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I’ll begin the talk by telling you about some joint work with J.T. Stafford
that describes Hilbert schemes of points on some noncommutative algebraic
surfaces; then I’ll explain the meaning behind the results and the motivation
for studying these objects. Finally I’ll try to explain how the moduli spaces
that arise are related to moduli of Higgs bundles—note that there will be
only “lower nonabelian Hodge theory” here.

To begin with, we’ll need the following data.

E a complex elliptic curve
L a deg. 3 line bundle on E
σ a translation of E

Write Γσ for the graph of σ. Let

R = H0(E × E, (L� L)(−Γσ)) ⊂ H0(E,L)⊗2.

Definition. The 3-dimensional Sklyanin algebra associated to the above
data is

S = S(E,L, σ) = T •(H0(E,L))/(R).

Some properties of this algebra are:

• When σ is the identity, S ∼= C[x1, x2, x3].
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• In general, S is homogeneous coordinate ring of a noncommutative
P2. This means that (a) S has global dimension 3 (i.e. every graded
S-module has projective dimension at most 3), (b) S has finite GK-
dimension (essentially, the size of the graded pieces of S grows poly-
nomially in the grading) and in fact has the same Hilbert series as
C[x1, x2, x3], and (c) S is Gorenstein in the sense that Extq

S(C, S) = 0
if q 6= 3 and is C when q = 3.

• There is a g ∈ S3 “corresponding to E,” in the sense that Proj(S/(g))
“is” E (to be precise, this means that the category of coherent sheaves
on Proj(S/(g)), which will be explained in a moment, is equivalent to
coh(E)), and Spec(S[g−1]0) should be thought of as a (noncommuta-
tive) P2

S \ E.

Remark. To be precise, it’s best not to talk about any kind of space Proj(S)
or Spec(S[g−1]0). Instead, one just imagines that such things exist and that
this underlies the things which we can actually talk about, which are the
categories of coherent sheaves on Proj(S) (the category of finitely-generated
graded S-modules up to an equivalence relation which is essentially “two
modules give the same coherent sheaf if they are isomorphic in large graded
degree”—see a paper by Artin–Zhang or a survey paper by Stafford–van
den Bergh for details) or of coherent sheaves on Spec(S[g−1]0) (just S[g−1]0-
modules).

Fix an integer n ≥ 0.

Let M(n, σ) denote the moduli space of stable filtered vector bundles
F1 ⊂ F2 ⊂ F3 on E for which

• F1
∼= (L∗)n

• F3/F2
∼= ((σ−1)∗L)n

• F3
∼= O2n+1

E

Stability condition: for every (3-step) filtered subbundle F ′
• ⊂ F•, one

has
2 deg(F ′

3) + 3[rank(F ′
1)− rank(F ′

3/F
′
2)] < 0.



Theorem. [Nevins–Stafford]

1. M(n, σ) is a nonsingular, connected, quasiprojective holomorphic sym-
plectic variety of dimension 2n.

2. When σ is the identity automorphism of E, M(n, σ) is isomorphic to
(P2 \ E)[n] (Hilbert scheme of n points).

3. When σ has infinite order, the disjoint union∐
s∈Z/3

∐
n≥0

M(n, σ)

classifies the rank 1 torsion-free coherent sheaves on Spec(S[g−1]0) (the
noncommutative P2

S \ E).

Remarks.

a. Our study of the moduli space makes use of the “dimensional reduc-
tion” point of view in the spirit of Garcia-Prada, Bradlow... The sym-
plectic pairing turns out to have already been constructed (in a more
general setting) by Feigin–Odesskii.

b. Adding 1 to s corresponds to twisting by line bundle O(1)|P2\E. So in

some sense one still sees Pic(P2 \E) even though there are many more
line bundles now.

c. The different components seem to “fuse” from the moduli point of view
in the case |σ| = ∞—that is, there appears to be only one component
of Pic(P2

S \E) for each value of s [note: I’m not absolutely confident of
this statement, we haven’t checked carefully], which are only separated
by choosing extensions of line bundles on P2

S \ E across E.

d. The family of moduli spacesM(n, σ) as σ varies (determined by a point
of E) is flat over E.

e. I should be a little more careful in the statement of part 1 of the
theorem. The statement is correct provided M(n, σ) is nonempty—
which is true for generic σ as well as whenever σ has infinite order or is
the identity map—but it doesn’t seem to be obvious whether M(n, σ)
is always nonempty.



f. One should think of M(n, σ) as the moduli space of line bundles on
P2

S \ E “with second chern class n,” i.e. as a kind of analog of the
Hilbert scheme of points on the commutative surface.

Antecedents: the affine plane

(1) Nakajima gave a concrete description of the hyperkähler metric on (A2)[n]

via hyperkähler reduction. This motivates:

Question. Is there a geometric interpretation for the rotated complex struc-
tures on the Hilbert schemes?

I’m going to recount a (possibly revisionist) history that shows how one
arrives at the study of M(n, σ):

(2) Cannings–Holland classified rank 1 torsion-free sheaves on a noncommu-
tative A2 (more precisely, they classified rank 1 torsion-free modules over
the first Weyl algebra, i.e. the ring of algebraic differential operators on the
affine line) by points of an infinite-dimensional Grassmannian Grad.

(3) G. Wilson showed that Grad may be decomposed as a union of subspaces
Cn, each of which is a hyperkähler rotation of (A2)[n].

(4) Later Berest–Wilson showed how to directly realize the hyperkähler ro-
tations Cn of (A2)[n] as moduli spaces of some torsion-free sheaves on the
noncommutative A2 that was studied by Cannings and Holland.

(5) Since then there has been further work by Kapustin–Kuznetsov–Orlov on
analogs of these spaces for higher rank sheaves, and work by Crawley-Boevey–
Holland, Baranovsky–Ginzburg–Kuznetsov on noncommutative versions of
the minimal resolutions of Kleinian singularities.

This work raises the following question (to which our theorem is an an-
swer).

Question. Is this phenomenon (that deformations of the complex structure
on the Hilbert scheme are explained by noncommutative deformations of the
surface) a “linear” phenomenon? That is, does it only occur for the plane
and its quotients?



Techniques

The techniques we use are similar in spirit to those used in other known
cases, although of course there are some significant differences that arise
because the geometry of P2 \ E is different. In outline:

1. We prove that each torsion-free rank 1 sheaf on P2
S \E can be extended

to a line bundle on P2
S that is unique if one normalizes the degree of

the restriction to E.

2. We prove that this induces a bijection between isomorphism classes of
rank 1 torsion-free sheaves on P2

S \ E and isomorphism classes of line
bundles on P2

S with given normalization.

3. We prove that the moduli space for such line bundles on P2
S is iso-

morphic to a moduli space of monads, which is itself isomorphic to
M(n, σ).

Moduli of Higgs bundles

Here I’ll sketch some work in progress. It may seem somewhat strange
(the conclusion will be that the moduli space M(n, σ) has an expression in
terms of some rather more exotic objects) but the idea behind it is just to see
whether one can find a way of thinking about M(n, σ) that gives it more of
the structures that may be found in the work of Berest–Wilson, Nakajima,
Baranovsky–Ginzburg–Kuznetsov, Kapustin–Kuznetsov–Orlov, etc.

Consider the surface E × P1. Fix a C∞ complex vector bundle V on
E × P1. One can think of this as a family of C∞ vector bundles on E
parametrized by P1; we will write the restriction to E × {z} as Vz, and will
also write BV when we want to think of V as a bundle living on P1—that is,
BV is that sheaf, the sections of which over an open subset U ⊂ P1 consist
of C∞ sections of V |E×U .

Let LV denote the bundle of (infinite-dimensional) Lie algebras on P1

for which the fiber over z ∈ P1 is the space of C∞ sections of End(Vz) over
E × {z} (of course, I can also describe this sheaf-theoretically as I did for

BV ). This has a bundle of central extensions L̂V , which is roughly the central



extension given by the cocycle

Ω(X, Y ) =

∫
E

η ∧ 〈X, ∂tY 〉

where η is a nonzero holomorphic 1-form on E and 〈 , 〉 is the trace form
(to formulate the cocycle properly in general replace the symbol ∂t by any
partial ∂-operator in the E direction, for example by choosing a ∂-operator
on all of V and pulling back to T ∗

E).

It makes sense to talk about operators on V that, locally on E×P1 with
coordinates t on E and z on P1, look like λ·dt·∂/∂t+A·dt, where A is a matrix
of endomorphisms of V with coefficients that are C∞ functions on E×P1 (and

λ ∈ C). Let L̂∗
V denote the bundle over P1 whose sections are such operators.

This bundle is essentially the smooth part of the dual of L̂V , so we can think
of L̂∗

V with the action of the group of automorphisms of V (also thought of
as a bundle of groups over P1) as the bundle of coadjoint representations of

a kind of centrally extended relative gauge group (associated to L̂V ).

By a ∂-operator ∂B on BV I’ll mean an operator

∂B : BV −→ BV ⊗ T ∗
P1

on P1 that can be represented locally on P1 in the form dz · ∂/∂z + B · dz,

where B is a section of L̂V that is C∞ when thought of as a section of End(V )
over E × P1. A C∞ meromorphic Higgs field Φ on P1 will be a section of
KP1(D) ⊗ L̂∗

V for some effective divisor D on P1, with the same kind of
condition that the section be C∞.

The link between filtered vector bundles on E and Higgs bundles on P1

is then the following correspondence.

Correspondence. Points of M(n, σ) correspond to meromorphic Higgs
pairs (∂B, Φ), up to isomorphism, on a certain C∞ bundle over E × P1.
The relevant meromorphic Higgs pairs have poles at 0 and ∞ for which
the residues lie in fixed coadjoint orbits in L̂∗

V ; the relevant Higgs pairs are,
moreover, C∗-equivariant for the natural action on P1.

I won’t state a precise theorem about isomorphisms of moduli today be-
cause some more checking of details needs to be done. This point of view
was inspired by papers of Garland–Manton and Etingof–I. Frenkel.


