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§1. Introduction and Background

Stochastic processes defined by graphs arise in a variety of fields:

coding theory: various graphical codes including LDPCs, turbo
codes (e.g., Gallager, 1963; Luby et al. 1998, McEliece et al., 1998)

statistical physics: models of gases, magnets, crystals (e.g, Ising
model; Potts model)

artificial intelligence: neural network models; medical diagnosis;
robotics (e.g, Pearl, 1988; Jordan et al., 1999)

statistics: log-linear models; maximum entropy; Markov random
fields (e.g., Hammersley & Clifford, 1973; Darroch et al., 1980)

image processing and computer vision: Markov image
models; Gibbs sampler (e.g., Woods, 1978; Geman & Geman, 1984)

network information theory: e.g., broadcast channel; MAC
(e.g., Cover, 1972; El Gamal & Cover, 1980; Csiszar & Korner, 1980)




Set-up for graphical models

set of nodes V ={1,... ,N}
graph ¢
set of edges £

place at each node s € V a random variable x; taking values in
the space X (e.g., X = R; X =40,1,... m—11})

overall sample space XY is set of all N—vectors

x2{z,|scV}

will consider probability distributions p(x) that are constrained

by graph structure




Directed versus undirected edges

(a) Directed graphs
Full distribution specified as the product

of conditional distributions over z, given

the set of its parents:

Xpa(s) = 1 T¢ | t isparentof s }
(b) Undirected graphs

Full distribution specified as the product
of compatibility functions ¢(x¢) over

variables in cliques:

NQHAHwiw mﬁuv

L Pa(s;1)

L Pa(s;3)
L1 L2
L4 I3

Y1234(21, T2, T3, T4)




Notation for undirected graphs

clique: a fully connected subset C of V; i.e., for all
s, t€C,(s,t) €&

- I > K

mazximal clique: a clique not properly contained within any
other clique

compatibility function: Yc : X — R depending only on a
limited subvector x¢ ={ zs | s € C }

E.g. for binary x, compatibility function on 2-clique {s,¢}:

%mwﬁov Ov %mwﬁov Hv

VorlZo, ) =\ L (10) (L, 1)




Graph separation and Markov

e stochastic processes x of interest are Markov with respect to

the graph

A C

Markov property: x, g L Xc|p if B separates A from C.

Note: The notation x5 5 L Xc|p means that x4 is conditionally

independent of x¢ given xp.




Hammersley-Clifford theorem

Consider stochastic process x on G such that p(e) >0 Ve € XV,

1
x is Markov w.r.t G — p(x) = 7 wh Ye(x)
~ ceC
Markov property Factorization of distribution
Remarks:

1. The partition function Z = ) .~ | %c(x) is the normalizing

constant.

2. There are a variety of proofs of this result (Hammersley & Clifford,
1973; Grimmett, 1973; Besag, 1974; Clifford, 1990).
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Tanner graphs and factor graphs
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(b) Factor graph
(7,4) Hamming code




Estimation or inference

e given observations y = { ys | s € V} specified by measurement
density

v\_um —,—@m &mv@m

e by Bayes’ rule:

pxly) = [[sleaius) ] vetxe)
s C

e this conditional density is central to various estimation

problems:
(a) MAP estimate Xp;4p = arg maxy p(x|y)
(b) node marginal distributions p(zs|y) = > o ¢4 o —o. P(X']Y)
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Examples of inference problems

1. Decoding of graphical codes: vector y represents bits

received from noisy channel; x represents the codeword.

(a) Xprap = arg maxy p(x|y) minimizes word error rate.

1 if p(zs=1]y) > 0.5

0 otherwise

(b) z =

minimizes symbol error rate.

2. Image denoising: vector x is a representation of the image
(e.g., pixels, wavelets); vector y is a noise-corrupted version of

the image x.

3. Medical diagnosis: vector y represents the observed

constellation of symptoms; x represents the underlying disease.
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Algorithms for trees

e for graphs without cycles, exploit the partial ordering of nodes

in scale — i.e., dynamic programming on trees

e this leads to direct, recursive algorithms for inference:

(a) computation of Xy ap: maz-product/min-sum algorithm

(generalization of Viterbi algorithm)

(b) computation of marginals p(zs|y): sum-product algorithm,
also known as belief propagation.

(generalization of BCJR; Kalman-RTS; a — 8 algorithm etc.)

e more generally, similar algorithms apply to any commutative

semi-ring (Verdu & Poor, 1987; Aji & McEliece, 2001)

12




Alternative high-level view of inference

e consider a very simple example: the Markov chain

O—0O—=0

L1 L9 T3

e HC theorem gives a representation of the form:

p(x) = % Y1(x1) Ya(@2) Y3(xs) Y12(z1, T2) Yo3(w2, 3)

e think of inference (i.e., computing marginals) as converting

from the {1, Vs }-representation to the more familiar form:

p(x) = p(z1) p(w2|z1) p(r3|w2)

p(xy1, z2) p(xa, T3)
p(r1) p(w2) p(w2) p(x3)

p(x1) p(z2) p(x3)

13




What to do for graphs with cycles?

Idea: Cluster nodes within cliques of graph with cycles to form a

clique tree. Run a standard tree algorithm on this clique tree.

Caution: A naive approach will fail.

1

4

()

Need to enforce consistency between the copy of x3 in cluster {1, 3}
and that in {3,4}.

@ T
@D aGED
(

b)
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Running intersection and junction trees

Definition: A clique tree satisfies the running intersection
property if for any two clique nodes C; and Cs, all nodes on the

unique path joining them contain the intersection C; N Cs.

A clique tree with this property is known as a junction tree.

Definition: A graph G is triangulated means that every cycle of
length 4 or greater has a chord.

Proposition: A graph G has a junction tree if and only if it
is triangulated. (Lauritzen, 1996)

15




Illustration

1 2 3
O—C0O—=0

4 5 6
O—0O0—=0
O—0O—"0
7 8 9

(a) Original graph

of junction tree

O () O
LN,
C\O%)
O O O
7 8 9

(¢) Junction tree
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Junction tree for exact inference

Algorithm: (Lauritzen & Spiegelhalter, 1988)

1. Given an undirected graph G, form a triangulated graph G by

adding edges as necessary.

2. Form a junction tree of “super-nodes” by clustering together all

nodes within each maximal clique.

3. Run standard inference algorithms on the resulting tree.

Note: Separator sets are formed by the intersections of cliques

adjacent in the junction tree.

17




Junction tree representation

Junction tree representation guarantees that p(x) can be factored

as:
Emmﬂamx p(xc)
p(x) =
:,mem% p(xs)
where
Cnax = set of all maximal cliques in triangulated graph G
Csep = set of all separator sets (intersections of adjacent cliques

Special case for tree:

IR

s€V (s, Smm
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§2. Approximate inference as reparameterization

e belief propagation (BP) is a message-passing algorithm for

computing approximate marginals

e it is an exact method for trees, but approximate for graphs
with cycles
e important in a variety of applications:

(a) coding theory: turbo codes and low-density parity check
codes (e.g., Gallager, 1963; McEliece et al., 1998; McKay, 1998)

(b) artificial intelligence (e.g., Pearl, 1988; Murphy & Weiss, 2001)

(c) computer vision and statistical image processing
(e.g., Freeman et. al., 1999, Frey et al., 2001)
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Previous and current work on BP

e certain special cases well-understood:

(a) single loops
(Aji et al., 1997; Anderson & Hladnik, 1998; Weiss, 1997, 2000)

(b) Gaussians on arbitrary graphs
(Rusmevichientong & Van Roy, 2000; Weiss & Freeman, 2000)

geometric approach to turbo decoding (Richardson, 2000)

variational formulation as minimizing Bethe free energy
(Yedidia, Freeman & Weiss, 2000)

better algorithms for minimizing Bethe free energy
(Yuille, 2001; Welling & Teh, 2001)

more advanced approximations (Yedidia et al., 2000; Minka, 2001)
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Our approach

BP fixed points are stationary points of Fgethe (Yedidia et al., 2000):

NﬂW@ﬁEAAHWV ~ Nﬂﬂdmﬁﬁmﬂwv

We want to understand how:

in Foone({TYH)  ~ in Fl..({T
arg min Fee, ({T}) arg min Fy ({T})

New viewpoint in terms of reparameterization:

1. leads to novel characterization of the fixed points

2. gives analytical expression and bounds on the approximation

error for an arbitrary graph

21




Notation

e with a few caveats, no loss of generality in restricting attention
to pairwise MRFs: graph G = (V, £) such that edges are
maximal cliques
(Note: Our analysis extends to higher order cliques.)

e consider probability distribution over the discrete random
vector x € XV:

p(x) = @ ] vs(as) || @se(zsze)

seV (s,t)eE

Goal: Compute (approximations to) single-node marginal
distributions:
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Tree estimation as reparameterization

(a) Initial parameterization (b) Desired parameterization

p(x) = 7 T, ¥s(2s) [T (s 0) ¥t (zs, 2¢) p(x) = I, Po(@s) o) i) Bty
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Embedded spanning trees

Observation: A graph with cycles has a (typically) large number

of spanning trees.

O—O——(O—0 O—0O—=0
O—O—0O0—=0 O—=O0O H
O—O—0O0—=0 H O—=0O
O—O—A(O—=0 O—O0——=0 O—OC—=0 H
(a) Original graph G (b) Tree T (c) Tree T2

Strategy: Define and study modified problems on spanning trees.
Let 7° denote a spanning tree with edge set £(7*) = &£°.
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(1) Start with distribution p(x;1) on full graph.

(0

14

Py

O O O
@Hw %w ﬁbww %w

O —=0
@wm @w@
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T | U |
® ‘%m ‘%@

25




(2) Isolate components corresponding to spanning tree.

(0

14

Py

C

-/

P12

)
o

V3
)

V36

o
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(3) Perform tree reparameterization update.

O O O

oy, |12 g, |13
T, T, T, Ts
N ) 4

mk H //\M wffu

\\NJH% MJM@ Nme
MJH HNM MJM M.W MJw MJ@
4 5 6

O O O

@w MJm MJ@
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(4) Reinstate removed potentials.

O O O
oyp, M2, |1
T, T, T, Ts
O Qw O
\\NJH% MJM@ Nme
MJH HNM MJM M.W MJw MJ@
5
O O O
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@w MJm MJ@
O O O
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Set-up for tree reparameterization (TRP)

Let T" = { T}, T% } be a vector of pseudomarginals at single nodes

and edges.
Key parameterization:
n H n mA.&.mu.&.wv
p(x;T") = ———= T, (zs) —— —
zoen L) 1 s om0 ot e

TRP is a sequence of functional updates T" — T"*1.

Tree decomposition: Given a set of tree edges £(T), break p(x; T")

into a product of two terms:

n

Tree terms: @@.Oﬁ ") —h " wh . st _
seV (s,t)€E(T) AMuam mﬁv AMUMS mﬁv
Residual: ri(x; T") = —— st _
(s,t)eE/E(T) AMUam mﬂv AMU%w m@v
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TRP algorithm

1. Initialize p(x; TY) in terms of {1y, ¥ }:

wpa(@) [T [ D0 welwe at)hu(al)

tEN(s)  af

To(Te, ) = KYer(@s, ) s(Ts)e(xt)

Note that p(x; T?) = p(x; ).

T, (zs)

2. Isolate p*(™ (x; T™) corresponding to spanning tree 7™ . Perform

updates on tree:

x'stxl=x,, &MHMS
T (ws,m) = Tii(ws,z) Y (s,1) € &/E1)
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Constraint sets and cost functions

The set of valid T satisty the local edge-wise marginalization

constraints:

c = {T ;Mﬁ@\mv =1; MH&AHP&L = Ty(x¢) for (s,t) € £}

Use cost (closely related to Bethe free energy) that approximates the
KL divergence between p(x; T) and p(x; U):

G(T;U) =Y G(TyU)+ Y G*(Tw;Uy)
seV (s,t)e€
where

G*®(Ts; Us)

D Ts(ws)loglTs(xs)/Us(xs)]

G (Tst;Ust) = MUHﬁ%_omﬁﬂ&\AMuﬂaxMuﬂﬁz|8£Q&>MQ&XMS$@

Ts, Tt Ts
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TRP as successive projection method

consider the set of T consistent on tree 7T *:

(O {T _MHWA&,C =1; Mﬂ&@wun&v = Ti(x¢) for (s,t) € MA\N‘JW
where £(T") C &€
note that C* D C, and that N;C* = C whenever U;E(T") = £.

TRP can be viewed as analogous to a successive projection
technique for attempting to minimize G(T; T°) subject to the
constraint T € NC".

each iteration entails a “projection” onto the constraint set
CH") associated with tree 7™,
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Pythagorean relation

Proposition: At each iteration n = 0,1,2... and for all U € C*("™);
G(U; T") = G(U; T + G(T™"; T™)

w“—uﬁ

HSI_'H

Remarks:

(a) Cost function G plays a role analogous to the squared Euclidean distance (hence

Pythagorean).

(b) Similar relation holds for Bregman distances (e.g., KL divergence and information
geometry). (Csiszar, 1975; Amari, 1982)
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BP as reparameterization over two-node trees

T3
2z, Th2) (D2, Tha)

Ty \ T

1 2
K 2/

(a) Original graph (b) Two-node trees

BP can be reformulated as a very local form of

reparameterization over 2-node trees.

34




Invariance of distribution

We initialize at T such that p(x; T) = p(x; ).

At each iteration, we use the decomposition:

tree terms

p(x;T") o< p'(xT")  ri(x;TT)

~/

residual terms

Theorem:
Distribution on graph with cycles is invariant under the updates
T" s T™L. That is,

p(x; T™) = p(x; T?) for all n=1,2,...

Any limit point T* is also a reparameterization in this sense.
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Remarks on invariance theorem

1. Invariance also holds for BP (when suitably reformulated in the

reparameterization form).

2. Any local minimum of Bethe free energy, regardless of the
algorithm used to obtain it, is a reparameterization in this

SEILSE.

3. Special property of TRP/BP algorithms: all iterates (not just
the fixed points) are reparameterizations of the original

distribution.
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Fixed point condition

T . 15
1 MJHM 2 Mwa
) MJH* ﬂw* (N MJM* Mww e
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T; o Qﬁ*

(a) Graph with cycles

S A
O A BE A
1 2 3
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T 17 s T Ty
4 5 §)
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T; T? T;
® ® ®

(b) Tree consistency (7 -consistent)
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Remarks on fixed pt. theorem

1. We are guaranteed that H

\J

fixed point T* is 7 —consistent

on any tree (or forest) embed- o—0
ded within the graph.

O

@)

2. Fixed point characterization applies to any local minimum of

Bethe free energy (regardless of the algorithm.)

3. The existence of such a T-consistent reparameterization is

obvious for a tree; more interesting for a graph with cycles.

4. The pseudomarginals T = {T7, T%}, though T-consistent, may
not be consistent with any distribution globally on G.
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Illustration of global inconsistency

Consider the following assignments on the single cycle (MacKay et
al., 2001):

0.4 0.1
Y12,%23,%14 X
0.4 0.1 0.1 04
Aop 0.4
0.1 0.4
P34 X
0.4 0.1

Can show:
1. The parameterization T = {1, 1} is a BP/TRP fixed point.

2. However, the corresponding pseudomarginal vector T is not
globally consistent with any distribution (Markov or otherwise).
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Consequences of invariance and fixed pt.
characterization

Geometric insight; links to information geometry
(Amari, 1982; Csiszar, 1975)

Strong restrictions on when TRP/BP can be exact

(there are cases other than trees!)

. Elementary proof of exactness of means in Gaussian BP
(Weiss & Freeman, 2000; Rusmevichientong & Van Roy, 2000)

. Error analysis
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Analysis of BP approximation error

Previous results on error in special cases:

(a) exact expression for a single cycle (Weiss, 2000)

(b) approximate expression for turbo decoding (Richardson, 2000)

We give an exact expression and computable bounds for the error

on an arbitrary graph with cycles.

Key properties in our analysis are:

1. The quantities {77 } have two distinct interpretations:

(a) TRP/BP approximations to the true marginals Ps on graph with

cycles

(b) consistent single node marginals of distribution defined on any

spanning tree

2. From invariance of distribution, p(x; ) = p(x; T™)
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Consequences

G RN PR I & (R
T 15 T 15 T 15
~ 1 -2 N 2 3 r 23
7 8 . O, Q¢
T4y Tos T34 17y Tos T35
iy I3 13 Iy T Ty ;T3 T3 Tg
J# \Jm @\ 4 5 6
* *
O PR Y O ©|A§w D) O
S R (R r | T
o o o o o o
(a) Original p(x;T*) (b) Consistent tree distribution

Exact marginals {Ps} on graph with cycles are related to
TRP/BP approximations {77} by a perturbation — namely, re-

moving edges.
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Exact expression for error

Recall the decomposition of p(x; T*):

tree-structured
distribution

7\

* 1 \& £\ ) *
p(x;T7) = Z0T7) p'(x;T7)  r(x;T7)

~/

residual terms

Following exact expression is starting point for deriving bounds:

* EANMHJ .
wmﬁ.|m~4m5. — HW@&A%W,H*V ﬁ NAH*V |HW%A&.,@H§V
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Extensions to more advanced approximations

e techniques that exploit more structure than BP have been

proposed:
(a) Kikuchi and related methods (Yedidia et al., 2000)

(b) expectation-propagation updates (Minka, 2001)

e our analysis carries over to these more advanced methods:
(a) the idea of reparameterization is applicable
(b) invariance of the distribution under updates

(¢) characterization of the fixed points, and error analysis
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Illustration for Kikuchi approximation

O—CO—0O—0
O—O0O—"0—=0
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(a) Original graph
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(b) Kikuchi 4-plaque clustering
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(d) Hypertree (treewidth 2)
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Maximal subgraphs

Question: What are the largest subgraphs over which the set of
pseudomarginals T* is guaranteed to be globally consistent?

O—O0—0—=0
O—"C0O—"C0C—=0
O—"0—"C0C—=0

(a) Original graph
o O O O

O O 0O O A/\\U
O—O0—0—0 O O

N /

(b) Spanning trees (Bethe) (c) Width 2 hypertree (Kikuchi)
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Implications for iterative decoding?

e most work on BP decoding (e.g., Luby et al., 2001; Richardson et al.,
2001) has two key features:

(a) entails averaging over an ensemble of codes

(b) asymptotic in code length

e our work applies to BP decoding for a fixed, finite-length code:

(a) recall that bitwise optimal (ML) decoding of a binary code is

based on the sign of the log likelihood ratio log MMMMMWMHW

(b) BP decoding is based on the sign of modified likelihood ratio

1, Pl@s = 1 17 (T))
®p(z, = 0; 17 (T*))

Here p(x;I17 (T*)) denotes a tree-structured distribution. In
fact, this log likelihood is equal for any tree embedded within G.
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Possible research directions

e are there intermediate size codes/graphs for which BP log
likelihood ratio is guaranteed (w.h.p) to have the same sign as

the optimal LLR?

e enhancing BP approximations (post hoc) by including
higher-order terms — i.e., partially accounting for presence of

cycles
e uses in reliability-based decoding (e.g., Fossorier, 2001)

Note: If a tree-based updates are used, then bounds on the error

can still be obtained prior to BP convergence.
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§3. Bounds on the log partition function

Question: What is wrong with the Bethe/Kikuchi free energies?

e usually not convex (multiple local minima; convergence issues)

e do not give bounds on the log partition function

Bounding the partition function is important for various problems:
e obtaining bounds on marginals and likelihood ratios
o large deviations analysis (error exponents)

e bounds on rate distortion and capacity
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Bounds based on convex combinations of trees
e a new class of upper bounds on the log partition function based
on convex combinations of (hyper)trees

e leads to “convexified” Bethe/Kikuchi free energies

Notation:

e let ‘¥ denote the set of spanning trees of ¢
(typically, a large set; e.g., for the complete graph Ky, |T| = NV —2)

e let i={ u(T)|T €%} bea probability distribution over all
spanning trees of the graph.

o for each edge e € &, let u. = Prz{ e € T } be the edge
appearance probability.

e let T(G) be the valid set of pe = { e | € € € }; this is the
spanning tree polytope (Edmonds, 1971).
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Convexified Bethe free energy

Consider the distribution:

b0 = g L@ [ vewns
sey (s,t)EE

2w) = > |[TT¢s@s) TI weelws, )
xexXN seV (s,t)EE

Let pe € T(G) be arbitrary. Bounds on log Z (1) are based on the
following function:

F(Tipe;h) £ =D Ho(To) + > pselst(Ter)

sey (s,t)EE
— > Eqflogps] — > Er,[log ]
seVy (s,t)EE
H,(T,) £ entropy of node marginal T (z,)
I+(Ty) 2= mutual information under joint Ty (zs, ¢)
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Theorem: For all p. € T(G):
(a) The quantity F(T; pe; 1) is convex as a function of T.

(b) The log partition function is bounded above as

log Z(v) < I%.mwmgﬂﬁﬂwtmw%v

where

C £ {T|> To(zl)=1; > Tet(al, ) =Ti(xs) for (s,t) € £ }

Note:

1. Note that when pe = 1, the function F(T;1;4)) is equivalent to the
Bethe free energy.
Catch: The vector 1 € T(G) only when G is actually a tree.

2. As with Bethe free energy and BP; the optimizing arguments T can be
taken as approximations to the marginals.
Advantages: Unique global min. can be found by convex programming.
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Rough sketch of proof

based on ideas from convex analysis and information geometry

the log partition function is convex; its Legendre dual is the

negative entropy function

the entropy of a pairwise MRF depends only on the single-node
and pairwise marginals P = { P, Py }

given a tree 7 embedded within G, we have:

H(P) < HII"(P)) = Y Hy(P)— >  I(Py)

seV (s,t)e&(T)

take convex combinations:

mAHvV < ﬁmw ﬁmﬁuﬁﬂﬁwvi — M QMAwmv — M Mst Nm%ﬁmwv
seV (s,t)€E(T)
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Further remarks on upper bounds

1. Stationary conditions for variational problem (optimal @v are

very similar to tree-based consistency conditions of TRP /BP.

2. Consider optimizing F(T; pe; ) over both T € C and
pe € T(G). Le., find the best distribution over spanning trees.

Facts: Exists a unique global minimum; can be found
efficiently (involves solving maximum weight spanning tree

problems).

3. Extensions to more advanced approximations (e.g., Kikuchi) by

considering distributions over hypertrees of the graph.
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Summary

e reparameterization perspective leads to theoretical insights on

a hierarchy of approximations (from BP upwards)
(a) invariance of distribution
(b) consistency-based characterization of fixed points

(c¢) exact expression and computable bounds on the error

e new class of upper bounds on the log partition function based

on convex combinations of (hyper)trees
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Contact information

Martin Wainwright
mjwain@mit.edu

Papers at:  http://ssg.mit.edu/group/mjwain/mjwain.shtml
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