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1. Iterated Line Integrals

Kuo-Tsai Chen: For X a smooth manifold,


 : [0;1] ! X a piecewise smooth path, and

w1; : : : ; wr smooth 1-forms on X. De�neZ


w1 : : : wr

:=
Z
0�t1�t2�����tn�1

f1(t1) : : : fr(tr)dt1 : : : dtr;

where 
�wj = fj(t)dt.

Linear combinations of these are called iterated

line integrals. They are considered as functions

on PX, where

PX = fpiecewise smooth 
 : [0;1]! Xg

An iterated integral line integral whose value

is constant on homotopy classes of paths (rel

endpoints) is said to be closed. Closed it-

erated line integrals give rise to multi-valued

functions.
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2. Examples

Polylogarithms: The k-logarithm

lnk(x) :=
X
n�1

xn

nk
jxj < 1

can be expressed as the length k iterated inte-

gral

Z x

0

dz

1� z

k�1z }| {
dz

z
� � �

dz

z

on P1 � f0;1;1g. The value of this at x = 1

is �(k).

Multiple polylogarithms: Multiple polylogs,

such as

Lm1;m2
(x1; x2) :=

X
0<k1<kn

x
k1
1 x

k2
2

k
m1

1 k
m2

2

jxjj < 1

are iterated integrals.
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For example,

L1;1(x; y) =Z (x;y)

(0;0)

 
dy

1� y

dx

1� x
+
d(xy)

1� xy

 
dy

1� y
�

dx

1� x
�
dx

x

!!
:

on

C 2 � f(x; y) : xy(1� x)(1� y)(1� xy) 6= 0g

Theta functions: On the torus C =(Z + Z�),

where Im � > 0, we have

log �(x) = log �(xo) +
�

Im �

 Z x

xo
(dz dz+ �)

�
1

2

�
z(x)� z(xo)

�2
+
1

2

�
z(xo)� z(xo)

�2!
;

where z(x) =
R x
0 dz, which is the elliptic loga-

rithm.
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3. Iterated Integrals of Higher Forms (Chen)

Suppose that w1; : : : ; wr are di�erential forms

on X, all of positive degree. We haveZ
w1w2 : : : wr 2 E

�r+
P

j degwj(PX):

Up to a signZ
w1w2 : : : wr = ���

�(p�1w1 ^ p�2w2 ^ � � � ^ p�rwr)

where

1. �r = f(t1; : : : ; tr) : 0 � t1 � t2 � � � � � tr �
1g is the time ordered form of the standard
r-simplex,

2. � : �r � PX ! Xr is the sampling map

�(t1; : : : ; tr; 
) =
�

(t1); 
(t2); : : : ; 
(tr)

�
;

3. �� denotes integration over the �ber of the
projection

� : �r � PX ! PX:
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4. Properties

For natural subsets Z of PX, such as the space
of paths Px;yX from x to y, we let Ch�(Z) be
the subcomplex of E�(Z) generated by iterated
integrals. The basic properties of iterated in-

tegrals can be summarized by:

� Ch
�(PX) is a commutative dg algebra;

� Ch
�(Px;xX) is a dg Hopf algebra with an-

tipode;

� The complexes Ch�(PX), Ch�(Px;xX), etc,
can all be described algebraically in terms

of various 
avors of the (reduced) bar con-

struction. For example:

Ch
�(Px;yX) = B(R ; E�(X); R )

with the E�(X) actions on R given by the

augmentations E�(X)! R associated to x
and y.
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For example, in Ch
�(Px;xX), we have:

Di�erential:

d
Z
w1 : : : wr =

rX
j=1

�
Z
w1 : : : dwj : : : wr

+
r�1X
j=1

�
Z
w1 : : : wj�1(wj ^ wj+1)wj+2 : : : wr

Shu�e product:Z
w1 : : : wr ^

Z
wr+1 : : : wr+s

=
X

�2sh(r;s)

�
Z
w�(1)w�(2) : : : w�(r+s)

Coproduct (induced by (�; �) 7! ��):Z
w1 : : : wr 7!

rX
j=1

Z
w1 : : : wj 


Z
wj+1 : : : wr

Antipode (induced by 
 7! 
�1):Z
w1 : : : wr 7! �

Z
wr : : : w1
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5. Chen's de Rham Theorems

Theorem 1 If X is a simply connected man-

ifold, then integration induces a natural Hopf

algebra isomorphism

H�(Ch�(Px;xX))
�= H�(Px;xX; R ):

Corollary 2 If X is simply connected, integra-

tion induces an isomorphism

H+(Ch�(Px;xX))=H
+(Ch�(Px;xX))

2

�= Hom(��(X; x); R )[1]:

Theorem 3 The integration pairing

H0(Ch�(Px;xX))
 Z�1(X; x)! C

is a pairing of Hopf algebras under which

H0(Ch�s(Px;xX))

annihilates Js+1. The induced mapping

H0(Ch�s(Px;xX))! HomZ(Z�1(X; x)=J
s+1; C )

is an isomorphism.
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6. What iterated integrals do not compute

When X is not simply connected, H�(Ch�(Px;xX))

may have very little to do with H�(Px;xX) and

��(X; x). This is because a mapping f : X ! Y

which induces an isomorphism on real coho-

mology, induces an isomorphism

H�(Ch�(Pf(x);f(x)Y ))! H�(Ch�(Px;xX)):

For example, suppose that X = B�, where �

is perfect. Since the mapping B� ! B�+ is a

homology isomorphism

H�(Ch�(Pf(x);f(x)B�
+))! H�(Ch�(Px;xB�))

is an isomorphism.

One of my main points will be that, in the the-

ory of motives, H�(Ch�(Px;xX)) may be a more

interesting and more fundamental invariant of

(X; x) than H�(Px;xX) or ��(X; x).
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7. Hodge Theory

There are natural Hodge and weight �ltrations

on Ch�(Px;yX) which make it into a mixed Hodge
complex (MHC). When X is a compact K�ahler

manifold, these �ltrations are de�ned as fol-

lows:

Hodge �ltration: F pCh�(Px;yX) is the span ofZ
w1 : : : wr

where wj 2 F pjE�(X), where p1+ � � �+ pr � p.

Weight �ltration: This is simply the �ltration
by length:

WmCh
�(Px;yX) = Ch

�
m(Px;yX)

:= fiterated integrals of length � mg:

When X is the complement of a normal cross-
ings divisor, the weight �ltration also takes into

account the number log singularities.

These induces a MHS on H�(Ch�(Px;yX)).
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8. Extensions of MHS

If H is a Hodge structure of negative weight,

Ext1Hodge(Z; H) = HC =(HZ + F0H)

This is a complex torus which I'll denote by JH.

It is compact when H has weight �1. If X is

smooth projective, then J(H2d+1(X)(�d)) is a

GriÆths intermediate jacobian of X.

Extensions from cycles:

A homologically trivial algebraic d-cycle in X
gives rise to an element of J(H2d+1(X)(�d)):

0 ��! H2d+1(X) ��! H2d+1(X;Z) ��! H2d(Z) ��! H2d(X)


 x?? x??classZ
0 ��! H2d+1(X) ��! EZ ��! Z(d) ��! 0
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Extensions from iterated integrals:

If H1(X) vanishes, one has the exact sequence

of Z-MHS

0! H3(X)! H2(ICh�2(Px;xX))

! H2(X)
2
cup
�! H4(X)

This gives rise to the element

0! H3(X)! E ! K ! 0 (*)

of

Ext1Hodge(K;H
3(X)) = J Hom(K;H3(X))

which is independent of x 2 X, where K is the

kernel of the cup product H2(X)
2 ! H4(X).
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9. The Carlson-Clemens-Morgan Theorem

Denote the class of a divisor D in the Neron-

Severi group

NS(X) := fdivisors in Xg=(hom. equiv.)

of X by [D]. If the codimension 2 cycle

Z :=
X
j;k

njkDj \Dk

is homologically trivial, where the njk are in-

tegers (symmetric in jk) and the Dj divisors,

then bZ :=
X
j;k

njk [Dj]
 [Dk] 2 H2(X;Z)
2

is an integral Hodge class of type (2;2) in K.
Pulling back the extension (*) along the map-

ping Z(�2) ! K that takes 1 to bZ, we obtain

the extension

0! H3(X; Z(2)) ! EZ ! Z ! 0

which determines a point

�Z 2 J(H3(X)(2)):
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On the other hand, the homologically trivial

cycle Z determines a point

�(Z) 2 J(H2d�3(X)(d� 2)) = J(H3(X)(2))

Theorem 4 (Carlson-Clemens-Morgan) The

points �Z and �Z of J(H3(X)(2)) are equal.

Remark: Carlson-Clemens-Morgan phrased their

result in terms of the MHS on �3(X; x)
� rather

than that on H2(ICh�2(Px;xX)). But for this

they needed to assume that X is simply con-

nected, in which case these two MHSs deter-

mine each other. For the formulation above,

one only need assume that H1(X) vanishes. A

more general version, and a heuristic proof, is

given in math.AG/0109204.
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10. Green's Interpretation

Denote the Chow group of codimension a al-

gebraic cycles in X mod rational equivalence

by CHa(X). If one wants to understand the

product

CHa(X)
 CHb(X)! CHa+b(X)

the �rst thing one may look at is:

CHa(X)
 CHb(X)! �H2a+2b(X;Z(a+ b))

After this, one may consider the \crossover

mapping":

ker
n
CHa(X)
CHb(X)! �H2a+2b(X; Z(a+b))

o
! Ext1Hodge(Z; H

2a+2b�1(X; Z(a+ b))):
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What Green observed is that when X is a sim-

ply connected projective manifold and a = b =

1, the result of Carlson-Clemens-Morgan im-

plies this mapping is determined by the class

e(X) 2 Ext1Hodge(K;H
3(X; Z(2)))

discussed above. There is a natural mapping

ker
n
CH1(X)
CH1(X)! �H4(X;Z(2))

o
! �K(2):

The result of Carlson-Clemens-Morgan implies

that cupping this homomorphism with e(X)

gives the \crossover mapping." He suggested

that the ring structure of CH�(X) (or its as-

sociated graded) is determined by the MHS on

��(X; x).

For more details on Green's ideas and some

partial results, see Archava's UCLA thesis.
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11. Motivic Signi�cance

This result (and its heuristic generalization)

suggests that iterated integrals have a deep

motivic signi�cance. The discussion also sug-

gests that it is H�(Ch�(Px;xX)) that is mo-

tivically signi�cant, rather then H�(Px;xX) or

��(X; x).

Other evidence that H�(Ch�(Px;xX)) has a mo-

tivic signi�cance includes:

� Polylogs | particularly Terasoma's work

on mixed zeta numbers (Zagier's conjec-

ture);

� Bruno Harris's work on \harmonic volume"

| the story of the algebraic 1-cycle C�C�

in JacC (periods of this cycle determined

by periods of the fundamental group of C;
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� The algebraic version of iterated integrals

pioneered by Wojtkowiak, which includes

algebraic de Rham theorems;

� The crystalline versions due to Shiho and

Kim-Hain;

� The fact that the Q ` version has a natural

Galois action for varieties de�ned over a

number �eld.

� The compatibility of these Hodge, alge-

braic de Rham, Galois, and crystalline struc-

tures on H�(Ch�(Px;yX)) with respect to

the natural comparison isomorphisms.
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12. Adams' Cobar Construction

Iterated integrals are the de Rham realization

of the cosimplicial version of Adams' cobar
construction. The cobar construction dates
from 1953 and has roots in a slightly earlier

paper of Adams and Hilton. The cosimplicial
version appears to be due to Bous�eld and Kan

in the 1970s.

The original cobar construction gives a functor

cobar : fpointed topological spacesg

! fdi�erential graded algebrasg

and a chain map

cobar(X; x)! fcubical chains on Px;xXg

such that there are algebra isomorphisms

H0(cobar(X; x))
�= Z�1(X; x)

in general, and, when X is simply connected,

H�(cobar(X; x))
�= H�(Px;xX;Z):

I'll explain the cosimplicial version �rst.
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13. simplicial and Cosimplicial Spaces

The category of �nite ordinals ���| its objects

are the �nite ordinals [n] := f0;1; : : : ; ng; its

morphisms are order preserving functions.

The face map

dj : [n� 1]! [n]; 0 � j � n

is the unique order preserving injection that

omits the value j.

A contravariant functor ���! C is called a sim-

plicial object in the category C. A cosimplicial

object of C is a covariant functor ���! C.
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Example of cosimplicial space: Denote the

standard n-simplex by �n. We can regard its

vertices as being the ordinal [n]. Each order

preserving mapping f : [n]! [m] induces a lin-
ear mapping jf j : �n ! �m. These assemble

to give the cosimplicial space ��

�0
d0 ��

d1
���1

d0 ��
��

d2
���2

d0 ��
��
��

d3
��
�3 � � �

whose value on [n] is �n.

Example of a simplicial space: Suppose that

K is an ordered �nite simplicial complex. Then

one has the simplicial set K� whose set of n-
simplices Kn is the set of order preserving map-

pings � : [n] ! K (not necessarily injective)

such that the images of the �(j) span a sim-

plex of K.

In particular, one has I�, the simplicial model

of the unit interval:

In =
n
order preserving mappings [n]! f0;1

o
:
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14. The Cosimplicial Model of PX

The cosimplicial model of the path space of a

topological space X is

XI� = Hom(I�; X):

Its space of n-cosimplices is Hom(In; X). Since

there are n+2 order preserving mappings [n]!

f0;1g, this is just Xn+2. The jth coface map-

ping dj : XIn�1 ! XIn is

jz }| {
id� � � � � id�(diag)�

n�jz }| {
id� � � � � id : Xn+1 ! Xn+2

Denote it by P �X and its set of n-cosimplices

by PnX.
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15. The Cosimplicial Model of Px;yX

Since (@I)n consists of the two constant maps

[n] ! f0;1g, the cosimplicial space X@I� con-

sists of X � X in each degree. The map-

ping XI� ! X@I� corresponds to the projection

PX ! X � X that takes a path 
 to its end-

points.

One obtains a cosimplicial model P �x;yX for

Px;yX by taking the �ber of XI� ! X@I� over

(x; y). Note that Pn
x;yX = Xn.
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16. Geometric Realization

Just as each simplicial space has a geometric

realization, a cosimplicial space X[�] has a kind

of geometric realization



X[�]


, called the total

space associated to X�. It is the subspace ofY
n�0

X[n]�n

consisting of all sequences compatible with all

morphisms f : [n] ! [m] in ���, where X[n]�n

denotes the set of continuous mappings from

�n to X[n] endowed with the compact-open

topology.

Continuous mappings from a topological space

Z to



X[�]


 correspond naturally to continuous

mappings

�� � Z ! X[�]

of cosimplicial spaces.
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17. Comparison with Path Spaces

Regard �n as the time ordered simplex

�n = f(t1; : : : ; tn) : 0 � t1 � � � � � tn � 1g:

There are continuous mappings

PX ! kP �Xk and Px;yX ! kP �x;yXk

given by the sampling map


 7! f(t1; : : : ; tn) 7! (
(0); 
(t1); : : : ; 
(tn); 
(1))g

These correspond to the adjoint mappings

�� � PX ! P �X and �� � Px;yX ! P �x;yX;

which are the continuous mappings of cosim-

plicial spaces used when de�ning iterated inte-

grals.

25



18. Iterated Integrals

If one applies the de Rham complex functor

to P �X, where X is a smooth manifold, then

one obtains a double complex which is quasi-

isomorphic to the bar construction on the de Rham

complex E�(X) of X. (If one replaces Xn by

E�(X)
n instead of E�(Xn), one obtains the

bar construction). Elements of this double

complex can be evaluated on smooth singular

simplices

� : �k ! kP �Xk:

If � factors through PX ,! kP �Xk, then the

value of w1 
 � � � 
 wr on � is

h
Z
w1 : : : wr; �i:
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19. Chains

One needs a dual theory of chains to get peri-

ods. The story with chains is more subtle and

goes back to the original work of Adams in the

1950s. Basically, what Adams did was to con-

struct, for each singular simplex � : �n ! X,

a map

b� : In�1 ! Px;yX:

One does this by constructing continuous maps

�n : I
n�1 ! P0;n�

n

with the property that when 0 < j < n,

�n Æ e
0
j = P(dj) Æ �n�1 : I

n�2

�n Æ e
1
j =

�
P(fj) Æ �j

�
�
�
P(rn�j) Æ �n�j

�
:

These can be used to generate a \subalgebra"

of the cubical chains on Px;yX whose homology

is dual to that Ch�(Px;yX).
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�2:

0 2

1

�3:

1

2

30
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20. Cobar and Motives

The problem, then, is to understand the mo-

tivic signi�cance of the cosimplicial cobar con-

struction. More precisely, one would like to

show that the cohomology of truncated ver-

sions of the bar construction associated to, say,

all smooth varieties over a �eld K, are motives

over K in the sense of Levine or Voevodsky.

Partial progress on this problem has been made

with Marc Levine for generic points of some

varieties, such as Pn=K when K is a number

�eld. This will be good enough to give a mo-

tivic proof of the result obtained with Makoto

Matsumoto on the action of the absolute Ga-

lois group on the unipotent completion of the

fundamental group of P1
=Q

� f0;1;1g.
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