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Introduction and Problem Description

Consider the R-D problem for a DMS P , emittingX1; X2; : : :

in a �nite alphabet X , with a reconstruction alphabet X̂ ,
and a distortion measure �.

Marton (1974):

min Prf�(Xn; X̂n) > nDg s.t. jcodebookj � 2nR

Derived the fastest exponential decay rate:

F (D;R) = minfD(QkP ) : RQ(D) � Rg:

Other work: Blahut (`74,`76,`87), Omura (`73,`75), Csisz�ar
(`82), Kanlis & Narayan (`96), Arikan & Merhav (`98),
Kontoyiannis (`99), Haroutunian & Haroutunian (`00),
Tuncel & Rose (`01).
Lossless case: Jelinek (`68), Wyner (`74), Humblet (`81),
Davisson, Longo & Sgarro (`81), Anantharam (`90), Mer-
hav (`91), Merhav & Neuho� (`92), Arikan (`96), Han
(`00).

Purpose: Treat rate and distortion more symmetrically
{ best tradeo� between the exponents of

Prf�(Xn; X̂n) > nDg and PrfL(X̂n) > nRg

in this and in other problems of lossy compression.
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Introduction & Problem Description (Cont'd)

Speci�cally, minimize:

Prf�(Xn; X̂n) > nDg s.t. PrfL(X̂n) > nRg � e��n:

Denote the best achievable exponent by I(D;R; �).

Optimal code (nonuniversal, as opposed to Marton):

L�(X̂n) =

8>><
>>:
nR D(QjjP ) < �

n log jX j otherwise

Two cases:
1. D(QkP ) � �) RQ(D) < R, i.e., � < F (D;R).
2. Complementary to 1.

In Case 1, all TQ which don't allow > nR bits are cov-
erable by nD{spheres (type{covering). Others can be
coded even losslessly ) I(D;R; �) =1.
InCase 2, all Xn with RQ(D) > R are distorted > nD,
so I(D;R; �) = F (D;R).

Thus,

I(D;R; �) =

8>><
>>:
1 � < F (D;R)
F (D;R) � � F (D;R)
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F(D,R)

F(D,R)

I(D,R,λ)

Abrupt transition in the tradeoff between
exponents: No point is better than either
fixed rate or fixed distortion.

λ
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Noisy Sources

PXY { DMS of i.i.d. pairs f(Xi; Yi)g.
fXig { clean source, fYig noisy version fed to the encoder.

Problem:

minPrf�(Xn; X̂n) > nDg

s.t. PrfL(X̂n) > nRg � e��n:

Denote the minimum by Gn(D;R; �).

Comments:

3 We expect exponent <1 due to the noise.
3 It is not clear that the NN encoding rule still applies.

Theorem

I(D;R� 0; � + 0) � lim inf
n!1

2
64�

1

n
logGn(D;R; �)

3
75

� lim sup
n!1

2
64�

1

n
logGn(D;R; �)

3
75

� I(D;R + 0; �� 0)
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where

I(D;R; �) = minf inf
Q2H

A(Q;1; D); inf
Q2Hc

A(Q;R;D)g;

H = fQ : D(QkPY ) � �g;

A(Q;R;D) = D(QkPY )+ sup
W :Y!X̂ : I(Q;W )�R

F0(Q�W;D);

and

F0(Q�W;D) = infD(V kPXjY jQ�W );

the in�mum being over V : X̂ � Y ! X s.t.

EQ�W�V �(X; X̂) > D:

Optimal code: If D(QkPY ) � �, encode losslessly the
optimal estimator of Xn. Otherwise, use a Q-covering
code corresponding to W � = argmaxF0.

Explanation: I(R;D; �) = the dominant between the

exponents of the \unimportant" and the \important"

types of Y n. A(Q;R;D) = contribution of TQ of Y n,

where D(QkPY ) comes from PrfTQg and the 2nd term

is the best achievable distortion exponent given TQ s.t.

codelength � nR bits.
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Comments:

3 I(D;R + 0; �� 0) = I(D;R � 0; � + 0) a.e.

3 The previous I is obtained as a special case of Y = X .

3 I = 0 for R � R�(D;PXY ), the RDF of the noisy
source, i.e., the ordinary RDF of PY w.r.t. �0(y; x̂) =
EXY f�(X; X̂)jY = yg.

3 Easy to extend to the case where correlated SI is avail-
able to both encoder and decoder.
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Universal Coding

Returning to the noise{free case, suppose now that the
DMS P� is unknown except for the fact that � 2 �.

For � =1, Marton's solution is already universal: use a
type covering code for every TQ. For � < 1, our above
solution is not universal as it depends on D(QkP ).

Problem: Given a function �(�),
min P�f�(Xn; X̂n) � nDg, uniformly over �,
s.t. P�fL(X̂

n) � nRg � e�n�(�) 8� 2 �.

Questions:

3 Best attainable distortion exponent =?

3What's the best coding strategy (independent of �)?

3 How to choose �(�)?

3 How does the geometry of P� and �(�) a�ect the cost
of universality?
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Observation: If D(QkP�) � �(�) for some � 2 �, one
must use � nR bits, otherwise, the sky is the limit.

De�ning U(Q) = inf�[D(QkP�)� �(�)], let:

L(X̂n) =

8>><
>>:
nR U(Q) � 0 (distortion = DQ(R))
n log jX j U(Q) > 0 (distortion = 0)

where for the 1st line, use a rate-R type{covering code
for each TQ.

Therefore, the best achievable exponent is

Iu(D;R; �(�)) = infD(QkP�)

where the in�mum is over

fQ : U(Q) � 0;DQ(R) � Dg;

or, equivalently,

fQ : U(Q) � 0; RQ(D) � Rg:

Theorem: If Iu is continuous at D and R, then it is
uniformly � the distortion exponent of 8 code that meets
the rate constraint.
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Discussion

If �(�) � F�(D;R), the Q
� achieving

F�(D;R) = inffD(QkP�) : RQ(D) � Rg

gives D(Q�kP�) � �(�), and hence, U(Q�) � 0. Thus,
Iu(D;R; �(�)) = F�(D;R) for all such �.

Good news: No price of universality at those �'s.
Bad news: If �(�) = 1 8� (Marton's setting), then
reducing �(�) to any value > F�(D;R) doesn't improve
the distortion exponent.

For � with �(�) < F�(D;R), the price of universality
= 1: While I(D;R; �(�)) = 1, Iu(D;R; �(�)) can be
<1. The former = min;D(QkP�), whereas

fQ : U(Q) � 0; RQ(D) � Rg

can be 6= ;.

Choose �(�) s.t. Iu =1 whenever possible. This happens

if U(Q) > 0 8Q : RQ(D) � R, i.e.,
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Discussion (Cont'd)

�(�) < �0(�)
�= inf

Q: RQ(D)�R
D(QkP�):

But �0 > 0 if fQ : RQ(D) � Rg is separated from P�

) either Iu =1 8� or Iu <1 8�. A reasonable choice:

�(�) = ��0(�) � 2 (0; 1):

The dichotomy according to the sign of U(Q) is inti-
mately related to a universal decision rule for composite
hypothesis testing (Levitan & Merhav, 2000).
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Zero{Delay Finite{Memory (ZDFM) Codes

Consider now a ZDFM code, where each

X̂t = ft(X
t
t�k+1); X̂t 2 X̂

is compressed individually within Lt(X̂tjX̂
t�1
t�k+1) bits. ft(�)

is a T-V reproduction function and k = the memory pa-
rameter.

We begin with �xed{rate codes, where

Lt(X̂tjX̂
t�1
t�k+1) = log jX̂tj = Rt; X̂t � X̂

independently of X̂ t
t�k+1, and where it is assumed that

jX̂tj doesn't depend on the past, although X̂t itself may
do.

Problem:

minPrf
nX

t=1
�(Xt; X̂t) � nDg s.t.

nX

t=1
Rt � nR:

Earlier work on ZDFM (and related) codes: Gray (`75),

Lloyd (`77), Berger & Lau (`77), Ericson (`79), Piret (`79),

Gaarder & Slepian (`79,`82), Gilbert & Neuho� (`79),

Neuho� & Gilbert (`82), Linder & Lugosi (`00), Linder

& Zamir (`01), Weissman & Merhav (`01).
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Let G = fg1; : : : ; grg, gi : X ! X̂ , denote the set of all
r = jX̂ jjX j memoryless reproduction functions X ! X̂
and let

�R = f� :
rX

s=1
�s log kgsk � Rg:

De�ne

�(D; �) = sup
��0

2
4�D �

X
s
�s lnEe

��(X;gs(X))
3
5 ;

and
F (D;R) = sup

�2�R

�(D; �):

Theorem: Best distortion exponent = F (D;R).
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Discussion

3 F (D;R) { attained by time{sharing among the mem-
oryless fgsg with relative frequencies according to ��.

3 ��s > 0 on at most two fgsg. Similar to Neuho� &
Gilbert (`82) (and Linder & Zamir (`01)) for general
causal codes.

3 The assumption of �xed k is crucial for an LDP (though
not for the MGF).

3 An alternative, \information-theoretic" expression:

F (D;R) = sup
�2�R

inf
fQsg

X
s
�sD(QskPs);

where Ps = the PMF of Ys
�= �(X; gs(X)) and the

inf is over all fQsg s.t. Ps �sEQsYs � D (in partial
analogy to Marton's exponent).

3 In complete duality, the �xed{distortion case gives:
G(D;R) = sup� 
(R; �), where


(R; �) = sup
��0

2
4�R�

X
s
�s lnEe

�Ls(gs(X))
3
5 ;

where now s is an index of a combination (L; g).
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Proof Idea { \Onion Peeling" (Stiglitz `67)

Divide the n{block into sub-blocks of length q (including
gaps of k units). The cumulative distortion within a sub-
block is an AVS.

The Cherno� bound of PrfPt �(Xt; X̂t) � nDg is based
on the MGF:

X
x1
P (x1)e

��(x1;f1(x
1
2�k)) �

X
x2
P (x2)e

��(x2;f2(x
2
3�k)) �

: : :�
X
xq
P (xq)e

��(xq;fq(x
q
q�k+1)):

In the the last line, xq�1q�k+1 just an \index" of a particular
fq ) cannot be

< m(Rq)
�= min

g: log kgk�Rq

X
x
P (x)e��(x;g(x)):

Having factored out the last line, we repeat this argu-
ment for the 2nd to the last line, and so on. Finally, we
have a lower bound Qq

t=1m(Rt), achieved by a sequence
of memoryless reproduction functions.

Comment: For Markov sources, the MGF is minimized
by \Markov" encoders of the same order (as opposed to
Neuho� & Gilbert).
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Rate{Distortion Lagrangian Criterion

Consider the minimization of

Pr
8<
:

nX

t=1
Lt(X̂tjX̂

t�1
t�k+1) + �

nX

t=1
�(Xt; X̂t) � nR0

9=
; :

Motivation: This is the probability that the actual R{D
working point falls above the line R = R0��D. Choose
R0 and � s.t. this line is parallel and slightly above a
certain linear segment of R(D).

In other words, this is like

Pr

8><
>:

nX

t=1
Lt(X̂tjX̂

t�1
t�k+1) > n

2
64R

0
B@
1

n

nX

t=1
�(Xt; X̂t)

1
CA +�

3
75

9>=
>;

in the region of a given slope.

In ordinary block codes, the best exponent is: infD(QkP )

over fQ : infD[R(D;Q) + �D] � R0g.
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R0

R  /0 D

R

R(D)

λ
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De�ne

H(�;R0; �) = sup
��0

[�R0�

X
s
�s lnE expf�[Ls(gs(X)) + ��(X; gs(X))]g

3
5 :

Theorem: Best exponent = H(�;R0)
�= sup�H(�;R0; �):

Comment 1: As H(�;R0; �) is aÆne in � and there
are no constraints on �, the optimum �� puts all its mass
on a single memoryless encoder (Ls; gs), i.e., no need for

time{sharing.

Comment 2: Easy to extend for the characterization
of the probability of

fL(X̂n)+��(Xn; X̂n) � nR0; L(X̂
n)+�0�(Xn; X̂n) � nR0

0g;

corresponding, e.g., to two adjacent linear segments of
R(D).

18



Summary and Conclusion

3We have introduced new criteria for LD tradeo�s be-
tween rate and distortion: A Neyman{Pearson{like
criterion (for block codes) and a Lagrange{type crite-
rion (for ZDFM codes).

3We have characterized L-D tradeo�s of ordinary block
codes, block codes for noisy sources (with SI), univer-
sal codes, ZDFM codes with �xed rate, �xed distor-
tion, and �xed slope.

3 For universal block codes, we have characterized the
price of universality and pointed out the relationship
with universal composite{hypothesis testing.
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Summary and Conclusion (Cont'd)

3 In all cases, exponents are characterized by single-
letter expressions. In the ZDFM case, these stem from
the fact that the best codes are memoryless ones.

3 Techniques: For block codes { the type covering lemma;
For ZDFM codes { \onion{peeling".

3 \Onion{peeling" can be useful for other problems of
causal systems, e.g., causal joint source{channel codes:

X
ut;xt;yt;vt

P (ut)P
e
t (xtju

t
t�k+1)P (ytjxt)P

d
t (vtjy

t
t�k+1)e

��(ut;vt)

is minimized by P e(xju) = Æ(f�f(u)) and P d(vjy) =
Æ(v � g(y)).
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Future Research

Block Codes:

3 Extension of the universal setting to the case of a noisy
source. DiÆculty: what is the best scheme within each
type? In the non-universal noisy case, it depends on
the active source. Universality is not always achiev-
able even in the expectation sense (Dembo & Weiss-
man, 2001).

3 Error exponents for the Wyner{Ziv problem.

ZDFM Codes:

3 ZD in�nite{memory codes.

3 Neyman{Pearson-like tradeo�s.

3 Codes with �nite anticipation (delay).

3 More general sources: Markov sources (Sabbag, 2002).

3 Universal coding.
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