N=2 Supersymmetry of Super KP Equations

- 1. Supercurves M, their duals \hat{M} , and untwisted N=2 super Riemann surfaces M_2 (the geometry of hidden N=2 superconformal symmetry in 2d).
 - 2. N = 1 and N = 2 super KP hierarchies.
 - 3. Functions and line bundles on M, \hat{M}, M_2 .
 - 4. In progress.
- F. Delduc and L. Gallot, *Commun. Math. Phys.* **190** (1997) 395 410.
- M. Bergvelt and JMR, *Duke Math. J.* **98** (1999) 1–57.
- F. Ongay and JMR, hep-th/0203174 and in progress.

1. M, \hat{M} , and M_2

M smooth supercurve or 1|1 complex supermanifold: Riemann surface $M_{\rm red}$ with compatible transition functions

$$z' = F(z, \theta), \quad \theta' = \Psi(z, \theta)$$

in $\Lambda[z,\theta]$, where $\Lambda = \text{complex Grassmann algebra}$ on "constant" generators $\beta_1,\beta_2,\ldots,\beta_q$.

Set
$$\beta_i = 0$$
 to get $M_{\rm sp}$. $z' = F(z), \ \theta' = \theta \psi(z)$.

Functions on $M_{\rm sp}$ are functions f(z) on $M_{\rm red}$ and $\theta g(z)$ for sections g(z) of line bundle \mathcal{N} .

Obtain M_2 by adding coordinate ρ :

$$\rho' = \operatorname{ber} \begin{bmatrix} \partial_z F & \partial_z \Psi \\ \partial_\theta F & \partial_\theta \Psi \end{bmatrix} \rho + \frac{\partial_\theta F}{\partial_\theta \Psi},$$

[Dolgikh, Rosly, Schwarz 1990]

SRS since $D^+ = \partial_{\rho}$, $D^- = \partial_{\theta} + \rho \partial_z$ generate odd subbundle of $T(M_2)$ and $\{D^+, D^-\} = 2\partial_z$. Untwisted since D^{\pm} each generate line subbundle.

$$0 \to \mathcal{O} \xrightarrow{\mathrm{inc}} \mathcal{O}_2 \xrightarrow{\mathbf{D}^+} \mathrm{Ber} \to 0.$$

Set $u = z - \theta \rho$ to get dual curve \hat{M} :

$$u' = \hat{F}(u, \rho) = \left[F + \frac{DF}{D\Psi}\right](u, \rho),$$

$$\rho' = \hat{\Psi}(u, \rho) = \frac{DF}{D\Psi}(u, \rho),$$

$$D = \partial_{\theta} + \theta \partial_{z}.$$

$$0 \to \hat{\mathcal{O}} \xrightarrow{\text{inc}} \mathcal{O}_{2} \xrightarrow{\mathbf{D}} \hat{\operatorname{Ber}} \to 0.$$

 D^{\pm} are superconformal derivatives and M, \hat{M} are Spec of chiral and antichiral functions on M_2 .

$$D^-$$
 acts as D on $\mathcal{O} \subset \mathcal{O}_2$.

 Λ -points (z_0, θ_0) of \hat{M} are parameters of irreducible divisors $z - z_0 - \theta \theta_0$ on M.

M is an N=1 SRS iff $M=\hat{M}$.

 \hat{M}_{sp} is $(M_{\mathrm{red}}, K\mathcal{N}^{-1})$, generalizing Serre duality.

 M_2 is common projectivized cotangent bundle of M, \hat{M} .

 M_2 has trivial Ber bundle.

Sections of Ber are invariantly integrated over paths with endpoints Λ -points of M, locally F(2) - F(1) with $\hat{\omega} = DF$; integration is odd.

In split case, $\hat{\text{Ber}} = \mathcal{N}|K$.

2. Jacobian super KP Hierarchy

JMR 1991, Mulase 1991

Describes linear flow of initial line bundle \mathcal{L}_0 through Jacobian of M.

Cover M by disk U around P(z=0) and M-P, overlapping in annulus A.

Line bundle $\mathcal{L}(t,\tau)$ has transition function

$$\exp(t_i z^{-i} + \tau_i \theta z^{-i+1})$$

on A. Flow is $\mathcal{L}_0 \mapsto \mathcal{L}_0 \otimes \mathcal{L}(t,\tau)$.

Lax pair description requires Baker function w: unique section of \mathcal{L} holomorphic except for z^{-1} pole at P. This requires

$$H^0(M,\mathcal{L}) = H^1(M,\mathcal{L}) = 0,$$

implying $\deg \mathcal{L} = g - 1$ and $\deg \mathcal{N} = 0$; M is an SKP curve, generic if also $\mathcal{N} \neq \mathcal{O}$.

Functions f on M-P correspond to differential operators $Q(x,\zeta)$ by fw=Qw; Q acts on $\exp(xz^{-1}+\zeta\theta+t_iz^{-i}+\tau_i\theta z^{-i+1})$ in w written in chart M-P.

If z^{-n} extends to an otherwise holomorphic function on M, corresponding operator $L = S\partial_x^n S^{-1}$ evolves by

$$\frac{\partial L}{\partial t_k} = [L_+^{k/n}, L],$$

$$\frac{\partial S}{\partial t_k} = -(S\partial_x^k S^{-1})_- S,$$

$$\frac{\partial S}{\partial \tau_k} = -(S\partial_\zeta \partial_x^{k-1} S^{-1})_- S.$$

$$5 = 1 + 2, \vec{D} + 2, \vec{D}^2 + \cdots$$

N=2 Super KP

Delduc & Gallot 1997

Correspondence between even N=2 differential operators

$$\breve{L} = D_x^+ \sum_{i=0}^n u_i(x,\zeta,\eta)\partial_x^i D_x^-$$

and N=1 operators without constant term

$$\underline{L} = \sum_{i=0}^{n} \{ [u_i^{(0)} + \zeta u_i^{(1)}] \partial_x^{i+1} + u_i^{(1)} D_x \partial_x^{i} \},$$

where
$$u_i(x,\zeta,\eta) = u_i^{(0)}(u,\zeta) + \eta u_i^{(1)}(x,\zeta)$$
.

Flows

$$\frac{\partial \breve{L}}{\partial t_k} = [\breve{L}_+^{k/n}, \breve{L}]$$

correspond to nonstandard SKP,

$$\frac{\partial \underline{L}}{\partial t_k} = [\underline{L}_{\geq 0}^{k/n}, \underline{L}],$$

equivalent to standard SKP via

$$\underline{L} = e^{\phi} L e^{-\phi},$$

a change of trivialization on M.

Correspondence is simply lifting from $M = \mathbf{C}_{(x,\zeta)}^{1|1}$ to $M_2 = \mathbf{C}_{(x,\zeta,\eta)}^{1|2}$; \check{L} agrees with \underline{L} on chiral functions and annihilates antichiral functions.

3. Functions and Line Bundles on M, \hat{M}, M_2

Generic SKP curves have free cohomology:

$$H^0(M, \mathcal{O}) = \Lambda|0$$
 $H^1(M, \operatorname{Ber}) = 0|\Lambda$
 $H^1(M, \mathcal{O}) = \Lambda^g|\Lambda^{g-1}$ $H^0(M, \operatorname{Ber}) = \Lambda^{g-1}|\Lambda^g$

Split curves always have free cohomology, e.g.

$$H^0(M_{\mathrm{sp}}, \mathcal{O}) = H^0(M_{\mathrm{sp}}, \mathcal{O}|\mathcal{N}) = \Lambda|0.$$

 $H^0(M, \bullet)$ is generally a submodule of $H^0(M_{\rm sp}, \bullet)$; $H^1(M, \bullet)$ is generally a quotient.

Cohomologies of \hat{M} , M_2 are generally not free:

$$\begin{array}{ll} H^0(\hat{M},\hat{\mathcal{O}}) \leq \Lambda |\Lambda^{g-1}| & H^1(\hat{M}, \hat{\operatorname{Ber}}) \leq \Lambda^{g-1} |\Lambda \\ H^1(\hat{M},\hat{\mathcal{O}}) \leq \Lambda^g |0| & H^0(\hat{M}, \hat{\operatorname{Ber}}) \leq 0 |\Lambda^g| \end{array}$$

$$H^{0}(M_{2}, \mathcal{O}_{2}) \leq \Lambda^{g+1} | \Lambda^{g-1}$$

$$H^{1}(M_{2}, \mathcal{O}_{2}) \leq \Lambda^{g+1} | \Lambda^{g-1}$$

Functions on \hat{M} come from integrating sections of Ber on M; odd period matrix controls which are single-valued.

Functions on M_2 come from lifting the $\Lambda|0$ and $\Lambda|\Lambda^{g-1}$ functions on M, \hat{M} , but also from lifting pairs of multivalued functions having opposite periods.

Some bundles on M_2 come from \otimes lifts of pairs of bundles $\Lambda^g | \Lambda^{g-1}$ and $\Lambda^g | 0$ from M, \hat{M} . (Degrees add.) Nothing new from \hat{M} – maybe less! – so NOT all of $Jac(M_2)$ is obtained this way. Extra bundle has transition function in A

$$\exp{-k\theta\rho/z} = 1 - k\frac{\theta\rho}{z} = z^{-k}(z - \theta\rho)^k$$

and is not generated by SKP flows from M.

In general (don't assume M is SKP) there is an obstruction to factoring a bundle on M_2 as \otimes lifts of bundles from M, \hat{M} .

$$c \longmapsto_{c} c \times c^{-1}$$

$$0 \to \Lambda_{\text{ev}}^{\times} \longrightarrow \mathcal{O}_{\text{ev}}^{\times} \times \hat{\mathcal{O}}_{\text{ev}}^{\times} \longrightarrow \mathcal{O}_{2,\text{ev}}^{\times} \to 0$$

$$\mathsf{F} \times \hat{\mathsf{F}} \longmapsto \mathsf{F} \hat{\mathsf{F}}$$

$$H^{1}(\mathcal{O}_{\text{ev}}^{\times} \times \hat{\mathcal{O}}_{\text{ev}}^{\times}) \xrightarrow{\alpha} H^{1}(\mathcal{O}_{2,\text{ev}}^{\times}) \xrightarrow{\beta} H^{2}(\Lambda_{\text{ev}}^{\times}).$$

Im α is bundles that factor; same as Ker β .

More concretely, bundle transition functions Γ_{ij} on M_2 always factor locally as $F_{ij}\hat{F}_{ij}$ up to multiplicative constants c_{ij}, c_{ij}^{-1} . Cocycle condition

$$(F_{ij}F_{jk}F_{ki})(\hat{F}_{ij}\hat{F}_{jk}\hat{F}_{ki}) = 1 = \exp 2\pi i (c_1)_{ij}$$

implies $F_{ij}F_{jk}F_{ki} = c_{ijk}$, cocycle representing $\beta(\Gamma) \in H^2(\Lambda_{\text{ev}}^{\times})$.

4. In progress

Action of odd flows on N=2 differential operators.

Action of N=2 super Virasoro algebra as additional symmetries.

Choice of trivialization removing constant term from N=1 Lax operator \underline{L} .