H(x_0) = H_{max}$,

$$(1+\alpha\varepsilon)(-\varphi)^{1-\alpha} \geq (-\varphi)^{1-\alpha} + \alpha\varepsilon \geq \alpha\varepsilon \left(\frac{1+\nu_+}{1+M}\right)^{\frac{1}{n}}.$$

• Thus $\varepsilon(-\varphi)^{\alpha}=\varepsilon(-\varphi)^{n(1-\alpha)}\geq \frac{\alpha^n\varepsilon^{n+1}}{(1+\alpha\varepsilon)^n}\frac{1+\nu_+}{1+M}$

- Set $H = 1 + v_+ \varepsilon (-\varphi)^{\alpha}$, where $\alpha = \frac{n}{n+1}$ and $\frac{\varepsilon^{n+1}\alpha^n}{(1+\alpha\varepsilon)^n} = 1 + M$.
- As $-dd^c(-\varphi)^{\alpha} = \alpha(1-\alpha)(-\varphi)^{\alpha-2}d\varphi \wedge d^c\varphi + \alpha(-\varphi)^{\alpha-1}dd^c\varphi$, get

$$\Delta_{\omega}(-\varepsilon(-\varphi)^{\alpha}) \geq \alpha \varepsilon(-\varphi)^{\alpha-1} \Delta_{\omega} \varphi \stackrel{\mathsf{AM-GM}}{\geq} \mathsf{n} \alpha \varepsilon(-\varphi)^{\alpha-1} \left[\left(\frac{1+\mathsf{v}_{+}}{1+\mathsf{M}} \right)^{\frac{1}{n}} - 1 \right].$$

- Therefore $\Delta_{\omega} H \ge -n + n\alpha \varepsilon (-\varphi)^{\alpha-1} \left[\left(\frac{1+v_+}{1+M} \right)^{\frac{1}{n}} 1 \right]$.
- Using $(-\varphi)^{1-\alpha} \geq 1$, we get at x_0 such that $H(x_0) = H_{max}$,

$$(1+\alpha\varepsilon)(-\varphi)^{1-\alpha} \geq (-\varphi)^{1-\alpha} + \alpha\varepsilon \geq \alpha\varepsilon \left(\frac{1+\nu_+}{1+M}\right)^{\frac{1}{n}}.$$

• Thus $\varepsilon(-\varphi)^{\alpha} = \varepsilon(-\varphi)^{n(1-\alpha)} \ge \frac{\alpha^n \varepsilon^{n+1}}{(1+\alpha\varepsilon)^n} \frac{1+\nu_+}{1+M} = 1+\nu_+$, i.e. $H \le 0$.

- Note that $\varepsilon \leq c_n(1+M)$ since $\frac{\varepsilon^{n+1}\alpha^n}{(1+\alpha\varepsilon)^n}=1+M$.
- Thus $\frac{(\omega+dd^c\varphi)^n}{V_\omega}=FdV_X$ with $F=\frac{1+v_+}{1+M}f$

- Note that $\varepsilon \leq c_n(1+M)$ since $\frac{\varepsilon^{n+1}\alpha^n}{(1+\alpha\varepsilon)^n}=1+M$.
- Thus $\frac{(\omega+dd^c\varphi)^n}{V_\omega}=FdV_X$ with $F=rac{1+v_+}{1+M}f\leq rac{arepsilon(-\varphi)^\alpha}{1+M}f$

- Note that $\varepsilon \leq c_n(1+M)$ since $\frac{\varepsilon^{n+1}\alpha^n}{(1+\alpha\varepsilon)^n}=1+M$.
- Thus $\frac{(\omega + dd^c\varphi)^n}{V_\omega} = FdV_X$ with $F = \frac{1+v_+}{1+M}f \leq \frac{\varepsilon(-\varphi)^\alpha}{1+M}f \leq c_n(-\varphi)^\alpha f$.
- Since $\int_X f^p dV_X \le A$, can fix 1 < r < p and use Hölder to obtain

$$\int_X F^r dV_X \leq c_n^r \int_X (-\varphi)^{r\alpha} f^r dV_X \leq \left(\int_X f^p dV_X \right)^{\frac{r}{p}} \left(\int_X (-\varphi)^{\frac{rp\alpha}{p-r}} dV_X \right)^{\frac{p-r}{p}}.$$

- Integrals uniformly bounded by assumption+Skoda-Zeriahi's result.
- Thus φ bounded and $\sup_X v \leq \sup_X v_+ \leq \varepsilon (-\varphi)^{\alpha} \leq c_n [1+M]C_0$.
- Conclusion follows since $M = \frac{1}{2V_{\omega}} \int_X |v| \omega^n$. \square

Functions with bounded Laplacian 1

Lemma B

Fix p>1, A,B>0 and $\omega\in\mathcal{K}(X,p,A,B)$. Let u be a continuous function such that $\int_X u\omega^n=0$ and $||\Delta_\omega u||_{L^\infty(X)}\leq 1$. Then

$$||u||_{L^{\infty}(X)} \leq C_2,$$

where $C_2 = C_2(n, p, A, B) > 0$ is independent of u and ω .

- By Lemma A suffices to show $M = \frac{1}{V_{\omega}} \int_{X} |u| \omega^{n} \leq C_{2}$. Wlog $M \geq 1$.
- Claim: $C_2 = 8C_0(1 + 4n^2C_1^2)^2$ ok, C_0 from Thm MA with $g = 2^n$.
- Pbm homogeneous of deg 1, wlog $||\Delta_{\omega}u||_{L^{\infty}(X)} \leq \delta = \frac{1}{4(1+4n^2C_1^2)^2}$.
 - \hookrightarrow we are going to show that $M \leq 2C_0$.

Functions with bounded Laplacian 2

- Set $H = n\Delta_{\omega}u$, $\varepsilon = 1/M$ and $t = \sqrt{\delta} = \frac{1}{2(1+4n^2C_1^2)}$.
- Let $\psi \in PSH(X,\omega) \cap L^{\infty}(X)$ be the unique bounded ω -psh solution of

$$(\omega + dd^c\psi)^n = e^{nt\varepsilon(\psi - u)}(1 + H)^n\omega^n.$$

- AM-GM inequality yields $(\omega + dd^c \psi) \wedge \omega^{n-1} \geq e^{t\varepsilon(\psi-u)} (1+H)\omega^n$.
- [G-Tô 24] $\Rightarrow \psi \leq u$ since $(\omega + dd^c u) \wedge \omega^{n-1} = e^{t\varepsilon(u-u)}(1+H)\omega^n$.
- Now $\omega_{\psi}^n \leq 2^n \omega^n$ as $H \leq n\delta \leq 1$ hence [DNGG23] $\Rightarrow \operatorname{Osc}_X(\psi) \leq C_0$.
- Mass controls+normalization yield $\varepsilon \sup_X \psi \ge -\delta/t 4nC_1^2t = -\frac{1}{2}$.
- This yields $u \ge (\psi \sup_X \psi) + \sup_X \psi$

Functions with bounded Laplacian 2

- Set $H = n\Delta_{\omega}u$, $\varepsilon = 1/M$ and $t = \sqrt{\delta} = \frac{1}{2(1+4n^2C_1^2)}$.
- Let $\psi \in PSH(X,\omega) \cap L^{\infty}(X)$ be the unique bounded ω -psh solution of

$$(\omega + dd^c\psi)^n = e^{nt\varepsilon(\psi - u)}(1 + H)^n\omega^n.$$

- AM-GM inequality yields $(\omega + dd^c \psi) \wedge \omega^{n-1} \geq e^{t\varepsilon(\psi u)} (1 + H) \omega^n$.
- [G-Tô 24] $\Rightarrow \psi \leq u$ since $(\omega + dd^c u) \wedge \omega^{n-1} = e^{t\varepsilon(u-u)}(1+H)\omega^n$.
- Now $\omega_{\psi}^n \leq 2^n \omega^n$ as $H \leq n\delta \leq 1$ hence [DNGG23] $\Rightarrow \operatorname{Osc}_X(\psi) \leq C_0$.
- Mass controls+normalization yield $\varepsilon \sup_X \psi \ge -\delta/t 4nC_1^2t = -\frac{1}{2}$.
- This yields $u \ge (\psi \sup_X \psi) + \sup_X \psi \ge -C_0 \frac{M}{2}$.
- By symmetry $u \leq \frac{M}{2} + C_0$ hence $M = \int_X |u| \frac{\omega^n}{V_\omega} \leq \frac{M}{2} + C_0$. \square

Control of the supremum of G_x^{ω}

Corollary A

Fix p > 1, A, B > 0 and $\omega \in \mathcal{K}(X, p, A, B)$. Then for all $x \in X$,

$$\int_X |G_x^{\omega}| \frac{\omega^n}{V_{\omega}} \le C_0 \quad \text{and} \quad \sup_{y \in X} G_x^{\omega}(y) \le C_0 = C_0(n, p, A, B).$$

- Set $h = -\mathbf{1}_{\{G_x \le 0\}} + \int_{\{G_x \le 0\}} \frac{\omega^n}{V_\omega}$. Note $-1 \le h \le 1$ and $\int_X h\omega^n = 0$.
- For $\Delta_{\omega}v = h$ with $\int_X v\omega^n = 0$, Lemma B yields $||v||_{L^{\infty}(X)} \leq C$.
- Thus $C \ge v(x) = \frac{1}{V_{\omega}} \int_X v(\omega + dd^c G_x) \wedge \omega^{n-1}$ = $\frac{1}{V_{\omega}} \int_X G_x dd^c v \wedge \omega^{n-1} = n \int_{\{G_x \le 0\}} (-G_x) \frac{\omega^n}{V_{\omega}}.$
- Since $\int_X G_X \omega^n = 0$, we infer $\int_X |G_X| \frac{\omega^n}{V_\omega} = 2 \int_{\{G_X \leq 0\}} (-G_X) \frac{\omega^n}{V_\omega} \leq \frac{2C}{n}$.
- It therefore follows from Lemma A that $\sup_X G_X \leq C_0$. \square

4□ > 4□ > 4 = > 4 = > = 90

Control of the L^r -norm of G_x^{ω}

Corollary B

Fix p > 1, A, B > 0, $\omega \in \mathcal{K}(X, p, A, B)$ and $1 \le r < \frac{n}{n-1}$. For all $x \in X$, $\frac{1}{V_{\omega}} \int_{X} |G_{x}^{\omega}|^{r} \omega^{n} \le C_{1} = C_{1}(n, p, r, A, B).$

- Set $\mathcal{G}_{\mathsf{X}} = \mathcal{G}_{\mathsf{X}} \mathcal{C}_0 1 \leq -1$ and consider u the ω -sh solution of $\frac{1}{V_{\omega}}(\omega + dd^c u) \wedge \omega^{n-1} = \frac{(-\mathcal{G}_{\mathsf{X}})^{\beta}\omega^n}{\int_{\mathsf{X}}(-\mathcal{G}_{\mathsf{X}})^{\beta}\omega^n}, \text{ with } \int_{\mathsf{X}} u\omega^n = 0, \ 0 < \beta < \frac{1}{n}.$
- Since $1 \le -\mathcal{G}_X$ we have $\int_X (-\mathcal{G}_X)^{\beta} \frac{\omega^n}{V_{\omega}} \le \int_X (-\mathcal{G}_X) \frac{\omega^n}{V_{\omega}} = 1 + C_0$.
- We are going to show that $u \ge -C$ is uniformly bounded below. Thus

$$-C \leq u(x) = \int_X \mathcal{G}_x \frac{(\omega + dd^c u) \wedge \omega^{n-1}}{V_\omega} = -\frac{\int_X (-\mathcal{G}_x)^{1+\beta} \frac{\omega^n}{V_\omega}}{\int_X (-\mathcal{G}_x)^{\beta} \frac{\omega^n}{V_\omega}}.$$

• Therefore $\int_X (-\mathcal{G}_X)^{1+\beta} \frac{\omega^n}{V_{cl}} \leq C[1+C_0]$

4□ > 4□ > 4 = > 4 = > = 90

Control of the L^r -norm of G_x^{ω}

Corollary B

Fix p > 1, A, B > 0, $\omega \in \mathcal{K}(X, p, A, B)$ and $1 \le r < \frac{n}{n-1}$. For all $x \in X$, $\frac{1}{V_{\omega}} \int_{X} |G_{x}^{\omega}|^{r} \omega^{n} \le C_{1} = C_{1}(n, p, r, A, B).$

- Set $\mathcal{G}_X = \mathcal{G}_X \mathcal{C}_0 1 \le -1$ and consider u the ω -sh solution of $\frac{1}{V_\omega}(\omega + dd^c u) \wedge \omega^{n-1} = \frac{(-\mathcal{G}_X)^\beta \omega^n}{\int_X (-\mathcal{G}_X)^\beta \omega^n}, \text{ with } \int_X u \omega^n = 0, \ 0 < \beta < \frac{1}{n}.$
- Since $1 \le -\mathcal{G}_X$ we have $\int_X (-\mathcal{G}_X)^{\beta} \frac{\omega^n}{V_{\omega}} \le \int_X (-\mathcal{G}_X) \frac{\omega^n}{V_{\omega}} = 1 + C_0$.
- We are going to show that $u \ge -C$ is uniformly bounded below. Thus

$$-C \leq u(x) = \int_{X} \mathcal{G}_{x} \frac{(\omega + dd^{c}u) \wedge \omega^{n-1}}{V_{\omega}} = -\frac{\int_{X} (-\mathcal{G}_{x})^{1+\beta} \frac{\omega^{n}}{V_{\omega}}}{\int_{X} (-\mathcal{G}_{x})^{\beta} \frac{\omega^{n}}{V_{\omega}}}.$$

• Therefore $\int_X (-\mathcal{G}_{\scriptscriptstyle X})^{1+\beta} rac{\omega^n}{V_\omega} \leq C[1+C_0] \Longrightarrow \mathsf{OK}$ for $r < 1+rac{1}{n}$.

Control of the L^r -norm: bounding u from below

• Consider the solution $\varphi \in PSH(X, \omega) \cap L^{\infty}(X)$, $\sup_X \varphi = 0$, of

$$\frac{1}{V_{\omega}}(\omega + dd^{c}\varphi)^{n} = \frac{(-\mathcal{G}_{x})^{n\beta}\omega^{n}}{\int_{X}(-\mathcal{G}_{x})^{n\beta}\omega^{n}}.$$

- The density of the RHS is bounded from above by $(-\mathcal{G}_{\times})^{n\beta}f_{\omega}$.
- Hölder $\int_X (-\mathcal{G}_x)^{n\beta p'} f_\omega^{p'} dV_X \le \left(\int_X f_\omega^p dV_X\right)^{\frac{p'-1}{p-1}} \left(\int_X (-\mathcal{G}_x)^{n\beta p's'} \frac{\omega^n}{V_\omega}\right)^{\frac{1}{s'}} \le A'.$
- OK if we choose p'>1 very close to 1, and $s'=\frac{p-1}{p-p'}$ (close to 1) is the conjugate exponent of $s=\frac{p-1}{p'-1}$, so that $n\beta p's'<1+$ Corollary A.
- Theorem MA shows $\varphi \geq -M_0$ and AM-GM yields $u \geq \varphi/C' \geq -C$.
- Recursive argument L^r control OK for $r < 1 + \frac{1}{n} + \frac{1}{n^2} + \cdots = \frac{n}{n-1}$ \square .

The weighted gradient

• Although $\nabla G_{x}^{\omega} \notin L^{2}$, the following weighted version holds:

Lemma C

Fix
$$\beta > 0$$
. Then $\frac{1}{V_{\omega}} \int_{X} \frac{dG_{x}^{\omega} \wedge d^{c}G_{x}^{\omega} \wedge \omega^{n-1}}{(-G_{x}^{\omega} + C_{0} + 1)^{1+\beta}} \leq \frac{1}{\beta}$.

- Consider $u(y) = (-G_x^{\omega}(y) + C_0 + 1)^{-\beta}$, with u(x) = 0.
- Note that $1 \leq -G_x^{\omega} + C_0 + 1$ hence $0 \leq u \leq 1$.
- Since $du = \frac{\beta dG_x^{\omega}}{(-G_x^{\omega} + C_0 + 1)^{1+\beta}}$ and $0 = \frac{1}{V_{\omega}} \int_X u(\omega + dd^c G_x^{\omega}) \wedge \omega^{n-1}$,

we obtain
$$\frac{\beta}{V_{\omega}} \int_{X} \frac{dG_{x}^{\omega} \wedge d^{c}G_{x}^{\omega} \wedge \omega^{n-1}}{(-G_{x}^{\omega} + C_{0} + 1)^{\beta+1}} = \frac{1}{V_{\omega}} \int_{X} u \omega^{n} \leq 1.$$

Corollary C

Fix
$$p > 1$$
, $A, B > 0$, $\omega \in \mathcal{K}(X, p, A, B)$ and $0 < s < \frac{2n}{2n-1}$. For all $x \in X$,
$$\frac{1}{V_{\omega}} \int_{X} |\nabla G_{x}^{\omega}|^{s} \omega^{n} \leq C_{2} = C_{2}(n, p, s, A, B).$$

- Fix $s < \frac{2n}{2n-1}$, $0 < \beta$ very small and $r = \frac{s}{2-s}(1+\beta) < \frac{n}{n-1}$.
- Set $2\alpha = s(1+\beta)$ and $\mathcal{G}_x = \mathcal{G}_x \mathcal{C}_0 1$. Lemma C and Hölder yield

$$\int_{X} |\nabla G_{x}|^{s} \omega^{n} = \int_{X} \frac{|\nabla G_{x}|^{s}}{|G_{x}|^{\alpha}} |G_{x}|^{\alpha} \omega^{n}$$

Corollary C

Fix
$$p > 1$$
, $A, B > 0$, $\omega \in \mathcal{K}(X, p, A, B)$ and $0 < s < \frac{2n}{2n-1}$. For all $x \in X$,
$$\frac{1}{V_{\omega}} \int_{X} |\nabla G_{x}^{\omega}|^{s} \omega^{n} \leq C_{2} = C_{2}(n, p, s, A, B).$$

- Fix $s < \frac{2n}{2n-1}$, $0 < \beta$ very small and $r = \frac{s}{2-s}(1+\beta) < \frac{n}{n-1}$.
- Set $2\alpha = s(1+\beta)$ and $\mathcal{G}_x = \mathcal{G}_x \mathcal{C}_0 1$. Lemma C and Hölder yield

$$\int_{X} |\nabla G_{x}|^{s} \omega^{n} = \int_{X} \frac{|\nabla G_{x}|^{s}}{|G_{x}|^{\alpha}} |G_{x}|^{\alpha} \omega^{n}$$

$$\leq \left(\int_{X} \frac{|\nabla G_{x}|^{2}}{|G_{x}|^{\frac{2\alpha}{s}}} \omega^{n} \right)^{\frac{s}{2}} \left(\int_{X} |G_{x}|^{\frac{2\alpha}{2-s}} \omega^{n} \right)^{\frac{2-s}{2}}$$

Corollary C

Fix p > 1, A, B > 0, $\omega \in \mathcal{K}(X, p, A, B)$ and $0 < s < \frac{2n}{2n-1}$. For all $x \in X$, $\frac{1}{V_{\omega}} \int_{X} |\nabla G_{x}^{\omega}|^{s} \omega^{n} \leq C_{2} = C_{2}(n, p, s, A, B).$

- Fix $s < \frac{2n}{2n-1}$, $0 < \beta$ very small and $r = \frac{s}{2-s}(1+\beta) < \frac{n}{n-1}$.
- Set $2\alpha = s(1+\beta)$ and $\mathcal{G}_x = \mathcal{G}_x \mathcal{C}_0 1$. Lemma C and Hölder yield

$$\int_{X} |\nabla G_{x}|^{s} \omega^{n} = \int_{X} \frac{|\nabla G_{x}|^{s}}{|\mathcal{G}_{x}|^{\alpha}} |\mathcal{G}_{x}|^{\alpha} \omega^{n}$$

$$\leq \left(\int_{X} \frac{|\nabla G_{x}|^{2}}{|\mathcal{G}_{x}|^{\frac{2\alpha}{s}}} \omega^{n} \right)^{\frac{s}{2}} \left(\int_{X} |\mathcal{G}_{x}|^{\frac{2\alpha}{2-s}} \omega^{n} \right)^{\frac{2-s}{2}}$$

$$= \left(\int_{X} \frac{|\nabla G_{x}|^{2}}{|\mathcal{G}_{x}|^{1+\beta}} \omega^{n} \right)^{\frac{s}{2}} \left(\int_{X} |\mathcal{G}_{x}|^{r} \omega^{n} \right)^{\frac{2-s}{2}}$$

Corollary C

Fix p > 1, A, B > 0, $\omega \in \mathcal{K}(X, p, A, B)$ and $0 < s < \frac{2n}{2n-1}$. For all $x \in X$, $\frac{1}{V_{\omega}} \int_{X} |\nabla G_{x}^{\omega}|^{s} \omega^{n} \leq C_{2} = C_{2}(n, p, s, A, B).$

- Fix $s < \frac{2n}{2n-1}$, $0 < \beta$ very small and $r = \frac{s}{2-s}(1+\beta) < \frac{n}{n-1}$.
- Set $2\alpha = s(1+\beta)$ and $\mathcal{G}_x = \mathcal{G}_x \mathcal{C}_0 1$. Lemma C and Hölder yield

$$\int_{X} |\nabla G_{x}|^{s} \omega^{n} = \int_{X} \frac{|\nabla G_{x}|^{s}}{|\mathcal{G}_{x}|^{\alpha}} |\mathcal{G}_{x}|^{\alpha} \omega^{n}$$

$$\leq \left(\int_{X} \frac{|\nabla G_{x}|^{2}}{|\mathcal{G}_{x}|^{\frac{2\alpha}{s}}} \omega^{n} \right)^{\frac{s}{2}} \left(\int_{X} |\mathcal{G}_{x}|^{\frac{2\alpha}{2-s}} \omega^{n} \right)^{\frac{2-s}{2}}$$

$$= \left(\int_{X} \frac{|\nabla G_{x}|^{2}}{|\mathcal{G}_{x}|^{1+\beta}} \omega^{n} \right)^{\frac{s}{2}} \left(\int_{X} |\mathcal{G}_{x}|^{r} \omega^{n} \right)^{\frac{2-s}{2}} \leq C_{2} V_{\omega}. \quad \square$$

Further results

Theorem (G-Tô 24)

The estimates do not depend on the choice of complex structure.

Theorem (Guo-Phong-Song-Sturm 24 / Vu 24)

Most estimates are valid for singular varieties.

Theorem (Li 21)

- Fix $A \subset H^{1,1}(X,\mathbb{R})$ a compact subset of the Kähler cone.
- Fix B>0 and p>1. Set $f_{\omega}=V_{\omega}^{-1}\omega^{n}/\omega_{X}^{n}$ and consider

$$\mathcal{K}(p,\mathcal{A},B):=\left\{\omega \; ext{K\"{a}hler form s.t. } \{\omega\}\in\mathcal{A} \; ext{and} \; \int_X f_\omega^p \omega_X^n \leq B
ight\}.$$

There exists $\alpha, C > 0$ such that $d_{\omega} \leq Cd_{\omega_X}^{\alpha}$ for all $\omega \in \mathcal{K}(p, A, B)$.

Some references

- Yang Li,
 On collapsing Calabi-Yau fibrations.
 J. Differential Geom. 117 (2021), no. 3, 451-483.
- E.Di Nezza, V.Guedj, H.Guenancia,
 Families of singular Kähler-Einstein metrics.
 J. Eur. Math. Soc. 25 (2023), no. 7, pp. 2697-2762.
- B.Guo, D.H.Phong, J.Sturm,
 Green's functions and complex Monge-Ampère equations.
 J. Differential Geom. 127 (2024), no. 3, 1083-1119.
- B. Guo, D.H. Phong, J.Song, J.Sturm,
 Diameter estimates in Kähler geometry.
 Comm. Pure Appl. Math. 77 (2024), no. 8, 3520-3556.

Some references 2

- V.Guedj, H.Guenancia, A.Zeriahi, Diameter of Kähler currents.
 Preprint arXiv:2310.20482
- B. Guo, D.H. Phong, J.Song, J.Sturm, Sobolev inequalities on Kähler spaces. Preprint arXiv:2311.00221
- V.Vu, Uniform diameter estimates for Kaehler metrics. Preprint arXiv:2405.14680
- V.Guedj, T.D.Tô,
 Kähler families of Green's functions.
 Preprint arXiv:2405.17232

