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There are some mathematical problems that lie at the foundation of the con-

cept of spacetime supersymmetry that have remained unsolved for over thirty years.

This simple fact seems almost a \secret" that goes largely unnoticed as the topic

of supersymmetry has become more broadly investigated by communities of both

mathematicians and physicists. As one who became interested in the topic soon after

its introduction by Wess and Zumino in the western physics literature (the concept

of supersymmetry appeared in the russian literature prior to this), I remain acutely

aware of this situtaion.

Can it be that theoretical physics is capable of generating a problem of such

diÆculty so as to remain intractable for such a length of time? I suspect that it is more

the fact that this problem remains one little investigated that explains this situation.

One reason I was happy to receive this invitation to speak at the Mathematical

Sciences Research Institute Workshop \Conformal Field Theory and Supersymmetry"

was to have the opportunity to present this unsolved problem before an audience

dominated by mathematicians. I am hopeful that the distinct perspective of this

community with bring a fresh viewpoint to this problem that we physicists have not

solved to this point.

In my e�orts spent thinking about this problem, I have found what I believe are

some tantalizing hints that may point toward some progress. Today in addition to

the statement of this unsolved problem, I will also present two distinct observations

that may lead to a set of tools that will become analogous to the root and weight

spaces of Lie algebra. My observations come from two sources. One of these is the

discovery of a link between a certain class of representations of real Cli�ord algebras

and the realization of 1D supersymmetric models. Since it is real Cli�ord algebras

which have been found to play this role, I have long suspected that this may lead to

the additional importance of KO-theory making its appearance in such theories. The

second obervation comes from the study of model-independent realizations of super

Virasoro algebras.

Finally, as a physicist I am also acutely aware of the diÆculty that comes about

because of the di�erences in the two di�erent languages used by the two distinct com-

munities. I am not a native of \math-speak" and so accordingly I ask my audience's

indulgence as I try my best to relay via my natural language of \physics-speak" con-

cepts that will be understood by all and especially to state the problem in a form

that is understandable by members in both communities.
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(I.) A Statment of the Problem

Perhaps the most universal starting point to understand what is space time su-

persymmetry is to begin from the space of �elds.

Fields

scalar vector graviton spinor gravitino

F = f �(x) ; Aa(x) ; ha b(x); : : : g � f ��(x) ;  a
�(x); : : : g

spin� 0; spin� 1; spin� 2 spin� 1=2; spin� 3=2

F = fFgb � fFgf

(1)

The space of �elds F has a natural Z2 grading according to the representations

into which the various �elds fall.

Bosons

So for example, the \scalar" �eld �(x) may be regarded as a map from some

d-dimensional manifold with coordinates x into the reals numbers. The \vec-

tor" �eld Aa(x) may be regarded as a map from some d-dimensional manifold

with coordinates x to the tangent vector space of the manifold. The graviton

�eld ha b(x) may be regarded as a map from some d-dimensional manifold with

coordinates x to the symmetrical Cartesian product of the tangent vector space

with itself.

Fermions

The \spinor" �eld ��(x) may be regarded as a map from some d-dimensional

manifold with coordinates x into the double cover of the tangent space to the

manifold. The \gravitino" �eld  a
�(x) may be regarded as a map from some

d-dimensional manifold with coordinates x into the Cartesian product of the

double cover of the tangent space with the tangent space.

The supersymmetry transformation is a map that acts between the spaces fFgb

and fFgf . Physicists have long assumed that this map is homotopic to the identity

map and thus assume the existence of an in�nitesimal operator ÆQ which depends

on a parameter �� (also valued in the double cover) with the property

ÆQ(�
�)F = f eFgf � f eFgb (2)
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The elements of f eFgf are linear in �� and linear in the elements of fFgf and may

involve tensors that are invariant under the action of isometries of the metric of

the d-dimensional manifold and can involve �rst derivatives. The elements of f eFgb
are linear in �� and linear in the elements of fFgb and may involve tensors that

are invariant under the action of isometries of the metric of the d-dimensional

manifold and can involve �rst derivatives.

There are another set of in�nitesimal variations (called \translations" by physi-

cists) that can be de�ned on the space of �elds. These are denoted by ÆP and

depend on parameters �a where these parameters are valued in the tangent space

to the manifold.

ÆP (�
a)F = (�a@afFgb) � (�a@afFgf) (3)

Physicists say that a system which consists of a subset of all the �elds is super-

symmetric if the system admits the following equation.

ÆQ(�
�
1 ) ÆQ(�

�
2 ) � ÆQ(�

�
2 ) ÆQ(�

�
1 ) = ÆP (�

a) ; (4)

where �a = i2 < ��1

a
���

�
2 >. Systems satisfying this condition are said to be

\o�-shell supersymmetric" or to possess \o�-shell spacetime supersymmetry." The

remarkable fact is that even now thirty years after its �rst statement, the general

solution to this problem is still not known.

What the physics community has quite e�ectively used is the fact that there is a

related set of equations on the space of �elds that is simpler to solve.

A hypersurface in �eld space may be de�ned by imposing some di�erential equa-

tions on the �elds. For example, the scalar �eld might be harmonic, satisfying the

condition that its d'Alembertian vanishes. In physics we call such a condition

\an equation of motion" if it is derivable by the extremization of some function,

typically denoted by S, that we call the action. Let us denote such equations of

motion generically by the symbol @S. Most of the discussions in the physics

literature involve representations such that

ÆQ(�
�
1 ) ÆQ(�

�
2 ) � ÆQ(�

�
2 ) ÆQ(�

�
1 ) = ÆP (�

a) + @S (5)

So why should �nding o�-shell representations be so diÆcult? In truth no one

knows. But it does seem to be a problem worthy of study.
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This section will be closed with a discussion of a very well known example of the

points raised above. There is one such representation known as \4D, N = 8

supergravity." This representation uses all of the �elds explicitly noted in our

introductory remarks above where the \spins" of the �elds satisfy 0 � s � 2.

However, in this representation, there is not a single supersymmetry parameter,

but instead eight such parameters occur, (i. e. �� ! �� I with I = 1 , . . . 8).

The �elds of this representation are given by

Table 1: Fields of 4D, N = 8 Supergravity

Field Spin Multiplicity

ha b 2 1

 a
� I 3=2 8

Aa
I J 1 28

��
I JK 1=2 56

�I JKL 0 70

The multiplities for the �elds can be seen to follow from the realization that the

indices which count the multiplicities are similar to the indices on forms, i.e.

possess a skew-symmetric property. The numbers 8, 28, 56 thus immediately

follow as consequences. The number 70 follows from the fact that although �I JKL

is complex, in an eight dimensional space there exist a Levi-Civita tensor,

which may be used to make the 4-form �I JKL either self-dual or anti-self-dual.

The explicit forms of the on-shell supersymmetry variations as well as the action

S for 4D, N = 8 supergravity can be found in the physics literature.

(II.) Two Proposals for the Fundamental Study of Problem

I certainly am in no position to give the solution to this problem today. I would

like to suggest however, that progress toward this solution may be emerging from

two quite di�erent sources,

(a.) Cli�ord Algebra Induced 1D Supersymmetry Representations

(b.) Model-independent Representations of Super Virasoro algebras.

In the remainder of my presentation, I wish to describe why I believe that the

general problem discribed previously may have a resolution involving these ideas.
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Since both of these suggestions involve systems with either one or two bosonic

coordinates, one obvious objection that can be raised is that the problem of o�-

shell supersymmetric representations in higher d-dimensional manifolds cannot be

related to such simple one and two dimensional systems.

The resolution to this, I believe lies in the fact that we physicists are quite used

to relating higher dimensional �eld theories to lower dimensional ones via a tech-

nique we call reduction on a cylinder. In particular the �elds of a high dimensional

theory, may be studied in a projection where all space-like coordinates are regarded

as the coordinates of some �ber and then we retain only the dependence of all

�elds on their temporal coordinates.

I suggest this observation allows the belief that there may exist ways to encode

all the structures of the higher dimensional theories in terms of 1D and 2D systems.

This may be akin to the fact that root and weight spaces are much simpler than

the manifold of group coordinates and yet the former are completely capable of

encoding all essential information about the local structure of Lie algebras.

(III.) Cli�ord Algebra Induced 1D SUSY Reps

The simplest venue in which to study the phenomenon above is in the context

wherein the �elds are, in fact, simply functions of a single real parameter denoted

by � which we may assume takes on values between zero and one.

There is a special class of Cli�ord algebras that are closely related to 1D super-

symmetric representations. The special class is de�ned as follows.

Introduce two real d-dimensional vector spaces denoted by VL and VR.

De�ne spaces of all linear maps such that

fMgL : VL ! VR ; fMgR : VR ! VL ;

fUgL : VL ! VL ; fUgR : VR ! VR :

so that a composition of the maps satis�es,

fMgR � fMgL : VL ! VL ;

fMgL � fMgR : VR ! VR :
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GR(d; N) Algebras: A Special Class of Cli�ord Algebras

De�nition:

Choose N elements from fMgL and N elements from fMgR. If fM(L
I
)gL (for

a �xed number I) denotes the I-th element of fMgL and fM(R
K
)gR (for a �xed

number K) denotes the K-th element of fMgR then we require

[ fM(R
I
)gR � fM(L

K
)gL + fM(R

K
)gR � fM(L

I
)gL ] : VL = � 2 ÆIKVL ;

[ fM(L
I
)gL � fM(R

K
)gR + fM(L

K
)gL � fM(R

I
)gR ] : VR = � 2 ÆIKVR ;

for all possible choices 1 � I; K � N . The subsets of fMgL and of fMgR that

satisfy these condition, may be called \GR(d; N) algebras."

For a �xed value of N , faithful matrix reps occur when d � dM

dM = 24m+1 FRH(r) ;

where FRH(N) is the Radon-Hurwitz function, N = 8m+ r and m 2 Z (where if

N = 8, then m � 0).

Embedding GR(d; N) Algebras in Standard Cli�ord Algebras

Let 
I denote a standard rep of an element in a real Cli�ord algebra, i.e. under

matrix maultiplication


I 
J + 
J 
I = � 2ÆIJ I :

pick only those Cli�ord algebras that admit an object denoted by Q such that

Q2 = 1 ; 
IQ + Q
I = 0 :

De�ne \projectors" P� �
1
2 [I�Q] implying P 2

+ = P+, P
2
� = P�, P�P� =

P�P� = 0 and P+ + P� = I,

De�ne f�g via

f�g � ( I; 
I1; 

I
1 ^ 


I2 ; 
I1 ^ 

I2 ^ 
I3 ; : : : ; 
I1 ^ � � � ^ 
IN )

then the representation of the elements of fMgL, fMgR, fUgL and fUgR can be

put into a one-to-correspondence such that

fMgL = P+f�gP� , fMgR = P�f�gP+ ,

fUgL = P+f�gP+ , fUgR = P�f�gP� .
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Let �a denote the component of an element � 2 VL and  â denote the component

of an element  2 VR be functions of a single parameter real � .

De�ne in�nitesimal variations of these quantities by

ÆQ(�
I)�a = i�I (LI)a

b̂ b̂ ; ÆQ(�
I) b̂ = �I (RI)b̂

a@��a

where (LI)a
b̂ and (RI)b̂

a respectively denote the matrix elements of the represen-

tations of LI and RI. Then on all elements in VL and VR the following condition

is satis�ed

[ ÆQ(�
I
1) ; ÆQ(�

I
2) ] = i2 �I1 �

I
2 @�

This is a one dimensional o�-shell representation of supersymmetry.

Two Conjectures

Note that in the case where N = 8, the physical states of 4D, N = 8 supergravity

are in one-to-one correspondence with the elements of fMgL, fMgR, fUgL and

fUgR.

Conjecture: All states in all spacetime supersymmetrical theories provide

reps of the forms of the GR(d; N) enveloping algebras.

This simple conjecture does not take into account the spacetime spin of the states.

So we believe there is more to the origin of spacetime supersymmetry that is

related to 1D representations of super Virasoro algebras. It particular if we look

back at the 4D, N = 8 representation, we simply observe that there is a relation

between the spin S of the �eld and the degree of its GR(d; N) p-form index.

S = 1
2 ( 4� p )

This leads to our second conjecture of the origin of spacetime supersymmmetry.

Conjecture: The spin of all states in all spacetime supersymmetrical theories are

associated with their being realization of super-Virasoro algebras.

We will spend the rest of presentation in an attempt to present evidence for this.
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(IV.) Relations to 1D In�nite Dimensional Lie Algebras

The N -extend Real SuperLine

De�ne a real coordinate � taking its values in the range (0,1).

Introduce real Grassmann numbers � I, with I = 1; : : : ; N .

� I �J + � I �J = 0

Let (�; � I) de�nes a \superpoint."

Since di�erentiation with regard to superfunctions can be de�ned, supervector

�elds can also be de�ned

W(1jN) � f(�; �) @� + gI(�; �) @I

where

@� �
@

@�
; @I �

@

@� I

Under graded commutation, the set of all such objects with suitable di�erentiation

restriction on the coeÆcients form a closed set.

A SuperVector Field Basis

GA
I � i �

A+
1
2
h
@I � i 2 � I @�

i
+ 2(A + 1

2 )�
A�

1
2 � I�K @K ;

LA � �
h
�A+1@� + 1

2(A + 1) �A� I @I
i

;

T I J
A � �A

h
� I @J � �J @I

i
;

U
I1���Iq
A � i (i)

[
q
2 ] �

(A�
(q�2)
2 )

� I1 � � � � Iq�1 @Iq ; q = 3; : : : ; N + 1 ;

R
I1���Ip
A � (i)

[
p
2 ] �

(A�
(p�2)
2 )

� I1 � � � � Ip @� ; p = 2; : : : ; N ;
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Algebra of in this Basis

[ LA ; LB g = (A � B )LA+B +
1
8 c (A

3 �A) ÆA+B;0 ;

[ LA ; U
I1���Im
B g = � [ B + 1

2 (m� 2)A ]U I1���Im
A+B ;

[ GA
I ; GB

J g = � i 4 ÆI JLA+B � i2(A� B) [ T I J
A+B + 2(A+ B)U I JK

A+BK ]

� ic(A2 � 1
4) ÆA+B;0 Æ

I J ;

[ LA ; GB
I g = ( 12A � B )GA+B

I ;

[ LA ; R
I1���Im
B g = � [ B + 1

2 (m� 2)A ]RI1���Im
A+B

� [ 1
2 A (A+ 1) ]U I1���Im J

A+B J ;

[LA ; T
I J
B g = � B T I J

A+B

[ RI1���Im
A ; RJ1���Jn

B g = � (i)�(mn) [ A � B � 1
2(m � n) ]RI1���Im J1n���Jn

A+B ;

[ T I J
A ; T KL

B g = T IK
A+B Æ

JL + T JL
A+B Æ

IK � T I L
A+B Æ

JK � T JK
A+B Æ

IL

+ ~c (A� B)(ÆIKÆJL � ÆILÆJK)ÆA+B;0 ;

[ GA
I ; RJ1���Jm

B g = 2 (i)�(m) [ B + (m� 1)A + 1
2 ]RI J1���Jm

A+B

� (i)�(m)
mX
r=1

(�1)r�1 ÆI Jr RJ1���Jr�1 Jr+1���Jm
A+B

� (�i)�(m) [ A + 1
2 ]UJ1���Jm I

A+B

+ 2 (i)�(m) [ A2 � 1
4 ]U I J1���JmK

A+B K ;

[ GA
I ; UJ1���Jm

B g = 2 (i)�(m) [ B + (m� 2)A ]U I J1���Jm
A+B

� 2 (�i)�(m) [ A + 1
2 ] ÆI Jm UJ1���Jm�1K

A+B K

� (i)�(m)
m�1X
r=1

(�1)r�1 ÆI Jr UJ1���Jr�1 Jr+1���Jm
A+B

+ 2 (�i)�(m) ÆI Jm R
J1���Jm�1

A+B ;

[ RI1���Im
A ; UJ1���Jn

B g = (�i)�(mn)
mX
r=1

(�1)r�1 ÆIr Jn R
J1���Jn�1I1���Ir�1 Ir+1���Im
A+B

+ i(i)�(mn) [ B � 1
2(n� 2) ]U I1���Im J1���Jn

A+B ;
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[ U I1���Im
A ; UJ1���Jn

B g = � (i)�(mn)
n mX
r=1

(�1)r�1 ÆImJr U
I1���Im�1 J1���Jr�1 Jr+1���Jn�1Jn
A+B

� (�1)mn
mX
r=1

(�1)r�1 ÆIrJn U
J1���Jn�1 I1���Ir�1 Ir+1���Im�1Im
A+B

o
;

[ T I J
A ; GB

K g = 2 (ÆJKGA+B
I � ÆIKGA+B

J)

+ 2A (ÆJK U I ;L
A+BL � ÆIK UJL

A+BL + UJK I
A+B � U I K J

A+B) ;

[ T I J
A ; R

I1���Ip
B g =

pX
r=1

(�1)r+1 (ÆJ Ir R
I I1���Ir�1 Ir+1���Ip
A+B � ÆI Ir R

J I1���Ir�1 Ir+1���Ip
A+B )

+ i (�1)pA (U
I I1���Ip J
A+B�1 � U

J I1���Ip I
A+B�1 ) ;

[ T I J
A ; U

I1���Ip
B g =

pX
r=1

(�1)r+1 (ÆJ Ir U
I I1���Ir�1 Ir+1���Ip
A+B � ÆI Ir U

J I1���Ir�1 Ir+1���Ip
A+B )

+ (ÆIp I U
I1���Ip�1 J
A+B�1 � ÆIp J U

I1���Ip�1 I
A+B�1 ) ;

where the function �(m) = 0 if m is even and �1 if m is odd. Here the central

extensions c and ~c are unrelated since we have only imposed the Jacobi identity.

The Maximal Primary Basis

De�nition:

If F
I1���Ip
A is a primary generator, then there must exist some particular mode-

dependent coeÆcient � such that this generator satis�es

[LA; F
I1���Ip
B ] = ��(A;B; p)F

I1���Ip
A+B ;

for �xed number of indices p.

Example:

LA is a primary operator.

[ LA ; LB g = (A � B )LA+B
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GA
I � i �

A+
1
2
h
@I � i 2 � I @�

i
+ 2(A + 1

2 )�
A�

1
2 � I�K @K ;

LA � �
h
�A+1@� + 1

2(A + 1) �A� I @I
i

;

T I J
A � �A

h
� I @J � �J @I

i
;

U
I1���Iq
A � i (i)

[
q
2 ] �

(A�
(q�2)
2 )

� I1 � � � � Iq�1 @Iq ; q = 3; : : : ; N + 1 ;

R
I1���Ip
A � (i)

[
p
2 ] �

(A�
p
2 )� I1 � � � � Ip [ �@� + (

A+ 1

p� 2
)�L@L ] ; p = 3; : : : ; N ;

RIJ
A � i �A� I�J @� ;

possesses only one non-primary generator, namely RIJ
A . We will refer to this basis as

the \maximal primary basis" for the GR super-Virasoro algebra.

Abstracting Fields and Transformations

Since L is the generator of di�eomorphisms we can use its action on the other

generators to determine the tensor properties of the �elds. Fields in this contect are

simply regarded as \vectors" in the in�nite-dimensional Lie algebra Let

L0 =
�
L�; G�I

I; T JK
tJK ; �fIqg U

fIqg

�fIqg
; �fJqgR

fJqg

rfJqg
;�

�
;

represent the generators with generic functions and �fIqg represents the direct sum

over all distinct generators. Then from the algebra we see that

[ (L�; �) ; (L� ; �) g = (L�0����0;
c
i2�

Z
(�00� 0 � � 00�0)d x) ;

[ L� ; G
I
�I g = GI

(��(�I)0+
1
2�

0�I)
;

[ L� ; T
RS
tRS g = TRS

(�� (tRS)0) ;

[ L� ; U
fVrg

wfVrg
g = U

fVrg

(��(wfVrg)0�
1
2 (r�2)�

0wfVrg)
;

[ L� ; R
fTrg

�fTrg
g = R

fTrg

(�(�fTrg)0��
1
2 (r�2)�

0(�fTrg))
� i

2 U
fTrg

(�00�fTrg)
;
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All � Commutators:

L� � (�LD; ��) = �L ~D ; ~D = � 2 �0D � � D0 �
c��
8 �000 ;

L� � �G
�Q

	 �Q = �G
�Q
~	 �Q

; ~	 �Q = � (32�
0 

�Q + �( 
�Q)0) ;

L� � �T
�R�S
�
�R�S = �T

�R�S
~� �R�S ; ~�

�R�S = ��0�
�R�S � � (�

�R�S)0 ;

L� � �U
�V1����Vn
!
�V1���

�Vn
= �U

�V1����Vn
~!
�V1���

�Vn
+ i

2(i)
[
n�2
2 ]�[

n
2 ] �R

[ �V1����Vn�2

�00!
�V1���

�Vn
ÆVn�1]Vn ;

~!
�V1����Vn = (n2 � 2) �0 !

�V1����Vn � �(!
�V1����Vn)0 ;

L� � �R
�T1����Tm
�
�T1���

�Tm
= �R

�T1����Tm
~�
�T1 ���

�Tm
;

~�
�T1����Tm = (m2 � 2) �0 �

�T1����Tm � � (�
�T1����Tm)0 ;

GI
�I � �G

�Q

 
�Q = ÆI

�Q �L~� + 4 �T I �Q

(�I �Q)
; ~� = 1

2 ( 
�Q)0�I � 3

2 (�
I)0 

�Q ;

GI
�I � (�LD;

��) = 4i �GI
(��ID���c(�I)00) ;

GI
�I � �T

�RS
�
�R S =

i
2(

�GS
�S Æ

�RI � �G
�R
�
�R Æ

I�S) ; �
�R = �S = 2(�I)0�

�RS + �I (�
�RS)0 ;

GI
�I � �R

�T1����Tm
�
�T1���

�Tm
= 2i(i)m+1(i)

[
m+2
2 ]�[

m
2 ] �U

[�T1����Tm]

(�I�
�T1���

�Tm)

� 2i
[m�1

2
]�[

m�2
2 ]

ÆI [
�T1 �R

�T2����Tm]

((�I)0�
�T1���

�Tm�(�I)(�
�T1 ���

�Tm )0)

� (i)(i)
[
m+1
2 ]�[

m
2 ]

m+1X
r=1

(�1)r�1 �R
�T1����Tr�1 I �Tr+1����Tm

(�I�
�T1���

�Tm )
;

T JK
tJ K �

�G
�Q

 
�Q = � 2( �GK

(tJK  �Q)Æ
�QJ � �GJ

(tJ K  �Q)Æ
�QK) ;

GI
�I � �U

�V1����Vn
!
�V1���

�Vn
= � 2i

[n�1
2

]�[
n
2 ] ÆI [

�V1 �U
�V2����Vn]

((n�4)(�I)0!
�V1���

�Vn�(�I)(!
�V1 ���

�Vn)0)

+ 2(�1)n�1(i)
[
n�1
2 ]�[

n
2 ] ÆI[

�Vn �U
�V1 ����Vn] K

((�I)0!
�V1���

�Vn)K

+ (i)(i)
[
n�1
2 ]�[

n
2 ]

nX
r=1

�U
[ �V1����Vr�1 �Vr+1����Vn

(�I!
�V1���

�Vn)
Æ
�Vr ] I

+ �G
[ �V2

(�4i (�I)0(!
�V1���

�Vn)0�2i (�I)(!
�V1���

�Vn)00)
Æ
�V3 �V4 Æ

�V1]I Æn4

� 2i(�1)n(i)
[
n
2 ]�[

n�1
2 ]

ÆI[
�Vn �R

�V1����Vn�1]

(�I!
�V1���

�Vn)
;

T JK
tJ K �

�U
�V1����Vn
!
�V1���

�Vn
= �

n�1X
r=1

(�1)n+1(ÆJ [
�V1 �U

�V2����Vr�1jK j�Vr+1���] �Vn

(tJ K !
�V1���

�Vn)

� ÆK[ �V1 �U
�V2����Vr�1j J j�Vr+1���] �Vn

(tJ K !
�V1���

�Vn)
)

+ �U [ �V1����Vn�1] J

(tJ K !
�V1���

�Vn)
Æ
�VnK � �U [ �V1����Vn�1] K

(tJK !
�V1���

�Vn)
Æ
�Vn J

� i(�1)n�2 (ÆK
�Vn ÆJ [

�V1 � ÆJ
�Vn ÆK [�V1) �R

�V2����Vn�1]

((tJ K)0 !
�V1���

�Vn)
;
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R
J1���Jp

rfJpg
� �U

�V1����Vm
!fVmg = � 1

2i(i)
f[
p
2 ]�[

p+2
2 ]g

Æ[
�V1����Vm�2

[�J1����Jp]
Æ
�Vm�1];�Vm Æm;p+2 �L(r!)00

+ i
f[
p
2 ]�[

p+1
2 ]g

Æp+1;m �G
�Vm
(r!)0 Æ

[ �V1����Vm�1]
[J1���Jp]

+ 2i(�1)p+1Æp+3;m (i)
[
p
2 ]�[

p+2
2 ] �G

[ �V1
(r!)00 Æ

�V2����Vm�2

[J1���Jp]
Æ
�Vm�1; ] �Vm

+ i(�1)p �T
�V1[ �Vm
(r!)0 Æ

�V2����Vm�1]
[J1���Jp]

Æp+2;m

+ (�1)pm(i)
f[
m
2 ]+[

p
2 ]�[

m+p�2
2 ]g �U

�Vp+1����Vm�p

(r!)0 Æ
�V1����Vp
[J1���Jp]

;

U
I1���Iq

�fIqg
� �U

�V1����Vm
!fVmg = � Æmq Æ

[ I1���Iq ]

[ �V1����Vq ]
�L
((
4�q
2 )�!�(

q�2
2 )�!0)

� 2 �T
�VmJq
(!�) Æ

[ I1���Iq ]

[ �V1����Vq ]
Æqm

� 2i
([
�V1
2 ]�[

�V1+1
2 ])

Æm;(q+1) �G[ �V1
(�(q�2)!0�+(3�q)!�0) Æ

�V2����Vm ]
[I1���Iq]

+ 2(�1)q(i)
[
q
2 ]�[

q+1
2 ] �G

Iq
(�!�)0 Æ

m;q+1 Æ
[ �V1����Vm�2

[I1���Iq�1]
Æ
�Vm�1];�Vm

� i(i)
[
q
2 ]�[

q�1
2 ]

q�1X
r=1

(�1)r�1Æmq�1 �G
[Ir
(!�)Æ

I1
�[V1
� � � Æ

Ir�1
�Vr�1

Æ
Ir+1
�Vr

� � � Æ
Iq]
�Vm]

+
q�1X
r=1

2(�1)r+1( �T Jr[ �V1
(!�) Æ

�V2
[I1
� � � Æ

�Vr
Ir�1

Æ
�Vr+1
Ir+1

� � � Æ
] �Vm
]Iq

Æq;m)

+ i(i)
f[
q
2 ]+[

m�q
2 +2]�[

m+2
2 ]g

� f
qX
r=1

(�1)r�1Æ
[ �V1����Vq�1
[ I1���Iq�1 ]

�U
�Vq����Vq+r�1Iq �Vq+r����]Vm
!�

� (�1)q(m�q+2)
qX
r=1

(�1)r�1 �U
�V1����Vm�q+1[ Ir
!� Æ

I1���Ir�1Ir+1��� Iq]
�Vm�q+2����Vm�q+2+r����Vm

g

� (i)
f[
q
2 ]+[

m�q
2 ]�[

q+m�4
2 ]g �R

[ �V1����Vm�q

(!�)0 Æ
�Vm�q+1���] �Vm
[ I1���]Iq

;

R
J1���Jp

rfJpg
� �R

�T1����Tm
�fTmg = Æ[

�T1����Tm]
[J1���Jp]

Æpm �L
(�(

p
2�2)r

0��(
p
2�1) r�

0)

+ (�1)p f2(i) �G
[�T1
((2�p)r0��(p�1)r�0) Æ

�T2����Tm]
[J1���Jp]

Æmp+1

+ (i)(i)
[
p
2 ]�[

p�1
2 ]

pX
r=1

(�1)r �GJr
(r�)Æ

m
p�1Æ

[J1���Jr�1Jr+1���Jp]

[�T1����Tr�1 �Tr:::�Tm]
g

+
pX
r=1

(�1)r+12 �T [�T1 jJrj
(r�) Æ

�T2����Tm]
[J1���Jr�1 Jr+1���Jp]

Æpm

�
pX
r=1

(�1)r�1 �U
[�T1����Tm�p+1 jJrj
(r�) Æ

�Tm�p+2����Tm]
J1���Jr�1Jr+1���Jp

+ i
f[
p
2 ]+[

m�p
2 ]�[

m
2 ]g �R

[�Tp+1����Tm
(2r0�+r�0) Æ

�T1����Tp]
[J1���Jp]

;
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T JK
tJK � �R

�T1����Tm
�
�T1���

�Tm
=

mX
r=1

(�1)r+1 (Æ[
�T1j J j �R

�T2����Tr�1 jK j �Tr+1����Tm]

(tJ K �
�V1���

�Vn)

� Æ[
�T1jK j �R

�T2����Tr�1 j J j �Tr+1����Tm]

(tJ K �
�V1���

�Vn)
) ;

U
I1���Iq

�fIqg
� �R

�T1����Tm
�fTmg = � i(�1)q(m�q+2)(i)

f[
m�q
2 +2]+[

q
2 ]�[

m
2 ]g

�
m�q+2X
r=1

(�1)r�1Æ
[ I1���Iq�1 ]

[�T1����Tq�1 ]
�R
�T1����Tq+r�1 Iq �Tq+r+1����Tm
�� ;

T JK
tJ K � ( �T

�R�S
�
�R�S; ��) =

1
2(Æ

�RJÆ
�SK � Æ

�RKÆ
�SJ) �L((tJK)0 � �R �S) +

1
2
�TAB
(tJ K � �R�S) Æ

JK�R�S
AB + 4�� �T JK

(� �R�S)0 ;

where ÆJK
�R�S

AB � ( ÆAKÆB
�SÆ

�RJ � ÆAKÆB
�RÆ

�SJ + ÆA
�SÆBJÆ

�RK

� ÆA
�RÆJSÆ

�SK + ÆA
�SÆBKÆ

�RJ � ÆA
�RÆKBÆ

�SJ

+ ÆAJÆB
�SÆ

�RK � ÆJAÆ
�RBÆ

�SK + ÆA
�SÆBKÆ

�RJ ) ;

where the symmetry of the indices on the left hand side should be imposed on the

indices on the right side. In the above, we have sometimes suppressed the indices

associated with the functions used by the generators. For example !
�V1����Vn the asso-

ciated with the �U dual element may be written as !fVmg or simply as !. Also the

notation ÆI1���ImJ1���Jm
� ÆI1J1 � � � Æ

Im
Jm was utilized.

1D Supergravity Pointing Toward D-dimensional SG

The coadjoint of the Virasoro algebra, i.e. the action of L on the coadjoint vectors

reveals a spectrum of states containing:

� D corresponds to a rank 2 covariant tensor when the central extension is set to

zero and is otherwise a quadratic di�erential.

�  
�I corresponds to N spin-32 �elds that partner with D.

� �
�R�S corresponds to the spin-1 covariant tensors that serves as the N(N � 1)=2

SO(N) gauge potentials associated with the supersymmetries.

� Given the N supersymmetries there are the �elds !
�V1����Vp. For a �xed value of

N , the total number of independent components is given by

#(U) = N ( 2N � N � 1 ) :

� Again given N supersymmetries, there are the �elds �
�T1����Tp. For a �xed value

of N , the total number of independent components is given by

#(R) = ( 2N � N � 1 ) :
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Table 2: Tensors Associated with the Dual of the Algebra

Dual element of algebra TransformationRule Tensor Structure

L?A ! h h ! � �h0 � 2�0h hab

G?I
A !  I  I ! ��( I)0 � 3

2�
0 I  I

a�

T ?RS ! ARS ARS ! � � (ARS)0 � (�)0ARS ARS
a

U?V1���Vn ! !V1���Vn !V1���Vn ! � �(!V1���Vn)0 � (2� n
2 )�

0!V1���Vn !V1���Vn;�1����nab

R?T1���Tr
A ! �T1���Tr �T1���Tr ! � �(�T1���Tr)0 � (2� r

2)�
0�T1���Tr �T1���Tr;�1����rab

The spins of the �elds associated with U and R vary according to (2�
p
2). These

likely correspond to other gauge and non-gauge physical �elds, auxiliary, and Stueck-

elberg �elds that are required to close the supersymmetry algebra. The fact that the

spin S sati�es

S = 1
2 ( 4 � p )

follows as a consequence of the super-Virasoro algebra.
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