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Notation

All 3-manifolds considered here are in-
tegral homology spheres (ZHS) unless

otherwise specified.
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Casson defined Agyr2)(X) as a signed
count of irreducible SU(2) representa-
tions p : m1 X — SU(2) up to conjuga-

tion.

Theorem [Taubes]

Asu)(X) = > (—1)SFOA),
[A]e M*

Here, M is the SU(2) Flat Moduli
Space and M* the subspace of irre-
ducible flat connections. It may be
necessary to perturb the flathess equa-
tions to ensure that M* is finite, but
the RHS is independent of (generic)

perturbation.



Spectral Flow

SF(0,A) = SF(Ky4,), where Ay is a path
of connections from the trivial connec-
tion 6 to and A and Ky, is the odd

signature operator acting on

QX su(2)) ® QX su(?2)),

Ky (& a) — (dia,daé — xdya).

If A is flat, then ker K4, =
HY(X; su(2)) @ Hi(X; su(2)).



Main Problem
For SU(n), one can define
Nsv(m)(Xih) = 3 (—1)5F @A)
[Ale M7
but in contrast to the n = 2 case,
A%U(n)(X; h) is not independent of

perturbation h.

To extract a well-defined invariant of
homology spheres, we need to define
a counterterm involving only reducible
connections that corrects for this de-

pendence.



Any reducible flat SU(3) connection on
a ZHS is either trivial or has image in

SU(2) x {1} (up to gauge).

The tangent space to A is Q1(X; su(3)),
with adjoint action of SU(2) x {1} on
the coefficients

su(3) = (su(2) @ R) @ C?,

(adjoint @ trivial) & canonical.

Split the spectral flow accordingly and
write SF, for SFCQ. The correction
term has form

3 (_1)SF(9,B) (SFI/(BOvB))
[BleMied 2

for some fixed reducible Bg.



Natural choice: By = 6.

Gauge ambiguity: SF,(0, B) depends
on the choice of gauge representative
SF,(0,9g-B) = SF,(0,B) + 4deg(g).

To fix this problem, we use the Chern-
Simons function cs : A — R to define a

counter term, since

cs(g-A) = cs(A) + deg(g).

MN(X;:h) = N
 \SF(0,B) SF,(0,B) —4cs(B) + 2
> (1) g

[BleMied




Theorem [B-Herald, 1998]
Asu(3)(X) = N(X;h) + N'(X; h)
IS independent of generic small A and

satisfies Agyr(3)(—X) = Agy(3)(X).

Theorem [BH, 1999]
Ast(3)(X#Y) = Agy(3) (X)+Asp(3) (V)
+4A50(2) (X)Ag(2)(Y).

Corollary
Asu(3) — 2X5y 2y i additive under con-

nected sum.



Although )\gU(?)) IS the natural general-
ization of Walker’s correction term, it

has several unpleasant features:

1. Chern-Simons values are not known

to be rational.

2. Asy(3) Is not a finite type invariant.

3. Even when MN(X,h) is well-defined
independent of h (e.g. when M" js
nondegenerate), computing M’ (X, h)

iIs fraught with technical difficulties.

Definition
Mred is nondegenerate if

HL(X;C?) =0 for all [B] € M,
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Next, we will define an invariant

that carries the same information as

Asy(3y modulo SU(2) gauge theory.

The basic idea is that with a different
choice of basepoint(s), one can define
a correction term 7" with no gauge am-

biguity, SO no counter term is needed.

This new invariant has the advantage
of being more readily computable. For
instance, whenever M"€ is nondegen-

erate, 7" vanishes and tgy 3y = A\



An integer valued correction term
Let Go C G be the identity component

(degree zero gauge transformations).

A

|
A/Go
| Z — cover

A/G
The last quotient introduces 7w, and

spectral flow is well-defined upstairs on
A/Gp.

Let M be the lift of M. Then

(i) cs(g-A) = cs(A) + deg(g), and
(ii) es : A — R is constant on compo-

nents of flat connections.
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Lemma The cover M — M is trivial.

Key Observation

Suppose U C A/G is connected and
U — U is the trivial Z cover.

In this situation, the spectral flow be-
tween any two points [A],[B] € U can
be defined unambiguously by lifting.
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Number the components C'4,...,C, of
Mred = tu(z). Foreachi=1,...n,
choose [BZ.’"], [B;"] on C; with the prop-
erty that SFV(B;,B;F) is maximal.

Define 7/(X; h) =

n
PYX (—1)SFOB (sk(B}, B)
=1 [B]E./\/lzed

near Cj

+SF,(B;,B) 4+ dim Hll}_(x; (32)) .
Claim 7"(X; h) € Z.

Note that B;—L are SU(2) connections.
Identify C2 with H (quaternions) and
the action of SU(2) C H with left mul-

tiplication.
12



Because Htl}_(X; C?2) is quaternionic, its

dimension is a multiple of 4. Further,
additivity of SF' gives that

SF,(BY, B) + SF,(B;, B)
= 25F,(B;",B) + SF,(B; , B;").

Now SF,,(BZ-'", B) is even because of the
complex structure on the eigenspaces
of KBt'

Also SF,(B; ,B;) is divisible by 4 be-

cause the eigenspaces of K g, are quater-

nionic.
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Theorem [B-H-Kirk]

Let TSU(3)(X) = MN(X;h)+7"(X;h).
Then 7g7(3)(X) € Z, is independent of
h, and satisfies:

Tsu(3)(—X) = 75 (3)(X).
Tsu(3)(X#Y) = 751(3)(X) + 75y (3)(Y)
+4Asu(2) (X)) Asu(2) (V)

Proof

Using what we already know about Ag(3),
It suffices to consider Agy 3y — Tsy(3)-
For example, (ii) holds < Agr(3)—Tsu(3)

IS additive under connected sum.

We first describe Agyr(3)—7gr7(3) In terms

of a more general construction.
14



Proposition
For any a1,...,an € R,

n
DOEED DI CS ) et
1=1 [B]EMzed

near C;

IS independent of generic small h.

If each component C; is Bott-Morse, it
contributes +x(C;)a; to this invariant
(weighted Casson SU(2) invariant).

Corollary

If the weights satisfy o;(A#60) = o;(A)
and likewise for a;(0#B), then the re-
sulting invariant is additive under con-

nected sum.
15



Claim

Asu3) — Tsu@) =N — 1"
n

=Y ¥ (-1)%FEB)y,
1=1 [B]E./\/lzed
near C;
where

a; = max [p(A) + 3 dim H}(X; C?)}

: I T 1 C 2
—|—[g]1é%i{p(B) 5dim HE(X; C2)}.

Here, p(A) is the Atiyah-Patodi-Singer rho in-

variant associated to the flat SU(2) connection
via its fundamental representation on C2. l.e.

p(A) = SF(0, A) — 4cs(A) + 2 —dim HY(X; C?)

(see [Kirk Klassen Ruberman]).
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Brieskorn spheres
Fix p,q,r pairwise relatively prime and
consider the Brieskorn homology sphere

>(p,q,T).

Taking a, b, c with

aqr + bpr +cpqg = 1,
then w12 has presentation
(x,y,z, h | h central, zP = h®, y9 = hb,

2" = h¢ xyz = 1).
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Proposition
If :m X — SU(3) is irreducible, then
a(h) = e2™k/3] is central.

If o : mX — SU(3) is reducible, then
up to conjugation im(a) C SU(2) x {1}

and
[ +1 O
+1

a(h) =] O
0 0

=~ O O

Path components of
R(Z,SU(3)) = Mgy (zy(Z)

are indexed by fixing a(h) and choosing
a(x),a(y) and a(z) to be p-th, ¢g-th and

r-th roots of h®, h® and k¢, respectively.
18



Using the Seifert fibration X — S2, one
can interpret R(X,SU(3)) in terms of
moduli spaces of parabolic bundles over

S2 with 3 marked points.

N

1 Y

R(>,SU(3)) contains 4 types of com-
ponents. Type II and IV contain re-
ducibles, but only type IV components

are singular.
19



In case p = 2, there are no 2-sphere compo-
nents. In this case, 7g;;(3)(X) is simply a count
of the Type I points.

>(2,3,6k+ 1) 3k + k
>(2,5,10k+ 1) 33k< + 9k

>(2,5,10k+3)| 33k2+19k+2
>(2,7,14k £ 1) 138k< + 26k
5(2,7,14k +3) | 138k2+ 62k + 4
>(2,7,14k £ 5) | 138k2 4+ 102k + 16
>(2,9,18k + 1) 390k< + 58k
>(2,9,18k + 5) | 390k2 4+ 210k + 24
>(2,9,18k +7) | 390k2 4+ 298k + 52

If p > 2, then R(X,SU(3)) always contains
pointed 2-spheres. To resolve them, we use
twisting perturbations.
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Decomposing > along a torus
Let Y = S x D2 be a neighborhood of

the singular r-fiber in >(p,q,r) and set
/Z =2 —Y. Then

ZZYUTZ.

We perturb the flatness equations in
the solid torus Y and study the effect

on a pointed 2-sphere.

Theorem [Floer]
If A is perturbed flat on >, then its

restriction Al|, is flat.
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We view M(X) and My(X) as an in-
tersection in the 4-dimensional “SU(3)

Pillowcase”
M(T) =T? x T?/8Sa,
where S3 acts diagonally.

Mp(Y)
J/ N

M, (2) M(T)

N /
M(Z)

T he restriction map  collapses 2-spheres

to points.

22



sphere .
bundle\],’

M(T)
(4-dim’l)

Perturbing moves this intersection point
transverse to the arc of pointed 2-spheres.
The restriction map M*(Z) — M(T) is
submersive at this new point and has

nondegenerate 2-sphere fibers.
23



Thus Mp(X) = M(Z) N Mp(Y) con-
sists of one isolated reducible orbit and

a smooth nondegenerate 2-sphere of

irreducible orbits.

The 2-sphere is Bott-Morse, and so
contributes its Euler characteristic to

the SU(3) Casson invariant.
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Spectral flow of reducibles

Let B; be the path of hye-perturbed flat
reducible connections near a pointed 2-
sphere. To calculate SF,(Bg, B:), we
split the spectral flow according to the

manifold decomposition

S =Y UpZ

To get a self-adjoint operator on manifolds
with boundary, we use the APS boundary con-
ditions P4+ and P~ with respect to the tan-
gential operator

Sq - QOFI2(7; €2) - QOFI+2(7; C2)

Sa(aaﬁﬂ’) — (*daﬁa — *x dga — dg * v, dg * 5) :

Here, a = A|p is a connection on T and P are
the positive and negative eigenspans of S, on
L? forms.
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Taking paths of reducible connections
onY or Z in cylindrical form, then both
SFE,(B;, PT:Y) and SF,(B¢, P~; Z) be-
come well-defined. If a; is nontrivial,
then HOT1+2(T;C?) = 0.

Theorem [Nicolaescu]
SE,(By;X) = SF, (B, PT:Y)
+SFu (B, P Z).

Claim

For the path B; of reducible perturbed
flat connections near a pointed 2-sphere,
(i) SF(B, PT;Y) =0,

(ii) SF,(By, P~ Z7) = —2.
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Part (i) is not difficult; it follows from
vanishing of cohomology H%;)"l(Y; C2).
The argument for part (ii) uses addi-
tivity of the spectral flow under com-

position of paths.

Because M7f? is a union of open cylin-
ders S1 x R, there is a two parame-
ter family B of flat connections with

Bo+ = Bt and By ; abelian.
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The path @ is homotopic to (1 - 8> - 33,
where dim H(Z; C?) is constant along

1 and 53. Thus
SF(B) = SF(B1-B2-B3) = SF(B2).

Moreover, 8o C M®®(Z) is a path of
abelians. Along (3>, at t = 0 there are
four zero modes and for t > O there are
none. As t increases from t = 0, two
of the zero modes go up and the other
two go down, hence

SFy(Bt, Z; P~) = SF(B2) = —2.
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T heorem

Each pointed 2-sphere contributes 42
to g3y (Z(ps g, 7).

ZHS TSU(3)(Z)
>(3,4,12k £+ 1) 105k= + 21k
>(3,4,12k+5) | 105k2+ 87k + 16
>(3,5,15k+ 1) 276k= + 40k

5(3,5,15k +2) | 276k2+ 74k + 2
>(3,5,15k+4) | 276k2 + 148k + 16
>(3,5,15k+7) | 276k2 4+ 254k + 56

Let Ky 4 = the (p, q) torus knot and set
Xn = 1/n Dehn surgery on K, 4. Then
Xn = +3(p,q,r) for r = |pgn — 1].
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(p, q) ’ﬂSU(3)()Cn)
(2,3) 3nc —n
(2,5) 33n2 — 9n
(2,7) 138n2 — 26n
(2,9) 39012 — 58n
(2,11)| 885n2—107n
(2,13)| 1743n2—179n
(2,15)| 3108n2—276n
(3,4) 105n° — 21n
(3,5) 27612 — 40n
(3,7) 1128n2 — 124n
(3,8) 195312 — 179n
(3,10)| 4851n2—367n
(3,11) | 7140n2 — 476n
(3,13) | 14028n2 —812n
(3,14) | 18915n2 — 993n
(4,5) 1011n° — 111n
(4,7) | 4110n2 — 320n
(4,9) | 11490n2 — 712n
(4,11) | 25935n2 — 1297n
(4,13) | 5092512 — 2171n
(4,15) | 9063612 — 3320n

(4.17)

149940n? — 4888n

30



Conjectures

1. 7g17(3) : {ZHS} — 2Z (proved 2002 BHK).

2. For any knot K in S3,
Tsr(3)(Xn) = A(K)n® + O(n)
has quadratic growth in n with
A(K) = 2c4(K) + ca(K)?

where >~ cr;(K)z%" is the Conway poly-
i>0
nomial of K.
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3. For surgeries on (2,q) torus knots,

Tsu(3)(Xn) = A(K)n® 4+ B(K)n,

where
2 _ 2 _
A(K ) = (g 1iéq 3)
21 q—
B(Ks,) = CE 1)(<:1LQ¢ q—3)

with signs in B taken according to the
value of ¢ mod 4.

Questions
4. Is 7gyz) a finite type invariant?
(Not order 6.)

5. What is the mysterious linear coef-
ficient B(K)?
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