Higgs bundles on Riemann Surfaces

Eugene Z. Xia

Representations of Fundamental Group

Genus g: The number of holes.

$$\pi_1(X) = \{A_i, B_i : 0 \le i \le g, \\ \prod_{i=1}^g A_i B_i A_i^{-1} B_i^{-1} = e\}$$

G: a linear group, e.g. $GL(n, \mathbb{C})$, U(n), U(p, 1) and etc.

 $Hom(\pi_1(X), G)$: set of homomorphisms from $\pi_1(X)$ to G.

$$Hom(\pi_1(X), G) = \{(a_1, b_1, \dots, a_g, b_g) \in G^{2g} :$$
$$\prod_{i=1}^g a_i b_i a_i^{-1} b_i^{-1} = I\}$$
$$0 \longrightarrow \mathbb{Z} \longrightarrow \Gamma \longrightarrow \pi_1(X) \longrightarrow 0.$$
$$Hom(\Gamma, G) = \{(a_1, b_1, \dots, a_g, b_g) \in G^{2g} :$$
$$\prod_{i=1}^g a_i b_i a_i^{-1} b_i^{-1} \in Z(G)\}$$

Representations (continue)

G acts on $Hom(\Gamma, G)$ by conjugation (isomorphism) and we form the quotients $Hom^+(\Gamma, G)/G$ (of completely reducible representations)

Suppose G is U(p,q) with $p \le q$. Then each representation is associated with two invariants:

Chern class: $c \in \mathbb{Z}$ and $0 \leq c ;$

Toledo invariant: $au \in \frac{2}{p+q}\mathbb{Z}$ and

 $-2q(g-1) \le \tau \le 2q(g-1).$

Theorem 1 (Xia) $Hom^+(\pi_1(X), U(p, 1))/U(p, 1)$ has one connected component for each even integer $\tau \in [-2(g-1), 2(g-1)].$

Theorem 2 (Markman,Xia) $Hom^+(\Gamma, U(p, p))/U(p, p)$ has one connected component for a fixed c and for each Toledo invariant $2(p-1)(g-2) < \tau \leq 2p(g-1)$.

$GL(n, \mathbb{C})$ -Higgs bundles

 $GL(n, \mathbb{C})$ -Higgs bundles: (V, Φ) where V is a vector bundle and $\Phi : V \to V \otimes \Omega^1$. Let (V, Φ) be a Higgs bundle.

Slope: $\mu(V) = deg(V)/rank(V)$

(Semi-)Stability: If $W \subset V$ and $\Phi(W) \subset W \otimes \Omega^1_X$, then $\mu(W)(\leq) < \mu(V)$.

Denote by $\mathbb{C}M$ the moduli of *S*-equivalence of semi-stable $GL(n, \mathbb{C})$ -Higgs bundles.

Higgs bundles and the representation varieties

Theorem 3 (Hitchin et al) $Hom^+(\Gamma, G)/G$ and $\mathbb{C}M$ are homeomorphic.

Example
$$(G = \mathbb{C}^*)$$
:
 $\mathbb{C}^{\cdot} : \mathbb{C} \to 0 \to \cdots; \quad \Omega^{\cdot} : \Omega^0 \to \Omega^1 \to \cdots$
 $0 \longrightarrow H^1(\Omega^0) \longrightarrow H^1(\mathbb{C}) \longrightarrow H^0(\Omega^1) \longrightarrow 0,$
 $\Omega^{0^{\cdot}} : \Omega^0 \to 0 \to \cdots; \quad \Omega^{0, \cdot} : \Omega^{0, 0} \xrightarrow{\overline{\partial}} \Omega^{0, 1} \to \cdots$
 $H^1(\Omega^0) = H^{0, 1}_{\overline{\partial}}.$
 $0 \longrightarrow \mathbb{Z}^{\cdot} \longrightarrow \mathbb{C}^{\cdot} \longrightarrow \mathbb{C}^{* \cdot} \longrightarrow 0.$
 $0 \longrightarrow \mathbb{Z}^{\cdot} \longrightarrow \Omega^{\cdot} \longrightarrow \Omega^{* \cdot} \longrightarrow 0.$
 $0 \longrightarrow H^1(\mathbb{Z}^{\cdot}) \longrightarrow H^1(\mathbb{C}^{\cdot}) \longrightarrow H^1(\mathbb{C}^{* \cdot}) \longrightarrow H^2(\mathbb{Z}^{\cdot}) \cdots$
 $0 \longrightarrow H^1(\mathbb{Z}^{\cdot}) \longrightarrow H^1(\Omega^{\cdot}) \longrightarrow H^1(\Omega^{* \cdot}) \longrightarrow H^2(\mathbb{Z}^{\cdot}) \cdots$

<u>The \mathbb{C}^* -action</u>

The \mathbb{C}^* -action:

 $\mathbb{C}^* \times \mathbb{C}M \to \mathbb{C}M, \quad (t, (V, \Phi)) \mapsto (V, t\Phi).$ The fixed points of this action are called Hodge bundles.

Chern class: c = deg(V). Denote by $\mathbb{C}M_c \subset \mathbb{C}M$ the subspace associated with c.

Proposition 1 $\mathbb{C}M_c \cong \mathbb{C}M_{-c}$.

Isomorphism : $(V, \Phi) \rightarrow (V^*, \Phi^*)$.

U(p,q)-Higgs bundles

U(p,q)-Higgs bundles: $(V_P \oplus V_Q, (\Phi_1, \Phi_2))$ where V_P, V_Q are vector bundles of rank-p and rank-q and

 $\Phi_1: V_P \to V_Q \otimes \Omega^1_X, \quad \Phi_2: V_Q \to V_P \otimes \Omega^1_X$ (Note: $\mathfrak{u}(p,q) = \mathfrak{u}(p) \times \mathfrak{u}(q) + \mathfrak{p}$).

Denote by $M \subset \mathbb{C}M$ the subspace of U(p,q)-Higgs bundles. The C^* -action preserves M.

The Toledo invariant

Let $(V_P \oplus V_Q, \Phi) \in M$.

Toledo invariant: $\tau = \frac{qd_P - pd_Q}{p+q}$.

Denote by $M_{d_P,d_Q} \subset M$.

WOLOG $\tau \geq 0$ or equivalently $d_P \geq d_Q$.

The C^* -action preserves M_{d_P,d_Q} .

Binary Hodge bundles

A U(p,q)-Higgs bundle $(V_P \oplus V_Q, (\Phi_1, \Phi_2))$ is binary if $\Phi_2 \equiv 0$. Denote by $B_{d_P,d_Q} \subset M_{d_P,d_Q}$ the subscheme of binary Hodge bundles.

Binary Hodge bundle: $(V_P \xrightarrow{\Phi} V_Q \otimes \Omega^1_X)$

Proposition 2 Every Higgs bundle in M can be deformed to a binary Hodge bundle.

Hodge bundles and Moorse theory

Theorem 4 (Hitchin et al) The Hodge bundles are critical points of $\mathbb{C}M$ (M_{d_P,d_Q}) .

Compute the Moorse index at critical points.

 $End(V) \xrightarrow{ad_{\Phi}} End(V) \otimes \Omega^{1}$

When (E, Φ) is a Hodge bundle, $\mathcal{H}^1(K_{\bullet})$ decomposes into weight spaces of the natural \mathbb{C}^* -action.

If there is a negative weight space, then the critical point is not a local minimum.

1

U(p, 1)-Binary Hodge bundles

Assume c = 0.

Suffices to show B_{d_P,d_Q} is connected.

Canonical factorization:

Semi-stability implies the bound on τ :

Theorem 5 $\tau \le 2(g-1)$.

Let $d_2 = deg(V_2)$ and $B_{d_P,d_Q}(d_2) \subset B_{d_P,d_Q}$ the subset with the canonical factorization. B_{d_P,d_Q} is stratified by the $B_{d_P,d_Q}(d_2)$'s.

Families of Higgs bundles

Proposition 3 B_{d_P,d_Q} is connected.

Construct a family that parameterizes all possible V_1 's in the canonical decomposition (semistability implies such family is bounded). The construction uses the Grothendieck Quot scheme.

Construct all possible V_2 's and V_Q 's. These are line bundles, so we are just dealing with Jacobi varieties. Care must be taken about the map ψ .

Construct all possible extension $Ext^1(V_2, V_1)$.

We thus end with a gigantic smooth object F that parameterize a family of Higgs bundles which contains all elements in $B_{d_P,d_O}(d_2)$.

The condition of semi-stability is open. Hence contains an open and connected subscheme that maps onto $B_{d_P,d_Q}(d_2)$.

Deformation of $B_{d_P,d_Q}(d_2)$

$$B_{\tau} = \bigcup_{d_2} B_{d_P, d_Q}(d_2)$$

Fix a set of distinct points

 $A = \{x_1, ..., x_{d_2}, y_1, ..., y_{d_2-1}, z_1, ..., z_{d_2-d-1}\} \subset X$ and let $Y = X \setminus A$. Fix $y \in Y$. For $t \in Y$, consider the following divisors on X:

$$D_2 = \sum_{i=1}^{d_2} x_i, \quad C(t) = D_2 - t - \sum_{i=1}^{d_2 - 1} y_i,$$

$$C = D_2 - y - \sum_{i=1}^{d_2 - d - 1} z_i.$$

Y parameterizes a family of Higgs bundles

$$V_P(t) = \mathcal{O}(C) \bigoplus_{i=1}^{p-1} \mathcal{O}(C_i(t)),$$

Deformation of $B_{d_P,d_O}(d_2)$ (Continue)

Denote by p and $p_i(t)$, the projections to $\mathcal{O}(C)$ and $\mathcal{O}(C_i(t))$.

 $D_2 - C(t)$ and $D_2 - C$ define maps $h_i(t)$: $\mathcal{O}(C_i(t)) \longrightarrow \mathcal{O}(D_2)$ and $h : \mathcal{O}(C) \longrightarrow \mathcal{O}(D_2)$. These maps induce a map

$$G_t: V_P(t) \longrightarrow \mathcal{O}(D_2), \quad G_t = h + \sum_{i=1}^{p-1} h_i(t).$$

Let $V_2 = \mathcal{O}(D_2)$. Since $d_2 \leq (2g-2)-d$, there exists $V_Q \in J^{-d}$ and $0 \not\equiv \varphi \in \mathcal{H}^0(V_2^{-1} \otimes V_Q \otimes \Omega)$. Let $\Phi(t) = \varphi \circ G_t$.

 $(V_P(t) \oplus V_Q, \Phi(t))$ is a family of Higgs bundles parameterized by Y. Let p_P, p_Q be the projections onto the $V_P(t), V_Q$ factors.

Proposition 4 The Higgs bundle $(V_P(t) \oplus V_Q, \Phi(t))$ is in $B_{d_P,d_Q}(d_2 - 1)$ if t = y and in $B_\tau(d_2)$ if $t \neq y$.

U(p,p)-binary bundles

Canonical factorization:

Theorem 6 $\tau \le 2p(g-1)$.

Lemma 1 Suppose $\tau > 2(p-1)(g-1)$. Then $(V_P \oplus V_Q, (\Phi_1, \Phi_2)) \in M_{d_P, d_Q}$ implies

 $\Phi_1: V_P \longrightarrow V_Q \otimes \Omega$

is generically surjective.

Proof: Otherwise the sub-Higgs bundle ($V \oplus W_1 \otimes \Omega^{-1}$, (Φ_1, Φ_2)) is Φ -invariant and with a larger slope.

Families of Higgs bundles

Proposition 5 B_{d_P,d_O} is irreducible.

Construct a family that parameterizes all possible V_Q 's in the canonical decomposition (semistability implies such family is bounded). Construct

$$Q_1 := Quot_{\bigoplus_{i=1}^{H(1)}L^{-1}/X/\mathbb{C}}^H,$$

the Grothendieck scheme parameterizing the quotient sheaves of $\bigoplus_{i=1}^{H(1)} L^{-1}$ with Hilbert polynomial $H(m) := \chi(V_Q \otimes L^m)$, where L is some ample line bundle.

 Q_1 contains an irreducible and smooth quasiprojective variety

 $R = \{ W \in Q_1 : W \text{ is locally free and } \mathcal{H}^1(W) = 0 \}$

Families of Higgs bundles

Construct

 $E \longrightarrow X \times R$

the universal quotient bundle of $\bigoplus_{i=1}^{H(1)} L^{-1}$. Then there exists a relative Quot scheme

$$Q_2 := Quot_{E/X \times R/R}^{-d_P + d_Q + 2p(g-1)}$$

parameterizing quotient sheaves of E supported as length $-d_P + d_Q + 2p(g-1)$ subschemes of a fiber of $X \times R \to R$.

We thus end with a gigantic smooth object Q_2 that parameterize a family of Higgs bundles which contains all elements in B_{d_P,d_O} .

Proposition 6 Q_2 is irreducible.

The condition of semi-stability is open. Hence contains an open and connected subscheme that maps onto B_{d_P,d_Q} .

Irrducibility of Q_2

 $Q_2 \rightarrow R$ factors through a surjective morphism

 $h : Q_2 \rightarrow R \times X^{(-d_P+d_Q+2p(g-1))},$

 $Q_2^{free} \subset Q_2$ parameterizing pairs of quotient sheaves $(\bigoplus_{i=1}^{H(1)} L^{-1} \to W, W \to F)$, where F is supported on a subscheme $D \subset X$ as a free \mathcal{O}_D -module of rank 1.

The restriction of h to Q_2^{free} is a smooth.

 $R, X^{(-d_P+d_Q+2p(g-1))}$ and the fibers of h (restricting to Q_2^{free}) are irreducible.

Each fiber of h in Q_2^{free} is dense in the fiber in Q_2

Lemma 2 The Quot scheme $Q(\ell, \mathcal{O}_{(x)}^p)$, of length l quotients of the stalk at x of the trivial rank p vector bundle, is irreducible.

1

m the maximal ideal of $x,\; A=\mathcal{O}_{(x)}/m^{\ell}.\; G=GL(p,A)$

Any quotient sheaf in $Q(\ell, \mathcal{O}_{(x)}^p)$ is also a quotient of the free A-module of rank p.

Deformation: $\eta(t) := \psi + t\varphi$, $t \in \mathbb{C}$,

$$\psi = \begin{pmatrix} 0 & \cdots & 0 & z^{\ell_p} \\ z^{\ell_1} & 0 & \cdots & 0 \\ 0 & z^{\ell_2} & 0 & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & \cdots & 0 & z^{\ell_{p-1}} & 0 \end{pmatrix} \text{ and }$$

$$\varphi = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & & 0 \\ 0 & 1 & & 0 \\ 0 & 0 & \vdots & \vdots \\ \vdots & \vdots & 1 & 0 \\ 0 & 0 & \cdots & 0 & 1 & 0 \\ 0 & 0 & \cdots & 0 & 0 & z^{\ell} \end{pmatrix}.$$

$$\eta(t)_p = \frac{z^{\ell_p}}{t} \eta(t)_1 - \sum_{k=2}^{p-1} \left[\left(\frac{-1}{t} \right)^k z^{(\ell_p + \sum_{i=1}^{k-1} \ell_i)} \right] \eta(t)_k$$

$$+\left[t+\left(\frac{-1}{t}\right)^{p-1}\right]\cdot z^{\ell}\cdot e_p.$$

1

Some related results

- [Hitchin] The components in Hom(π(X), PSL(2, ℝ))/PSL(2, ℝ) are vector bundles of rank e+(g-1) over the 2(g-1) - e symmetric products of X, where e is the Euler characteristic (invariant).
- [Xia] The components in Hom(π(X), SO(2,1))/SO(2,1) that do not correspond to components in Hom(π(X), PSL(2, ℝ))/PSL(2, ℝ) are either the total space of a vector bundle of rank 2g - 2 over a torus of complex dimension g - 1 or contain an open dense set that is a vector bundle of rank 2g - 2 over a torus of complex dimension g - 1 with the identity removed.

Some related results (continue)

- [Xia] Hom(π(X), PU(2,1))/PU(2,1) has 6(g-1) + 1 connected components, and these components are distinguished by the Toledo invariants.
- [Gothen] The Betti numbers of the smooth components of $Hom(\pi(X), PU(2, 1))/PU(2, 1)$ have been computed.
- [Bradlow, Garcia-Prada, Gothen] Each component of Hom(π₁(X), PU(p,q))/PU(p,q), associated with a fixed τ and a fixed Chern class c, is connected.