
Higher Intersection Theory on Algebraic Stacks

Abstract. In this talk we establish a theory of Chow groups and

higher Chow groups on algebraic stacks locally of finite presenta-

tion over a field and establish their basic properties. This includes

algebraic stacks in the sense of Deligne-Mumford as well as Artin.
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Example: We begin with the quotient stack [X/G]

Borel style cohomology theories of [X/G] defined in terms of its

simplicial resolution, or the classifying space EG×
G
X. One approach

to Borel-style cohomology theories for [X/G]: via approximations to

EG×
G
X by a scheme through a certain finite range. An alternative is

to consider the cohomology of the simplicial scheme EG×
G
X itself.

The approach to intersection theory on stacks we take, via their

motivic cohomology, is closely related to this.
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Notation

k: a fixed field of arbitrary characteristic

Objects (schemes, algebraic spaces and algebraic stacks): locally of

finite presentation (often convenient to include locally Noetherian

objects also) over k and often finite dimensional

Unless mentioned to the contrary all stacks are Artin stacks.
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An overview of (some of) the main results

• Higher Chow groups for all Artin stacks are defined and come with

long-exact localization sequences. Covariant for strongly projective

morphisms and contravariant for flat representable morphisms.

• Motivic cohomology for all smooth Artin stacks is defined. This

agrees with the higher Chow groups for all smooth Artin stacks.

In particular an intersection pairing is defined for all smooth Artin

stacks at the level of higher Chow groups. Contravariant functori-

ality in general for maps between smooth stacks.

• Our theory comes equipped with a theory of (higher) Chern classes

with values in the higher Chow groups for all smooth stacks.

• The higher Chow groups are intrinsic to the stack for all smooth

stacks and also for stacks of finite type.

•Agrees with other definitions modulo torsion for all Deligne-Mumford

stacks with quasi-projective coarse moduli space and for all smooth

Deligne-Mumford stacks.

Note: our theory has reasonable properties only modulo torsion
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1. The naive Higher Chow groups of algebraic stacks

(1.1) Definition The naive higher Chow groups.

S: an algebraic stack, d: an integer. A dimension d cycle on S ×
∆k[n] is an element of the free abelian group on dimension d integral

closed sub-stacks of S×∆k[n]. (Recall: the dimension of an algebraic

stack could be a ≤ 0.)

We restrict to those cycles that intersect all the faces of S ×∆k[n]

properly. This leads to a simplicial abelian group denoted zd(S, .).
(Note: if S of finite dimension (= N), we may define for each integer

c ≥ 0, zc(S, n) similarly and obtain the isomorphism zc(S, n) ∼=
zN+n−c(S, n).) Define CHnaive

d (S, n) = πn(zd(S, .)).

(1.2) Functoriality. Let f : S ′ −→ S be a flat map of algebraic stacks

of relative dimension m. Now f induces a map f∗ : zd(S, n) →
zd+m(S ′, n). Therefore, S → z∗(S, n), for each fixed integer n, a

contravariant functor for flat maps of algebraic stacks and defines

an additive presheaf on (alg.stacks/k)l.Noeth
Res . We will denote this

presheaf by

Z∗( , n). (We may define Z∗( , n) similarly.)
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Next assume that S is an algebraic stack. The restriction of the

presheaf Z∗( , n) to Sres.smt defines an additive presheaf denoted

ZSres.smt∗ ( , .). The restriction of ZSres.smt∗ ( , .) to the étale site

of S will be denoted ZSet∗ ( , .).

Next let p : S ′ → S denote a proper representable map of algebraic

stacks. Define the direct image p∗ : Z∗(S ′, n) → Z∗(S, n) for each

fixed n ≥ 0 by p∗([T ′]) = degree(p|T ′).[p(T ′)] for any integral sub-

stack T ′ of S ′ ×∆k[n] that belongs to Z∗(S ′, n).

(1.3) Next consider Deligne-Mumford stacks (after Gillet and Vis-

toli).

If Z is an integral sub-stack of S, let k(Z)∗ denote the multiplica-

tive group of rational functions on Z. Let W∗(S) = the rational

equivalences on S, namely ⊕
j
Wj(S) where Wj(S) is the direct sum

of k(Z)∗ over integral closed sub-stacks Z of dimension j + 1. It is

rather well-known that these are sheaves on Set and that one obtains

a homomorphism δ : W∗(S) −→ Z∗(S, 0). The naive Chow group

CHnaive
q (S) is defined to be the cokernel of δ : Wq(S) −→ Zq(S, 0).

We conclude this section with the following result.
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(1.4) Proposition. If S is a Deligne-Mumford stack, one obtains

the isomorphism:

CHnaive
q (S)⊗

Z
Q ∼= CHnaive

q (S, 0;Q) = π0(Zq(S, .)⊗
Z

Q)

Remark. The proof will use the fact Zq(S, .) restricted to Set

is a complex of sheaves. We have shown the naive higher Chow

groups πn(Zq(S, .) ⊗ Q) have reasonable functorial properties with

respect to flat-pull backs and proper push-forwards. The main draw-

back: lack of long exact localization sequences associated to closed

immersions of algebraic stacks. This will be rectified in the next

section.
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2. The Higher Chow groups with respect to a presentation

We begin by showing that even Zariski hypercohomology with re-

spect to the cycle complex extends Bloch’s localization sequences

from quasi-projective schemes to all schemes.

(2.1) Definition. X :a scheme locally of finite presentation over

k. For each integer d, ZXZar

d ( , .) = the restriction of the presheaf

ZXres.smt

d ( , .) to XZar. Let CHd(X, .) = HZar(X,ZXZar

d ( , .))

and CHd(X,n) = πnZar(X,ZXZar

d ( , .)).

Remark. If X is a quasi-projective scheme over k, the above group is

isomorphic to the naive Chow group CHnaive
∗ (X, .) = π0(z∗(X, .)).

(This follows from the localization theorem of Bloch.)

(2.2) Proposition. X: a scheme locally of finite presentation over

k. Z −→ X :the closed immersion of a closed subscheme with U =

X − Z. Then one obtains a distinguished triangle:

CHm(Z, .) −→ CHm(X, .) −→ CHm(U, .) −→ CHm(Z, .)[1]

and therefore a long-exact sequence:
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... −→ CHm(Z, n) −→ CHm(X,n) −→ CHm(X − Z, n)

−→ CHm(Z, n− 1) −→ ...

The proof will be clear from a more general result discussed below.

In the above situation, it is however, not clear that CH∗(X,n) = 0

for n < 0. However we can readily show this is the case modulo

torsion provided X is of finite type over k by using Riemann-Roch

to identify the complex Z∗( , .)⊗ Q with G( )Q.

(2.3)Definition. Let S = an algebraic stack, x : X → S a fixed

atlas, BxS the corresponding classifying simplicial space and d a

fixed integer. (i) Define CHd(S, x, .) = Het(BxS,ZSres.smt

d ( , .)).

(ii) If R = Q, or Z/lν , ν > 0, define CHd(S, x, .;R)

= Het(S,ZSres.smt

d ( , .)⊗
Z
R).

(iii) If n is an integer, let CHd(S, x, n) = πn(CHd(S, x, .)) while

CHd(S, x, n;R) = πn(CHd(S, x, .;R))

(2.4) Theorem (Localization sequence). i : S ′ −→ S : a closed

immersion of algebraic stacks with S ′′ = the complement of S ′ in

S. The stack S is locally of finite presentation over k. x : X → S
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denotes a fixed atlas, x′ = x×
S
S ′ and x′′ = x×

S
S ′′. Then one obtains

a long exact sequence:

... −→ CH∗(S ′, x′, n;Q) −→ CH∗(S, x, n;Q) −→ CH∗(S ′′, x′′, n;Q) −→

...

Proof. This follows immediately from the following more general

result.

Let P denote a complex of additive presheaves on a site C. P

has cohomological descent if the obvious augmentation Γ(U,P ) −→
HC(U,P ) is a quasi-isomorphism for all U ε C. In particular the

presheaf Z∗( , .)⊗
Z

Q has cohomological descent on the étale site of

any quasi-projective scheme. P is covariant with respect to closed

immersions, if for any Y and i : Y ′ −→ Y a closed immersion there

exists a map Γ(Y ′, P ) −→ Γ(Y, P ) natural in i.

(2.5) P has the localization property, if P is covariant with respect to

closed immersions and if for any Y , i : Y ′ −→ Y a closed immersion

with j : U −→ Y its open complement, one obtains a distinguished

triangle

Γ(Y ′, P ) −→ Γ(Y, P ) −→ Γ(U,P ) −→ Γ(Y ′, P )[1]

which is natural in i.
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(2.6) Theorem. P : a complex of additive presheaves on (alg.stacks/k)l.Noeth
Res

having the localization property on the Zariski site of any quasi-

projective scheme over k.

(i) Assume further P is covariant with respect to closed immersions

for all closed immersions of schemes and that if Z −→ X is a closed

immersion of schemes with U the open complement of Z, then the

composition Γ(Z,P ) −→ Γ(X,P ) −→ Γ(U,P ) is strictly trivial. Then

the presheaf of hypercohomology spectra U −→ HZar(U,P ) has the

localization property on any scheme locally of finite type over k.

(ii) Assume that P has the continuity property on the Zariski site

of any quasi-projective scheme, the weak-transfer property on re-

striction to the étale site of any Artin local ring whose residue field

is a finite extension of k and the presheaves U −→ πi(Γ(U,P )), are

presheaves of Q-vector spaces. We further assume that P is covari-

ant with respect to closed immersions of all algebraic spaces and

that if i : S ′ → S is a closed immersion of algebraic spaces with

S ′′ = S − S ′, the composition Γ(S ′, P ) → Γ(S, P ) → Γ(S ′′, P ) is

strictly trivial.

Let S denote any algebraic stack locally of finite presentation over

k, i : S ′ → S a closed immersion of algebraic stacks and j : S ′′ =
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S − S ′ → S the open immersion of its complement. Let x : X → S
denote an atlas, x′ = x×

S
S ′ and x′′ = x×

S
S ′′. Then one obtains a

distinguished triangle:

... −→ Het(Bx′S ′;P ) → Het(BxS, P ) → Het(Bx′′S ′′, P ) −→ ...

(2.7) Corollary (Mayer-Vietoris). Let S denote an algebraic stack

with S0 and S1 two open algebraic sub-stacks so that S is isomorphic

to S0 ∪ S1. Let x : X → S denote a fixed atlas for S. Let x0, x1

and x01 denote the induced atlases for S0, S1 and S0 ∩ S1. Then

one obtains a long-exact sequence:

... −→ CH∗(S, x, n;Q) −→ CH∗(S0, x0, n;Q) ⊕ CH∗(S1, x1, n;Q) −→
CH∗(S0 ∩ S1, x01, n;Q) −→ ...

Proof. This follows in the usual manner from (2.4).
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(2.8)Examples:

(i) Let G denote a smooth affine group scheme acting on a

scheme locally of finite presentation over k and let i : Y → X

denote the closed immersion of a G-stable closed subscheme with

j : U = X − Y → X the open immersion of its complement. Then

one obtains a long-exact-sequence:

... −→ CH∗([Y/G], Y, n;Q) −→ CH∗([X/G], X, n;Q) −→ CH∗([U/G], U, n;Q)

−→ CH∗([Y/G], Y, n− 1;Q) −→ ....

where X (Y , U) denotes the obvious atlas for the stack [X/G]

([Y/G], [U/G], respectively ). (Observe in view of what we prove

below, that if X is smooth or of finite type over k, the groups

CH∗([X/G], X, .;Q) are in fact independent of the atlas X.)

(ii) LetX denote a smooth projective curve over an algebraically

closed field k and let r > 0 denote an integer. Let SLX(r) denote the

moduli stack of rank r vector bundles on X with trivial determinant

and let SLX(r)ss denote the open sub-stack of semi-stable bundles.

Let z : Z → SLX(r) denote an atlas for the first stack and let z′′,

z′ denote the induced atlases for SLX(r)ss, SLX(r) − SLX(r)ss,

respectively . Then one obtains a long-exact sequence:
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... −→ CH∗(SLX(r)−SLX(r)ss, z′, n;Q) −→ CH∗(SLX(r), z, n;Q) −→
CH∗(SLX(r)ss, z′′, n;Q) −→ ...
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(2.9) Theorem (Functoriality). Let f : S ′ −→ S denote a repre-

sentable map of algebraic stacks. Let x : X → S denote a fixed

atlas and let x′ : x×
S
S ′. (i) If f is flat of relative dimension m, it in-

duces a map f∗ : CH∗(S, x, n;Q) −→ CH∗+m(S ′, x′, n;Q) for every

n ≥ 0.

(ii) If f is a representable finite map or if f is strongly projective, f

induces a map f∗ : CH∗(S ′, x′, n;Q) −→ CH∗(S, x, n;Q).

(iii) Let f : S ′ → S denote any finite map of Deligne-Mumford

stacks. Now f induces a map f∗ : CH∗(S ′, .;Q) → CH∗(S, .;Q).

(2.10) Proposition (i) Let S denote a Deligne-Mumford stack with

MS its coarse moduli space. If MS is an algebraic space over k,

then CH∗(S, .;Q) ∼= CH∗(MS , .;Q) where the right hand side is

defined as the hypercohomology on the étale site with respect to

the complex Z( , .)⊗
Z

Q.

(ii) If, in addition, MS is quasi-projective, one obtains an isomor-

phism of CH∗(S, 0;Q) with the naive Chow group CHnaive
∗ (S)⊗

Z
Q.
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Examples: (i) Let G denote a finite group acting on a scheme

X of finite over k so that M[X/G] is a coarse moduli space. Then

CH∗([X/G], .;Q) ∼= CH∗(M[X/G], .;Q). (For example CH∗(BG, .;Q) ∼=
CH∗(Spec k, .;Q).)

(ii)Let G denote an affine smooth group scheme acting locally prop-

erly on a scheme X (of finite type over k) so that a coarse moduli

space M[X/G] exists as a quasi-projective scheme over k. Assume

further that the stack [X/G] is Deligne-Mumford (for example the

stabilizers are all reduced and finite). Then one obtains the isomor-

phisms: CH∗(M[X/G], 0;Q) ∼= CH∗([X/G], 0;Q) ∼= CHG
∗ (X)⊗

Z
Q

where the right hand side is the equivariant intersection theory.

(iii) Let X denote a projective variety. Let M̄g,n(X,β) denote the

stack of stable families of maps of n-pointed genus g-curves toX and

let M̄g,n(X,β) denote the corresponding coarse-moduli space. Here

β denotes a class in CH1(X). Then one obtains an isomorphism:

CH∗(M̄g,n(X,β), .;Q) ∼= CH∗(M̄g,n(X,β), .;Q).
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3. Comparison with motivic cohomology

and intersection theory for all smooth stacks

(3.1) Definitions Let S denote a smooth algebraic stack and let

Ssmt denote the smooth site whose objects are smooth maps u :

U → S with U an algebraic space. Assume that for each integer

i ≥ 0, Q(i)[2i] = the shifted (rational) motivic complex of weight

i defined on Ssmt. Similarly Zi( , .;Q) = the presheafification of

the codimension i higher cycle complex on Sres.smt. We will let

(3.1.1) H2i−n
M (S, i;Q) = πn(Hsmt(S,Q(i)[2i]))

and call it the rational motivic cohomology of the stack S. We define

(3.1.2) CHi(S, x, .;Q) = Het(BxS,Zi( , .;Q)),

CHi(S, x, n) = πn(CHi(S, x, .;Q))

for an atlas x : X → S.

(3.2) Theorem. Let S denote a smooth (equi-dimensional) alge-

braic stack and let x : X → S denote a given atlas. Then there

exists a quasi-isomorphism:

Hsmt(S,Q(i)[2i]) � CHi(S, x, .;Q).
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Therefore one obtains the isomorphismH2i−n
M (S, i;Q) ∼= CHi(S, x, n;Q)

for all i ≥ 0 and all n.

(3.3) Corollary.

(i) The higher Chow-groups CHi(S, x, n;Q) are in fact independent

of the choice of the atlas and therefore intrinsic to the stack for all

smooth algebraic stacks. The higher Chow groups CHi(S, x, n;Q)

are independent of the choice of the atlas x for all stacks of finite

type over the field k.

(ii) If f : S ′ → S is a map of smooth algebraic stacks, one obtains

an induced map f∗ : CH∗(S, .;Q) → CH∗(S ′, .;Q).

(iii) If S is a smooth algebraic stack, one obtains an intersection-

pairing:

∪ : CHi(S, n;Q)⊗ CHj(S,m;Q) −→ CHi+j(S, n+m;Q).

In addition, if f : S ′ → S is a map of smooth algebraic stacks, the

induced map f∗ : CH∗(S, .;Q)) → CH∗(S ′, .;Q) is compatible with

the above intersection pairing.
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(3.4) Examples: (i) Let X be a smooth scheme of finite type, G

an affine smooth group scheme acting on X. Then there exists an

intersection pairing

∪ : CHi([X/G], n;Q) ⊗ CHj([X/G],m;Q) −→ CHi+j([X/G], n +

m;Q)

(ii) Next assume the action is locally proper and the stabilizers are

all finite and reduced and M[X/G] is a coarse moduli space. Then

one obtains an isomorphism CH∗([X/G], .;Q) ∼= CH∗(M[X/G], .;Q)

and hence an induced intersection pairing on the latter provided X

is smooth.

(iii) Let k be algebraically closed, X a smooth projective curve of

genus g over k and MG the stack of principal G-bundles over X.

(See [LS] for example.) (This is a smooth stack of pure dimension

(g − 1).dim(G).) Then there exists an intersection pairing

∪ : CH∗(MG, .;Q)⊗ CH∗(MG, .;Q) −→ CH∗(MG, , .;Q)

(iv) Let X denote a smooth projective variety which is convex in the

sense of [F-P] p.6. Let M̄g,n(X,β) denote the stack of stable families

of maps of n-pointed genus g-curves to X and let M̄g,n(X,β) denote
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the corresponding coarse-moduli space. Here β denotes a class in

CH1(X). If 3g − 3 + n ≥ 0, one obtains an intersection pairing

∪ : CH∗(M̄g,n(X,β), .;Q)⊗ CH∗(M̄g,n(X,β), .;Q)

−→ CH∗(M̄g,n(X,β), .;Q).

Moreover, one also obtains an isomorphism CH∗(M̄g,n(X,β), .;Q) ∼=
CH∗(M̄g,n(X,β), .;Q) and therefore an induced pairing

∪ : CH∗(M̄g,n(X,β), .;Q)⊗ CH∗(M̄g,n(X,β), .;Q)

−→ CH∗(M̄g,n(X,β), .;Q).
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A theory of Chern classes and higher Chern classes (in the sense

of Gillet) comes for free by our techniques as in the following:

(3.5) Theorem (Chern classes) Let S denote an algebraic stack

of dimension d and let x : X −→ S denote a fixed atlas for S. Let

K0(S) denote the Grothendieck group of vector bundles on S.

(i) If S is smooth and equi-dimensional, one obtains Chern-classes

ci : K0(S) −→ CHd−i(S, x, 0;Q), i ≥ 0

which pull-back under any representable flat map S ′ −→ S.

(ii) Projective space bundle theorem. Let E denote a vector bundle of

rank r on the algebraic stack S and let π : P(E) = Proj(E) −→ S de-

note the associated projective space bundle. Let OP(E)(1) denote the

tautological bundle on P(E). This defines a class ψE ε CHd+r−2(P(E), 0;Q).

Then the map⊕r−1
i=0CH∗(S, .;Q) −→ CH∗(P(E), .;Q) sending (a0, ..., ar−1)

to Σiπ
∗(ai).ψi

E is an isomorphism.

(iii) For each integer i, let Γ(i) denote a complex of Abelian sheaves

on the big smooth site of all algebraic stacks locally of finite presen-

tation over k so that there exist universal Chern classes Cp
i εHdi

et(B.GLp,Γ(i)).

Let K(S) denote the Waldhausen K-theory space of the category of

perfect complexes on S. Then one obtains higher Chern classes
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Ci(n) : πn(K(S)) −→ Hdi−n
smt (S,Γ(i))

where d is an integer depending on the complex Γ(i) and the right

hand side denotes hypercohomology on the smooth site of the stack

S. These pull-back under any representable map. In case the stack

S is smooth, there exist higher Chern classes Ci(n) : πnK(S) →
CHi(S, n;Q).

Remark The Chern classes in (iii) are also obtained in the thesis of

Toen for the K-theory of the exact category of vector bundles on S
by similar methods for certain other complexes.

(3.6) Proposition

(i) If S is any smooth Deligne-Mumford stack of finite type over k,

there exists an isomorphism CH∗(S, 0;Q) ∼= CH∗
naive(S)⊗

Z
Q.

(ii) The intersection pairing on CH∗(S, 0;Q) agrees with the known

intersection pairing on the naive Chow group CH∗
naive(S)⊗

Z
Q.

Remark. The proof involves showing the existence of λ-operations on

the (higher) étale K-theory of any smooth Deligne-Mumford stack

with rational coefficients and comparing with the older definitions of

intersection product on Deligne-Mumford stacks using K-theoretic

techniques (as was done by Gillet).
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4. Some concluding remarks.

• Comparison with the Totaro-Edidin-Graham theory for quotient

stacks

Should be the same with rational coefficients for all quotient stacks.

Example: BGm vs P∞
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Fortunately they are identified in the motivic homotopy category of

schemes ( of Morel and Voevodsky)!

• All Borel style cohomology theories are rather coarse invariants

of stacks: in particular they are not suited as the target of a RR

transformation (if one considers non-representable morphisms). The

work of Toen (based on prior work by Vistoli) shows how to get finer

invariants for Deligne-Mumford stacks. In an ongoing project, we

show how to define Bredon style cohomology and homology theories

for algebraic stacks that have a coarse moduli space with respect to

any of the standard cohomology-homology theories for the moduli

space. In particular, using the motivic cohomology complex on the

moduli space, this construction provides a Bredon style cohmology

theory for the stack that would be finer than the motivic cohomology

of the stack considered above.

See http://www.math.ohio-state.edu/˜ joshua/pub.html

24


