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Uniform estimates for Kahler Green's functions

Quasi-subharmonic functions

@ Let (X,w) be a compact Kahler manifold of complex dimension n.

e A function v : X — RU {—o0} is quasi-subharmonic if it is locally the
sum of a subharmonic and a smooth function.
e It is called w-subharmonic if (w + dd°v) Aw"~! > 0. Equivalently

c n—1
Ayv = ndcj‘/# > —n.
w
o We let SH(X,w) denote the set of all w-subharmonic functions.

@ Goal: study properties of the map w — SH(X,w).
e Warning: (w,v) + (w+ ddv) Aw"~1 affine in v but non-linear in w !
September 3, 2024 2/28
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Uniform estimates for Kahler Green's functions

Kahler Green's function

Definition (Green's function)
Given w Kahler form we consider G¥ € C*(X x X \ Diag, R) s.t.
e GY(x,y) = G*(y,x) forall (x,y) e X X Y;
w 1 H .
o G (X,y) ~ 7W if n Z 2,
o y— GY(y) = G¥(x,y) € SH(X,w) with

1
v (W +ddGY) Aw'™l =6, = ALGY = n{V,56x —w"},

where V,, = [, w" and 6,=Dirac mass at point x;

o y — GZ(y) is normalized by [, GZ(y)w"(y) = 0.

@ Classical: there exists a unique solution, the Green's function.

@ Problem: study how w — G¥(x,y) varies, uniformly wrt (x,y).
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Uniform estimates for Kahler Green's functions

Key estimates

o Fix wx a reference Kahler form normalized by [, w = 1.
e Fix A,B>0and p>1. Setf, =V, w"/wh and consider

K(X,p, A, B):= {w Kahler s.t. / wAwy ' <Aand / fPwy < B}.
X X

Theorem (Guo-Phong-Song-Sturm 24 / G-T6 24 / Vu 24)

Fix r < L= and s < 522. Then for all x € X and w € K(X, p, A, B),
° sup,cx Gy < Go = Go(n, p, A, B);
o [x1GEI"e < G = Gi(n, p,r, A, B);

° fX |VG)L;J|S% < C2 = C2(n7p7 SaA7 B)

@ Goal of Lecture 2: proof of these uniform estimates.
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Uniform estimates for Kahler Green's functions

Green's formula for w-subharmonic functions

o Assume (w + ddv) Aw™! >0 with [, vw” = 0. Then

ddcGv n—1
vx) = /V(w—|— YA w
X Vw
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Uniform estimates for Kahler Green's functions

Green's formula for w-subharmonic functions

o Assume (w + ddv) Aw™! >0 with [, vw” = 0. Then

/ (w+ dd°G¥) Awt / ddGY A w1
vix) = [ v Y AL
X V., X Vi
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Uniform estimates for Kahler Green's functions

Green's formula for w-subharmonic functions

o Assume (w + ddv) Aw™! >0 with [, vw” = 0. Then

/ (w+ dd°G¥) Awt / ddGY A w1

vix) = v = [ v—

X Ve X Vi
_ G ddv A w't

X Voo
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Uniform estimates for Kahler Green's functions

Green's formula for w-subharmonic functions

o Assume (w + ddv) Aw™! >0 with [, vw” = 0. Then

/ (w+ dd°G¥) Awt / ddGY A w1
vix) = v = [ v—
X X

Vi Vi
_ / G;Jdd‘:v/\w”_:l :/ G;J(W%—ddCV)/\w”_l'
X Voo X Ve

@ Thus v(x) <supy G¥ < .
o By Holder inequality and symmetry G¢’(y) = G}’(x), we also obtain

w" wn
v|"— < ¢ and /VVSSC.

@ Thus proving key estimates for G or arbitrary v is the same.
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Application 1: Diameter bounds

Under previous assumptions diam(X,w) < D = 2GCy(n, p,1,A, B).

e Fix (a, b) € X? such that d,(a, b) = diam(X,w).
@ The function p: x € X — d,(a,x) € RT is 1-Lipschitz with p(a) = 0.
o Thus 0= V,,p(a) = [ p(w + dd°G¥) Aw"~ yields, by Stokes,

/pw":/ dp A d°G¥ Aw" !
X X
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Application 1: Diameter bounds

Under previous assumptions diam(X,w) < D = 2GCy(n, p,1,A, B).

e Fix (a, b) € X? such that d,(a, b) = diam(X,w).
@ The function p: x € X — d,(a,x) € RT is 1-Lipschitz with p(a) = 0.
o Thus 0= V,,p(a) = [ p(w + dd°G¥) Aw"~ yields, by Stokes,
/ pw" :/ dp Ad°G¥ Nw™ 1t < / IVGZ|,w" < GV,
X X X

o Similarly V,p(b) = [, pw" + [y pdd®GE Aw™! hence

diam(X,w) = p(b)
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Applications

Application 1: Diameter bounds

Under previous assumptions diam(X,w) < D = 2GCy(n, p,1,A, B).

e Fix (a, b) € X? such that d,(a, b) = diam(X,w).
@ The function p: x € X — d,(a,x) € RT is 1-Lipschitz with p(a) = 0.
o Thus 0= V,,p(a) = [ p(w + dd°G¥) Aw"~ yields, by Stokes,

/ pw" :/ dp A d°G¥ Aw" ! g/ IVGZ|,w" < GV,
X X X
o Similarly V,p(b) = [, pw" + [y pdd®GE Aw™! hence

n

. w; W' o W
diam(X, ) =p(8) < [ VG313 + [ VG5l
X Vw X Vw
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Applications

Application 1: Diameter bounds

Under previous assumptions diam(X,w) < D = 2GCy(n, p,1,A, B).

e Fix (a, b) € X? such that d,(a, b) = diam(X,w).
@ The function p: x € X — d,(a,x) € RT is 1-Lipschitz with p(a) = 0.
o Thus 0= V,,p(a) = [ p(w + dd°G¥) Aw"~ yields, by Stokes,

/ pw" :/ dp A d°G¥ Aw" ! g/ IVGZ|,w" < GV,
X X X
o Similarly V,p(b) = [, pw" + [y pdd®GE Aw™! hence

n

n
diam(X, w) = p(b) g/ |VG;"|WOJ+/ VGY |- <2C. O
X Vw X Vw
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Application 2: Non collapsing

Under previous assumptions MZ(X”)) > cr’" for0<r< D,x € X.

@ Fix 0 < x <1with x =1 on B,(x,r/2) and x = 0 off B,(x, r).
@ As |Vx|w < % the function px is 7-Lipschitz, where p(y) = d(x,y).
o Fix0<s <

2n * :
5o ST =conj exp.
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Application 2: Non collapsing

Under previous assumptions MZ(X”)) > cr’" for0<r< D,x € X.

@ Fix 0 < x <1with x =1 on B,(x,r/2) and x = 0 off B,(x, r).
@ As |[Vx|w < % the function px is 7-Lipschitz, where p(y) = d(x,y).

o Fix 0 <s < 52", s* =conj exp. By Green's formula at y ¢ B,,(x,r)

*"—‘

1
/pxw" = /d(px) ANd Gy AWt < C(s) Vi Vol (Bu(x, r))=.

e Applying now Green's formula at z € 9B,,(x, r/2) we obtain
n—1

r w" o W
5—/px7w—/d(px)Ad Gy A V.
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Application 2: Non collapsing

Under previous assumptions MZ(X”)) > cr’" for0<r< D,x € X.

@ Fix 0 < x <1with x =1 on B,(x,r/2) and x = 0 off B,(x, r).
@ As |[Vx|w < % the function px is 7-Lipschitz, where p(y) = d(x,y).

o Fix0<s< 25f1,

s* =conj exp. By Green's formula at y ¢ B,(x,r)

1
/pxw" = /d(px) ANd Gy A w1 < Gy(s) Vi Vol (Bu(x, r))sL

e Applying now Green's formula at z € 9B,,(x, r/2) we obtain

n—1
1

5= [~ [ ndees a5 <26V VoL (Bul )

@ The conclusion follows since s* = 2n + ¢ € (2n, +00). O

Vincent Guedj (IMT) Kahler Green's functions September 3, 2024 7/28



Applications

Application 3: Uniform Sobolev inequalities

Fix1 < q< 2% and w € K(X, p, A, B). For all u € W'?(X), we have

(1/| |2q")1/'<c1/\v|2"
— u—Tulw < Cs— ulf,w”,
Vi Jx Vi Jx

where T = V% Jx uw" and Cs = Cs(n, p,q,A, B) > 0.

w cow n—1
@ Set G¥ = GY — Gy — 1. We show later V%fX% < %

@ Green's formula and Holder inequality yield

1/2
u(x) = ] < b (& fx(=G2) 7 Vuewr) .

@ Conclude by Minkowski's inequality+main estimate for gradient. [
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Condition on the cohomology class

@ The first condition [y w A wf{l < A'is cohomological.
e It is equivalent to the fact that {w} € B(R4) C HY(X,R).
@ By 90-lemma w = 0 + dd€p,, with —Cawx < 0 < Cawx.

e Volume V, = [, w" = {w}" can collapse but no blowup V,, < Cj.

o Assume X = P! x P! js the product of two Riemann spheres, endowed
with the Kahler form wy(x,y) = Awp1(x) + A~ twpi(y), where A > 0.
o Note w3 = 2wp1(x) Awpi(y) = 2w%, hence f\ = 2, 2nd condition OK.

o Moreover volumes V,, = [y w3 = [y 2wpi(x) Awpi(y) =2 are
constant, while diam(X,w)) ~ A — 00 as A — co.
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Optimal condition on the density

o Similar results by [GPPS24] when [, f,(log[7 + f,])Pwk < B, p > n;

@ [G-Guenancia-Zeriahi 23] extend these to the quasi-optimal condition

(%), /X £.(log[7 + £.])"(log log[7 + £.])Pw < B, with

e Compare [Kolodziej 98]: (), = Oscx(pw) < Mg if
o Consider w = dd“x o L, x convex increasing, L(z) = log |z| in C".

o Then w" = £,dV,ye with £, ~ X 2L

|z[2"

o For x(t) = (log(—t))~! we obtain diam(B",w) = +oo0,

v
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Quasi-plurisubharmonic projection

Definition

e A function ¢ : X — RU {—o0} is quasi-plurisubharmonic if it is
locally the sum of a plurisubharmonic and a smooth function.

It is called w-plurisubharmonic if w + ddp > 0.

PSH(X,w) denotes the set of all w-plurisubharmonic functions.

Key tool: a priori estimates for solutions to cplx MA equations.

Lower bound: if v is w-sh then ¢ = P,(v) < v where
P,(v) :=sup{u € PSH(X,w) u < v} € PSH(X,w)

satisfies a complex Monge-Ampére equation associated to A, v.

@ We actually use a twisted version of this rough idea.
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Twisted complex Monge-Ampére equations

Proposition (G-To 24)
Let v (resp. @) be a bounded w-sh (resp. w-psh) function such that

(w+ ddvV) AWl = egw" and (w+ dd p)" > e™Pg"w",

where t >0, p>nand 0 < g € LP(w"). Then ¢ < v.

o Definition : v is a w-sh subsolution if (w + ddu) A w™ ! > etgw".
@ Max pple+balayage: v is the envelope of bounded w-sh subsolutions.
e The AM-GM inequality ensures that (w + dd @) A w"™! > etPgw”.
e This allows one to conclude since PSH(X,w) C SH(X,w). O

°

Application to follow: if p > n then v is uniformly bounded below.
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Exponential integrability of w-psh functions

Theorem

Fix A,B >0 and p > 1. There exists « = a(n, p, A, B) > 0 such that for
all w e (X, p,A,B) and ¢ € PSH(X,w) with supx ¢ =0,

/ exp(—ap)wy < C,
X

where C = C(a, n, p, A, B) > 0 is independent of w, .

[Skoda 72]: establishes exponential integrability of psh functions.
[Tian 87]: uses a-invariant to study 3 of K-E metrics (w fixed).

[Zeriahi 01]: very general uniform versions of Skoda's result.

°
°
o [Demailly-Kollar 01]: relate a-invariants and log can thresholds.
°
e Thm follows from [Z 01], w = 6 4 dd“p and
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Uniform a priori estimates for MA potentials

Theorem (Kolodziej 98 ... Di Nezza-G-Guenancia 23)

Fix p>1, A,B>0 andw € K(X, p, A, B). Assume that there exists
¢ € PSH(X,w)NL®(X), p' >1and B'>0s.t. [, gP'wy < B and

1
(Wt ddp)" = guwk.

Then Oscx () < C = C(n,p,p', A, B,B").

@ This is the key a priori estimate for everything that follows.

@ Goes back to [Yau78], [Kolodziej 98], [Eyssidieux-G-Z 09], [EGZ08],
[Demailly-Pali 10]. More recently [G-Lu 21], [Guo-Phong-Tong 23].

@ Follows from previous thm + general L a priori estimates [DNGG23].
Vincent Guedj (IMT)
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Bounding w-sh functions from above

Bounding w-sh functions from above 1

Fixp>1, A;B>0andw € K(X,p,A,B). Fixa>0 and let v be a
quasi-sh function on X such that A,v > —a and | x vw" = 0. Then

1
supv < (4 {a%—/ \v|w”],
X Vw X

where C; = Ci(n, p, A, B) > 0 is independent of v and w.

@ Statement and assumptions are homogeneous of degree 1, wlog a = n

@ Set vy = max(v,0) and consider ¢ € PSH(X,w) bounded solution of
(w + ddp)" = %

e’
with supy ¢ = —1, where M = [, v, 'V'" =1/ M%
e GOAL: ¢ bounded below and vy < (—¢)“, with ov = .
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Bounding w-sh functions from above

Bounding w-sh functions from above 2

~n+1_n

o Set H=1+ vy —e(—)*, where o = .7 and (TFacy = LT M.

® As —dd(—p)® =all —a)(—p)" ?dp A d v+ al(—p)* tdd y, get
1 + Vi % 1
1+M '

1
Therefore Ay,H>—n+ nas(—¢)*! [(ii‘&) - 1} _

o a—1 AM_-GM a—1
Ay(—e(=p)*)ae(—p)* "Aup > nas(—p)

e Using (—)}~® > 1, we get at xp such that H(x0) = Hpmax,
1

(L4 ae)(~¢) > (~9)'* +ac>ae (145)”

« n(l—a aentl 1
o Thus £(—p)" =e(—p)"1 ) > 7 Hu
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Bounding w-sh functions from above 2

~n+1_n

o Set H=1+ vy —e(—)*, where o = .7 and (TFacy = LT M.

® As —dd(—p)® =all —a)(—p)" ?dp A d v+ al(—p)* tdd y, get

1+V+ %71
1+M '

o a—1 AM_-GM a—1
Ay(—e(=p)*)ae(—p)* "Aup > nas(—p)

Therefore A,H>—n+ nas(—¢p)*~ [ lli\xy }

e Using (—)}~® > 1, we get at xp such that H(x0) = Hpmax,

1

(L4 ae)(~¢) > (~9)'* +ac>ae (145)”

o Thus e(—¢)" = e(—¢) ) > (‘1‘;: )1 111‘;; =1+vy,ie H<O.
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Bounding w-sh functions from above

Bounding w-sh functions from above 3

~n+1_n

@ Note that € < ¢,(1 + M) since (Fagy = 1+ M.
o Thus HI0)" — Fovy with F = 115 f
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Bounding w-sh functions from above

Bounding w-sh functions from above 3

~n+1_n

@ Note that € < ¢,(1 + M) since (Fagy = 1+ M.
o Thus (IO — Fovy with F = 1 < ey
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Bounding w-sh functions from above

Bounding w-sh functions from above 3

\1“/7

Note that € < ¢,(1 + M) since - =1+ M.

(1+(1 )

Thus G420 — Favy with F = Fser < SCel o o (p)er,

Since [, fPdVx < A, can fix 1 < r < p and use Holder to obtain

p—r

/F’dVX < c,;/(f@)'af'dvx < (/ devX)p </( )é"‘idvx> "
X X X X

Integrals uniformly bounded by assumption+Skoda-Zeriahi's result.

Thus ¢ bounded and supy v < supy vy < e(—p)® < cp[1 + M] .

. . 1 . n
Conclusion follows since M = i~ [, [v|w". O
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Bounding w-sh functions from above

Functions with bounded Laplacian 1

Lemma B

Fixp>1, A,B>0andw € K(X,p,A,B). Let u be a continuous
function such that [y uw” =0 and ||Ayul|i(x)y < 1. Then

ull o (x) < Ca,

where C; = Cy(n, p, A, B) > 0 is independent of u and w.

@ By Lemma A suffices to show M = V% Jx lujw" < G. Wilog M > 1.
o | Claim : G, = 8Cy(1 + 4n*C?)? ok

, Co from Thm MA with g = 2",
@ Pbm homogeneous of deg 1, wlog [[A, uf|j~(x) <0 =,

1
(1+4n2C2)%"
< we are going to show that | M < 2(; |.
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Bounding w-sh functions from above

Functions with bounded Laplacian 2

e Set H=nA,u, = =1/M and t:ﬁ:m.
o Let ¢ € PSH(X,w)NL*>(X) be the unique bounded w-psh solution of

(w + ddcw)n — ents(w—u)(l + H)nwn‘

AM-GM inequality yields (w + ddy) A w1 > ete(V=4)(1 + H)w".

°
o [G-T624] = 1) < u since (w + dd u) A w1 = eteU=U)(1 + H)w".

o Now wg < 2"w" as H < nd <1 hence [DNGG23] = Oscx(v) < Go.
e Mass controls+normalization yield = supy t» > — §/t — 4nCPt = — 3.

This yields u > (1 — supx ©) 4 supy ¢
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Bounding w-sh functions from above

Functions with bounded Laplacian 2

e Set H=nA,u, = =1/M and t:ﬁ:m.
o Let ¢ € PSH(X,w)NL*>(X) be the unique bounded w-psh solution of

(w + ddcw)n — ents(w—u)(l + H)nwn‘

AM-GM inequality yields (w + ddy) A w1 > ete(V=4)(1 + H)w".

°
o [G-T624] = 1) < u since (w + dd u) A w1 = eteU=U)(1 + H)w".

o Now wg < 2"w" as H < nd <1 hence [DNGG23] = Oscx(v) < Go.
e Mass controls+normalization yield = supy t» > — §/t — 4nCPt = — 3.

This yields u > (¢ — supy ¥) + supx © > —CO—%_
o By symmetry u < % + Co hence M = [ ]u!% < % + G. O
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Controlling the L"-norm and the gradient

Control of the supremum of G

Corollary A
Fixp>1, A,B>0 andw € K(X,p,A,B). Then for all x € X,

/ rGw\— < Gy and sup G¥(y) < Go = Go(n, p, A, B).
yeX

e Set h=—15<o + f{Gx<0} % Note —1 < h<1and [, hw" =0.
e For A,v = h with fx vw" =0, Lemma B yields ||v|| (x) < C.
@ Thus C > v(x :V y V(w+ ddG) Aw™ !

= wax GxddCV/\wn_]-: nf{GX<O}(—GX)%-
o Since [y Guw" =0, we infer [, |G| = 2f{Gx<0}(_GX)%
o It therefore follows from Lemma A that supy Gx < Gy. I
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Controlling the L"-norm and the gradient

Control of the L"™-norm of G

Corollary B
Fixp>1, A,B>0,we K(X,p,

=5 Forall x € X,
v Jx|GEl"w < G = Gi(n, p, 1, A B).

@ Set G, = Gy — Cp — 1 < —1 and consider u the w-sh solution of

V%d(wﬂ-ddcu)Aw”_l = f)(< 9" ;’; - with [y uw"=0,0< 8 < 1.

@ Since 1 < —G, we have fx )Bw <fX gx)%:1+co.
@ We are going to show that u > —C is uniformly bounded below. Thus

c wh—1 _ 148 w"
—C < ulx /gx ot ddu) ne™ _ fx( 7 w‘f“’

o Therefore [, (—Gy) 1+5‘*’ < C[1+ Gy
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Controlling the L"-norm and the gradient

Control of the L"™-norm of G

Corollary B
Fixp>1, A,B>0,we K(X,p,

=5 Forall x € X,
v Jx|GEl"w < G = Gi(n, p, 1, A B).

@ Set G, = Gy — Cp — 1 < —1 and consider u the w-sh solution of

V%d(wﬂ-ddcu)Aw”_l = f)(< 9" ;’; - with [y uw"=0,0< 8 < 1.

@ Since 1 < —G, we have fx )Bw <fX gx)%:1+co.
@ We are going to show that u > —C is uniformly bounded below. Thus

c wh—1 _ 148 w"
—C < u(x /QX (W dd*u) A = fx( 9 w‘n/“’.

o Therefore [, (=G )"~ < C[1+ Co] = OK for r <1+ %
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Controlling the L"-norm and the gradient

Control of the L"-norm: bounding u from below

e Consider the solution ¢ € PSH(X,w) N L*>®(X), supx ¢ = 0, of
1 (—Gx)"Bwn
il ddo)" = V) %
Vw (W + 90) fX gX nBn’

The density of the RHS is bounded from above by (—Gx)"f,,.

Halder [, (~Go)™ 7' dVi < ([, fedVx) = (Sx(=guyoes )" < .

OK if we choose p’ > 1 very close to 1,and s’ = 5_ P=L (close to 1) is

the conjugate exponent of s = p
Theorem MA shows ¢ > —Mjy and AM-GM ylelds u> gp/C’ > —C.

Recursive argument L' control OK for r < 14 % st L+ =& O
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The weighted gradient

Although VG¥ ¢ L2, the following weighted version holds:

. 1 dGYAd GEAW™L 1
Fix > 0. Then - e Caoren e < 5

o Consider u(y) = (—G¥(y) + Go + 1)77, with u(x) = 0.
@ Notethat 1 < —GY + Co+ 1 hence 0 < u < 1.
@ Since du = % and 0 = v% [x u(w + dd°G¥) Aw™1,

. B dGYAd GEAWT™Y 1 n
we obtain - [y e ey ™ = v Jyuw" <1. 0O
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Control of the gradient

Fixp>1, A B>0,weK(X,p,A B)and0<s< 52 Forall x € X,
V%fx IVGY|*w" < G = Gy(n, p, s, A, B).
e Fix s < 2521, 0 < § very small and r = 5°_(1+ ) < 5.

@ Set 2a =5s(1+ ) and Gx = Gx — Gy — 1. Lemma C and Hdlder yield

[wepar= = [ TG pur
X x |Gx|*
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Control of the gradient

Fixp>1, A B>0,weK(X,p,A B)and0<s< 52 Forall x € X,

v [x VG W™ < G = Gy(n, p, 5, A, B).

e Fix s < 2521, 0 < f very small and r = 5°-(1+ ) <
@ Set 2a =5s(1+ ) and Gx = Gx — Gy — 1. Lemma C and Hdlder yield

/‘VGX|SUJ”: — |vg><| |gx|awn
X x 1G]

c ((5e) (fome)’
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Controlling the L"-norm and the gradient

Control of the gradient

Fixp>1, A B>0,weK(X,p,A B)and0<s< 52

sng- Forall x € X,
v [x VG W™ < G = Gy(n, p, 5, A, B).

e Fixs<

2,321. 0 < f very small and r = 5°-(1+ ) <
e Set 2a = s(1+ ) and Gx = Gx — Co — 1. Lemma C and Holder yield

[wepar= = [ TG pur
X x |Gx|*

() (o)
(L) (o)
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Controlling the L"-norm and the gradient

Control of the gradient

Fixp>1, A B>0,weK(X,p,A B)and0<s< 52

sng- Forall x € X,
v [x VG W™ < G = Gy(n, p, 5, A, B).

e Fixs<

2,321. 0 < f very small and r = 5°-(1+ ) <
e Set 2a = s(1+ ) and Gx = Gx — Co — 1. Lemma C and Holder yield

[wepar= = [ TG pur
X x |Gx|*

VG, |2 =
(/”g o ) (1)

— |vgx‘2 r,..n ;s < C V ‘:l
— Uk 1G Y gt s GV
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Further results

Further results

Theorem (G-T&6 24)

The estimates do not depend on the choice of complex structure.

Theorem (Guo-Phong-Song-Sturm 24 / Vu 24)

Most estimates are valid for singular varieties.

Theorem (Li 21)

o Fix A C HY(X,R) a compact subset of the Kihler cone.
o Fix B>0andp>1. Setf,=V;lw"/wy and consider

K(p, A,B) := {w Kahler form s.t. {w} € A and/ fPwy < B}.
X

There exists a, C > 0 such that d, < Cd, for all w € K(p, A, B).

= = =

v
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