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Uniform estimates for Kähler Green’s functions

Quasi-subharmonic functions

Let (X , ω) be a compact Kähler manifold of complex dimension n.

Definition

A function v : X → R∪ {−∞} is quasi-subharmonic if it is locally the
sum of a subharmonic and a smooth function.

It is called ω-subharmonic if (ω + ddcv) ∧ ωn−1 ≥ 0. Equivalently

∆ωv := n
ddcv ∧ ωn−1

ωn
≥ −n.

We let SH(X , ω) denote the set of all ω-subharmonic functions.

Goal: study properties of the map ω 7−→ SH(X , ω).

Warning: (ω, v) 7→ (ω+ ddcv)∧ωn−1 affine in v but non-linear in ω !
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Uniform estimates for Kähler Green’s functions

Kähler Green’s function

Definition (Green’s function)

Given ω Kähler form we consider Gω ∈ C∞(X × X \Diag,R) s.t.

Gω(x , y) = Gω(y , x) for all (x , y) ∈ X × Y ;

Gω(x , y) ∼ − 1
[dω(x ,y)]2n−2 if n ≥ 2;

y 7→ Gω
x (y) = Gω(x , y) ∈ SH(X , ω) with

1

Vω
(ω + ddcGω

x ) ∧ ωn−1 = δx ⇐⇒ ∆ωG
ω
x = n {Vωδx − ωn} ,

where Vω =
∫
X ω

n and δx=Dirac mass at point x ;

y 7→ Gω
x (y) is normalized by

∫
X Gω

x (y)ωn(y) = 0.

Classical: there exists a unique solution, the Green’s function.

Problem: study how ω 7→ Gω(x , y) varies, uniformly wrt (x , y).
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Uniform estimates for Kähler Green’s functions

Key estimates

Fix ωX a reference Kähler form normalized by
∫
X ω

n
X = 1.

Fix A,B > 0 and p > 1. Set fω = V−1
ω ωn/ωn

X and consider

K(X , p,A,B) :=

{
ω Kähler s.t.

∫
X

ω ∧ ωn−1
X ≤ A and

∫
X

f pωω
n
X ≤ B

}
.

Theorem (Guo-Phong-Song-Sturm 24 / G-Tô 24 / Vu 24)

Fix r < n
n−1 and s < 2n

2n−1 . Then for all x ∈ X and ω ∈ K(X , p,A,B),

supy∈X Gω
x ≤ C0 = C0(n, p,A,B);∫

X |G
ω
x |r ω

n

Vω
≤ C1 = C1(n, p, r ,A,B);∫

X |∇G
ω
x |s ω

n

Vω
≤ C2 = C2(n, p, s,A,B).

Goal of Lecture 2: proof of these uniform estimates.
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Uniform estimates for Kähler Green’s functions

Green’s formula for ω-subharmonic functions

Assume (ω + ddcv) ∧ ωn−1 ≥ 0 with
∫
X vωn = 0. Then

v(x) =

∫
X
v

(ω + ddcGω
x ) ∧ ωn−1

Vω

=

∫
X
v
ddcGω

x ∧ ωn−1

Vω

=

∫
X
Gω
x

ddcv ∧ ωn−1

Vω
=

∫
X
Gω
x

(ω + ddcv) ∧ ωn−1

Vω
.

Thus v(x) ≤ supX Gω
x ≤ C0.

By Hölder inequality and symmetry Gω
x (y) = Gω

y (x), we also obtain∫
X
|v |r ω

n

Vω
≤ C1 and

∫
X
|∇v |s ω

n

Vω
≤ C2.

Thus proving key estimates for Gω
x or arbitrary v is the same.
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Applications

Application 1: Diameter bounds

Corollary

Under previous assumptions diam(X , ω) ≤ D = 2C2(n, p, 1,A,B).

Fix (a, b) ∈ X 2 such that dω(a, b) = diam(X , ω).

The function ρ : x ∈ X 7→ dω(a, x) ∈ R+ is 1-Lipschitz with ρ(a) = 0.

Thus 0 = Vωρ(a) =
∫
X ρ(ω + ddcGω

a ) ∧ ωn−1 yields, by Stokes,∫
X
ρωn =

∫
X
dρ ∧ dcGω

a ∧ ωn−1

≤
∫
X
|∇Gω

a |ωωn ≤ C2Vω.

Similarly Vωρ(b) =
∫
X ρω

n +
∫
X ρdd

cGω
b ∧ ωn−1 hence

diam(X , ω) = ρ(b) ≤
∫
X
|∇Gω

a |ω
ωn

Vω
+

∫
X
|∇Gω

b |ω
ωn

Vω
≤ 2C2. �
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Applications

Application 2: Non collapsing

Corollary

Under previous assumptions Volω(Bω(x ,r))
Vω

≥ cδr
2n+δ for 0 < r < D, x ∈ X .

Fix 0 ≤ χ ≤ 1 with χ ≡ 1 on Bω(x , r/2) and χ ≡ 0 off Bω(x , r).

As |∇χ|ω ≤ 6
r the function ρχ is 7-Lipschitz, where ρ(y) = dω(x , y).

Fix 0 < s < 2n
2n−1 , s∗ =conj exp.

By Green’s formula at y /∈ Bω(x , r)∫
ρχωn =

∫
d(ρχ) ∧ dcGω

y ∧ ωn−1 ≤ C2(s)V
1
s
ω Volω(Bω(x , r))

1
s∗ .

Applying now Green’s formula at z ∈ ∂Bω(x , r/2) we obtain

r

2
=

∫
ρχ

ωn

Vω
−
∫

d(ρχ) ∧ dcGω
z ∧

ωn−1

Vω
≤ 2C2V

−1+ 1
s

ω Volω(Bω(x , r))
1
s∗ .

The conclusion follows since s∗ = 2n + δ ∈ (2n,+∞). �
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Applications

Application 3: Uniform Sobolev inequalities

Theorem

Fix 1 < q < 2n
n−1 and ω ∈ K(X , p,A,B). For all u ∈W 1,2(X ), we have(

1

Vω

∫
X
|u − u|2qωn

)1/r

≤ CS
1

Vω

∫
X
|∇u|2ωωn,

where u = 1
Vω

∫
X uωn and CS = CS(n, p, q,A,B) > 0.

Set Gωx = Gω
x − C0 − 1. We show later 1

Vω

∫
X

dGωx ∧dcGωx ∧ωn−1

(−Gωx )1+β ≤ 1
β .

Green’s formula and Hölder inequality yield

|u(x)− ū| ≤ 1
β1/2

(
1
Vω

∫
X (−Gωx )1+β|∇u|2ωωn

)1/2
.

Conclude by Minkowski’s inequality+main estimate for gradient. �
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Assumptions

Condition on the cohomology class

The first condition
∫
X ω ∧ ω

n−1
X ≤ A is cohomological.

It is equivalent to the fact that {ω} ∈ B(RA) ⊂ H1,1(X ,R).

By ∂∂-lemma ω = θ + ddcϕω with −CAωX ≤ θ ≤ CAωX .

Volume Vω =
∫
X ω

n = {ω}n can collapse but no blowup Vω ≤ Cn
A.

Example

Assume X = P1×P1 is the product of two Riemann spheres, endowed
with the Kähler form ωλ(x , y) = λωP1(x) + λ−1ωP1(y), where λ > 0.

Note ω2
λ = 2ωP1(x)∧ ωP1(y) = 2ω2

X , hence fλ ≡ 2, 2nd condition OK.

Moreover volumes Vωλ =
∫
X ω

2
λ =

∫
X 2ωP1(x) ∧ ωP1(y) = 2 are

constant, while diam(X , ωλ) ∼ λ→∞ as λ→∞.
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Assumptions

Optimal condition on the density

Similar results by [GPPS24] when
∫
X fω(log[7 + fω])pωn

X ≤ B, p > n;

[G-Guenancia-Zeriahi 23] extend these to the quasi-optimal condition

(∗)p
∫
X
fω(log[7 + fω])n(log log[7 + fω])pωn

X ≤ B, with p > 2n.

Compare [Kolodziej 98]: (∗)p =⇒ OscX (ϕω) ≤ MB if p > n.

Example

Consider ω = ddcχ ◦ L, χ convex increasing, L(z) = log |z | in Cn.

Then ωn = fωdVeucl with fω ∼ χ′′◦L (χ′◦L)n−1

|z|2n .

For χ(t) = (log(−t))−1 we obtain diam(Bn, ω) = +∞,

while

(∗)p satisfied by fω ⇐⇒ p < 2n − 1.
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Main tools

Quasi-plurisubharmonic projection

Definition

A function ϕ : X → R ∪ {−∞} is quasi-plurisubharmonic if it is
locally the sum of a plurisubharmonic and a smooth function.

It is called ω-plurisubharmonic if ω + ddcϕ ≥ 0.

PSH(X , ω) denotes the set of all ω-plurisubharmonic functions.

Key tool: a priori estimates for solutions to cplx MA equations.

Lower bound: if v is ω-sh then ϕ = Pω(v) ≤ v where

Pω(v) := sup{u ∈ PSH(X , ω) u ≤ v} ∈ PSH(X , ω)

satisfies a complex Monge-Ampère equation associated to ∆ωv .

We actually use a twisted version of this rough idea.
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Main tools

Twisted complex Monge-Ampère equations

Proposition (G-Tô 24)

Let v (resp. ϕ) be a bounded ω-sh (resp. ω-psh) function such that

(ω + ddcv) ∧ ωn−1 = etvgωn and (ω + ddcϕ)n ≥ entϕgnωn,

where t > 0, p > n and 0 ≤ g ∈ Lp(ωn). Then ϕ ≤ v .

Definition : u is a ω-sh subsolution if (ω + ddcu) ∧ ωn−1 ≥ etugωn.

Max pple+balayage: v is the envelope of bounded ω-sh subsolutions.

The AM-GM inequality ensures that (ω + ddcϕ) ∧ ωn−1 ≥ etϕgωn.

This allows one to conclude since PSH(X , ω) ⊂ SH(X , ω). �

Application to follow: if p > n then v is uniformly bounded below.
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Main tools

Exponential integrability of ω-psh functions

Theorem

Fix A,B > 0 and p > 1. There exists α = α(n, p,A,B) > 0 such that for
all ω ∈ K(X , p,A,B) and ϕ ∈ PSH(X , ω) with supX ϕ = 0,∫

X
exp(−αϕ)ωn

X ≤ C ,

where C = C (α, n, p,A,B) > 0 is independent of ω, ϕ.

[Skoda 72]: establishes exponential integrability of psh functions.

[Tian 87]: uses α-invariant to study ∃ of K-E metrics (ω fixed).

[Demailly-Kollar 01]: relate α-invariants and log can thresholds.

[Zeriahi 01]: very general uniform versions of Skoda’s result.

Thm follows from [Z 01], ω = θ + ddcϕ and ϕ− Pθ(0) bounded.
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Main tools

Uniform a priori estimates for MA potentials

Theorem (Kolodziej 98 . . . Di Nezza-G-Guenancia 23)

Fix p > 1, A,B > 0 and ω ∈ K(X , p,A,B). Assume that there exists
ϕ ∈ PSH(X , ω) ∩ L∞(X ), p′ > 1 and B ′ > 0 s.t.

∫
X gp′ωn

X ≤ B ′ and

1

Vω
(ω + ddcϕ)n = gωn

X .

Then OscX (ϕ) ≤ C = C (n, p, p′,A,B,B ′).

This is the key a priori estimate for everything that follows.

Goes back to [Yau78], [Kolodziej 98], [Eyssidieux-G-Z 09], [EGZ08],
[Demailly-Pali 10]. More recently [G-Lu 21], [Guo-Phong-Tong 23].

Follows from previous thm + general L∞ a priori estimates [DNGG23].
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Break

Commercial break : Annales Faculté des Sciences de Toulouse

Published since 1887 (Berkeley Univ. founded in 1868)

Only Mathematics since 1979

Green open access since 2017

Some modest first contributors : Hilbert, Lyapunov, Poincaré,...

Recent contributors : Brendle, DeLellis, Di Nezza, Sun, Tosatti,...

Welcome good article of any size, average treatment=4 months

↪→ 382-page work by Guy David in 2022.

High level editorial board and Editor-in-chief !

Vincent Guedj (IMT) Kähler Green’s functions September 3, 2024 15 / 28



Bounding ω-sh functions from above

Bounding ω-sh functions from above 1

Lemma A

Fix p > 1, A,B > 0 and ω ∈ K(X , p,A,B). Fix a > 0 and let v be a
quasi-sh function on X such that ∆ωv ≥ −a and

∫
X vωn = 0. Then

sup
X

v ≤ C1

[
a +

1

Vω

∫
X
|v |ωn

]
,

where C1 = C1(n, p,A,B) > 0 is independent of v and ω.

Statement and assumptions are homogeneous of degree 1, wlog a = n.

Set v+ = max(v , 0) and consider ϕ ∈ PSH(X , ω) bounded solution of

(ω + ddcϕ)n = 1+v+

1+M ω
n,

with supX ϕ = −1, where M =
∫
X v+

ωn

Vω
= 1

2

∫
X |v |

ωn

Vω
.

GOAL: ϕ bounded below and v+ . (−ϕ)α, with α = n
n+1 .
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Bounding ω-sh functions from above

Bounding ω-sh functions from above 2

Set H = 1 + v+ − ε(−ϕ)α, where α = n
n+1 and εn+1αn

(1+αε)n = 1 + M.

As −ddc(−ϕ)α = α(1− α)(−ϕ)α−2dϕ ∧ dcϕ+ α(−ϕ)α−1ddcϕ, get

∆ω(−ε(−ϕ)α)≥αε(−ϕ)α−1∆ωϕ
AM−GM
≥ nαε(−ϕ)α−1

[(
1 + v+

1 + M

) 1
n

− 1

]
.

Therefore ∆ωH≥−n + nαε(−ϕ)α−1

[(
1+v+

1+M

) 1
n − 1

]
.

Using (−ϕ)1−α ≥ 1, we get at x0 such that H(x0) = Hmax ,

(1 + αε)(−ϕ)1−α ≥ (−ϕ)1−α + αε≥αε
(

1+v+

1+M

) 1
n
.

Thus ε(−ϕ)α = ε(−ϕ)n(1−α) ≥ αnεn+1

(1+αε)n
1+v+

1+M

= 1 + v+, i.e. H ≤ 0.

Vincent Guedj (IMT) Kähler Green’s functions September 3, 2024 17 / 28



Bounding ω-sh functions from above

Bounding ω-sh functions from above 2

Set H = 1 + v+ − ε(−ϕ)α, where α = n
n+1 and εn+1αn

(1+αε)n = 1 + M.

As −ddc(−ϕ)α = α(1− α)(−ϕ)α−2dϕ ∧ dcϕ+ α(−ϕ)α−1ddcϕ, get

∆ω(−ε(−ϕ)α)≥αε(−ϕ)α−1∆ωϕ
AM−GM
≥ nαε(−ϕ)α−1

[(
1 + v+

1 + M

) 1
n

− 1

]
.

Therefore ∆ωH≥−n + nαε(−ϕ)α−1

[(
1+v+

1+M

) 1
n − 1

]
.

Using (−ϕ)1−α ≥ 1, we get at x0 such that H(x0) = Hmax ,

(1 + αε)(−ϕ)1−α ≥ (−ϕ)1−α + αε≥αε
(

1+v+

1+M

) 1
n
.

Thus ε(−ϕ)α = ε(−ϕ)n(1−α) ≥ αnεn+1

(1+αε)n
1+v+

1+M = 1 + v+, i.e. H ≤ 0.

Vincent Guedj (IMT) Kähler Green’s functions September 3, 2024 17 / 28



Bounding ω-sh functions from above

Bounding ω-sh functions from above 3

Note that ε ≤ cn(1 + M) since εn+1αn

(1+αε)n = 1 + M.

Thus (ω+ddcϕ)n

Vω
= FdVX with F = 1+v+

1+M f

≤ ε(−ϕ)α

1+M f≤ cn(−ϕ)αf .

Since
∫
X f pdVX ≤ A, can fix 1 < r < p and use Hölder to obtain

∫
X

F rdVX ≤ c rn

∫
X

(−ϕ)rαf rdVX ≤
(∫

X

f pdVX

) r
p
(∫

X

(−ϕ)
rpα
p−r dVX

) p−r
p

.

Integrals uniformly bounded by assumption+Skoda-Zeriahi’s result.

Thus ϕ bounded and supX v ≤ supX v+ ≤ ε(−ϕ)α ≤ cn[1 + M]C0.

Conclusion follows since M = 1
2Vω

∫
X |v |ω

n. �
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Bounding ω-sh functions from above

Functions with bounded Laplacian 1

Lemma B

Fix p > 1, A,B > 0 and ω ∈ K(X , p,A,B). Let u be a continuous
function such that

∫
X uωn = 0 and ||∆ωu||L∞(X ) ≤ 1. Then

||u||L∞(X ) ≤ C2,

where C2 = C2(n, p,A,B) > 0 is independent of u and ω.

By Lemma A suffices to show M = 1
Vω

∫
X |u|ω

n ≤ C2. Wlog M ≥ 1.

Claim : C2 = 8C0(1 + 4n2C 2
1 )2 ok , C0 from Thm MA with g = 2n.

Pbm homogeneous of deg 1, wlog ||∆ωu||L∞(X ) ≤ δ = 1
4(1+4n2C2

1 )2 .

↪→ we are going to show that M ≤ 2C0 .
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Bounding ω-sh functions from above

Functions with bounded Laplacian 2

Set H = n∆ωu, ε = 1/M and t =
√
δ = 1

2(1+4n2C2
1 )

.

Let ψ ∈ PSH(X , ω)∩L∞(X ) be the unique bounded ω-psh solution of

(ω + ddcψ)n = entε(ψ−u)(1 + H)nωn.

AM-GM inequality yields (ω + ddcψ) ∧ ωn−1 ≥ etε(ψ−u)(1 + H)ωn.

[G-Tô 24] ⇒ ψ ≤ u since (ω + ddcu) ∧ ωn−1 = etε(u−u)(1 + H)ωn.

Now ωn
ψ ≤ 2nωn as H ≤ nδ ≤ 1 hence [DNGG23] ⇒ OscX (ψ) ≤ C0.

Mass controls+normalization yield ε supX ψ ≥− δ/t − 4nC 2
1 t = −1

2 .

This yields u ≥ (ψ − supX ψ) + supX ψ

≥ −C0−M
2 .

By symmetry u ≤ M
2 + C0 hence M =

∫
X |u|

ωn

Vω
≤ M

2 + C0. �
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Controlling the Lr -norm and the gradient

Control of the supremum of Gω
x

Corollary A

Fix p > 1, A,B > 0 and ω ∈ K(X , p,A,B). Then for all x ∈ X ,∫
X
|Gω

x |
ωn

Vω
≤ C0 and sup

y∈X
Gω
x (y) ≤ C0 = C0(n, p,A,B).

Set h = −1{Gx≤0} +
∫
{Gx≤0}

ωn

Vω
. Note −1 ≤ h ≤ 1 and

∫
X hωn = 0.

For ∆ωv = h with
∫
X vωn = 0, Lemma B yields ||v ||L∞(X ) ≤ C .

Thus C ≥ v(x) = 1
Vω

∫
X v(ω + ddcGx) ∧ ωn−1

= 1
Vω

∫
X Gxdd

cv ∧ ωn−1= n
∫
{Gx≤0}(−Gx) ω

n

Vω
.

Since
∫
X Gxω

n = 0, we infer
∫
X |Gx | ω

n

Vω
= 2

∫
{Gx≤0}(−Gx) ω

n

Vω
≤ 2C

n .

It therefore follows from Lemma A that supX Gx ≤ C0. �
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Controlling the Lr -norm and the gradient

Control of the Lr -norm of Gω
x

Corollary B

Fix p > 1, A,B > 0, ω ∈ K(X , p,A,B) and 1 ≤ r < n
n−1 . For all x ∈ X ,

1
Vω

∫
X |G

ω
x |rωn ≤ C1 = C1(n, p, r ,A,B).

Set Gx = Gx − C0 − 1 ≤ −1 and consider u the ω-sh solution of
1
Vω

(ω + ddcu) ∧ ωn−1 = (−Gx )βωn∫
X (−Gx )βωn , with

∫
X uωn = 0, 0 < β < 1

n .

Since 1 ≤ −Gx we have
∫
X (−Gx)β ω

n

Vω
≤
∫
X (−Gx) ω

n

Vω
= 1 + C0.

We are going to show that u ≥ −C is uniformly bounded below. Thus

−C ≤ u(x) =

∫
X
Gx

(ω + ddcu) ∧ ωn−1

Vω
= −

∫
X (−Gx)1+β ωn

Vω∫
X (−Gx)β ω

n

Vω

.

Therefore
∫
X (−Gx)1+β ωn

Vω
≤ C [1 + C0]

=⇒ OK for r < 1 + 1
n .
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Controlling the Lr -norm and the gradient

Control of the Lr -norm: bounding u from below

Consider the solution ϕ ∈ PSH(X , ω) ∩ L∞(X ), supX ϕ = 0, of

1

Vω
(ω + ddcϕ)n =

(−Gx)nβωn∫
X (−Gx)nβωn

.

The density of the RHS is bounded from above by (−Gx)nβfω.

Hölder
∫
X

(−Gx)nβp
′
f p
′

ω dVX ≤
(∫

X
f pω dVX

) p′−1
p−1

(∫
X

(−Gx)nβp
′s′ ωn

Vω

) 1
s′ ≤ A′.

OK if we choose p′ > 1 very close to 1, and s ′ = p−1
p−p′ (close to 1) is

the conjugate exponent of s = p−1
p′−1 , so that nβp′s ′ < 1+Corollary A.

Theorem MA shows ϕ ≥ −M0 and AM-GM yields u ≥ ϕ/C ′ ≥ −C .

Recursive argument Lr control OK for r < 1 + 1
n + 1

n2 + · · · = n
n−1 �.
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Controlling the Lr -norm and the gradient

The weighted gradient

Although ∇Gω
x /∈ L2, the following weighted version holds:

Lemma C

Fix β > 0. Then 1
Vω

∫
X

dGωx ∧dcGωx ∧ωn−1

(−Gωx +C0+1)1+β ≤ 1
β .

Consider u(y) = (−Gω
x (y) + C0 + 1)−β, with u(x) = 0.

Note that 1 ≤ −Gω
x + C0 + 1 hence 0 ≤ u ≤ 1.

Since du = βdGωx
(−Gωx +C0+1)1+β and 0 = 1

Vω

∫
X u(ω + ddcGω

x ) ∧ ωn−1,

we obtain β
Vω

∫
X

dGωx ∧dcGωx ∧ωn−1

(−Gωx +C0+1)β+1 = 1
Vω

∫
X uωn ≤ 1. �
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Controlling the Lr -norm and the gradient

Control of the gradient

Corollary C

Fix p > 1, A,B > 0, ω ∈ K(X , p,A,B) and 0 < s < 2n
2n−1 . For all x ∈ X ,

1
Vω

∫
X |∇G

ω
x |sωn ≤ C2 = C2(n, p, s,A,B).

Fix s < 2n
2n−1 , 0 < β very small and r = s

2−s (1 + β) < n
n−1 .

Set 2α = s(1 + β) and Gx = Gx − C0 − 1. Lemma C and Hölder yield∫
X

|∇Gx |sωn = =

∫
X

|∇Gx |s

|Gx |α
|Gx |αωn

≤

(∫
X

|∇Gx |2

|Gx |
2α
s

ωn

) s
2 (∫

X

|Gx |
2α

2−s ωn

) 2−s
2

=

(∫
X

|∇Gx |2

|Gx |1+β
ωn

) s
2
(∫

X

|Gx |rωn

) 2−s
2

≤ C2Vω. �
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Further results

Further results

Theorem (G-Tô 24)

The estimates do not depend on the choice of complex structure.

Theorem (Guo-Phong-Song-Sturm 24 / Vu 24)

Most estimates are valid for singular varieties.

Theorem (Li 21)

Fix A ⊂ H1,1(X ,R) a compact subset of the Kähler cone.

Fix B > 0 and p > 1. Set fω = V−1
ω ωn/ωn

X and consider

K(p,A,B) :=

{
ω Kähler form s.t. {ω} ∈ A and

∫
X
f pω ω

n
X ≤ B

}
.

There exists α,C > 0 such that dω ≤ CdαωX
for all ω ∈ K(p,A,B).
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