Harmonic maps into Euclidean Buildings
Recent progress on geometric analysis and Riemannian geometry October 21, 2024 - October 25, 2024
Location: SLMath: Eisenbud Auditorium, Online/Virtual
Primary Mathematics Subject Classification
No Primary AMS MSC
Secondary Mathematics Subject Classification
No Secondary AMS MSC
Harmonic maps into Euclidean Buildings
We describe a regularity result for equivariant harmonic maps from the universal cover of a Riemannian manifold into a (not necessarily locally finite) Euclidean building. As an application we prove non-Archimedean superrigidity for rank 1 symmetric spaces. This result extends the work of Gromov-Schoen, who proved p-adic superrigidity by considering locally finite targets. This work is joint with B. Dees and C. Mese.
Harmonic maps into Euclidean Buildings
Please report video problems to itsupport@slmath.org.
See more of our Streaming videos on our main VMath Videos page.