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MODELING PROBLEM
data:
" =z1,...,2, or (¥, z") = (y1,71),-- -, (Un, Tn)
and class of models as distributions
M= {p(z™0):0 € QC R*}, M =UM;

model:

finitely describable distribution that can be fitted to data
traditional ‘nonparametric’ models excluded; abstractions which can-

not be fitted to data

Want a model constructed in terms of given class which extracts all
properties from data that can be expressed in terms of the class

e N O assumptions made about data generating mechanism; in par-
ticular, no model in the class assumed to have generated the data

Central Problem: How to define ‘extractable properties’ from ‘noisy’
data?



In algorithmic theory of information (Kolmogorov):
‘property’ of 2" : set A which includes z"

Intuition:

e all strings in A share a common property
e size |A| inverse measure of amount of properties:

—z" € A, |A| large < z™ has few properties = restrictions

—z" € {z"} (|A| = 1) & A captures all conceivable properties
of 2™

Kolmogorov-complezity K(x™) = length of shortest program to gen-
erate =" (Proamm = cae(eword )

Kolmogorov sufficient statistics decomposition:

A*=max{A > z" :log|A| + K(A) &£ K(z")}

In words: best coding (program for A*) of fewest number of properties

of 2™ together with best coding of 2", given A*, equals best coding of
z™ alone (could have K (z"|A) instead of log |A|)

In general K(z", A) = K(z"|A) + K(A)

log |A*| (or better, K(y"|A*)) = code length of ‘noise’

K (A*) = code length of learnable properties = ‘information’ in z"

Want to do the same relative to model classes My, (and M):
L(z"; M) = L(z"|p) + L(p)

(stochastic complexity = code length for noise, given best model p, +
information)



Traditionally:
mgmxp(x";@) = 0(z")

ML model p(-; (™))

e captures both noise and learnable properties in £™; cannot separate
the two

e amount of information L(f(z")) infinite
e p(y;0(z™)) is not best model to predict new data, because 6(z™)
too ‘noisy’ (not much harm for large n; noise effect small)
Similarly
m]?xp(a:"; 6(z")) = k(z")=k

and p(-; 0%(z")) not good model (well known; k tailored to data z™;
disastrous; only adhoc remedies)

Summary:

In orthodoz statistics: accept ML estimate 6(z™) but reject k(z")
Justification: None; both are parameters!
(or m@Qw) .
In Baysian statistics: accept Max Posterior estimates 6(z™), k(z")
Justification: faith
In new statistics: accept MDL estimates 6(z"), k(z™)

Justification: They achieve Universal Sufficient Statistics Decom-
position extracting learnable information from noisy data
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Normalized Maximum Likelihood (NML) Model
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Q° interior of  and A(6; 9) density function on statistic 6(z") induced

by p(y"; 0)
Fact: p(az™; My) = ¢(z=™) = g(z") solves MinMax Problem:
p(X™;0(X™))
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min max Eglog
q and g range over any distributions

Proof: The MinMax problem is equivalent with

min mg,xD(qu) — D(p|lg) + log C,, > maxmin... = log Cp;
equality reached for § = ;3 D ( 1 ] ‘?) KL i R e
If CLT holds for 6(z™),

k n 1/9
log Cy =  log _— +log Jo, 11(6)['/2d6 + o(1) (5)

where I(6) is the Fisher information matrix.
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COMPLEXITY and INFORMATION
Stochastic Complexity of =", given Mj;:
—log p(z"; My) = — log p(z™; §(z™)) + log C,

Justifications:

e MinMax Problem: Best mean code length for the worst case data
generating distribution; also

e For all q(z™) and all g(z") = p(z™;60), 0 € Q — Ayp,

E,log1/q(X™) > Hy(X™) + (1 —€)log Cy,

where volume of A;, — 0. \ Can rep lace w 1+

| = , ", a 2
Information in z": log C, tj /.a / F (<7160 ')\

Justification:

4
M QX)) w) b
e Balasubramanian: C;, = number of optimally distinguishable mod-

els from z" A

e Universal Sufficient Statistics Decomposition (next foil)
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MDL-Principle (global ML-Principle):

Of two model classes My, and N prefer former if

—log p(z"; My) < —log p(z™; ;)

or equivalently

p("; M) > p(z™; Nj)

Justification: better decomposition of data into noise and the useful
information by winner; smaller complexity = shorter code length
for noise (grows like O(n) while information grows like O(logn)) =
some of what looks like noise with the worse model class extracted
as useful information by the better class

For class M = U, M,
min{—log p(a"; My} = k(a") (8)

I (Y™ Miym)dy”

p(z™; M) = 9)

¢ In modeling, to achieve the decomposition important - not to min-
imize this or that criterion as an estimate of mean loss function,
the mean taken with respect to some imagined ‘truth’

e most successful criteria are the ones that happen to be close to
MDL! (justification for Bayesian techniques)

e no assumption that data be a sample from metaphysical popula-
tions



Statistical Modeling

Linear Regression

W = {w;}, m X n regressor matrix
= {i1,...,%}, index set, k < m
= {wij i€}, =W, W,

1]
L 4
Qg -2

LR
Model Class M.

Ty = Zﬁiwit—l—(ft, t = 1,...,n
1€y
& ~ N(0,0%), o®=1
ML-solutions:

B = E;lW,,:c, r=2z"=(z1,...,2,)

RSS/n = %(:c':c —3'.5)

3
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NML-density function: For the normal density functions
(a7, 7,8) = (2mer) ™/

and

. _ (2mes) /2
f(JZ Y70, R) - fy(TO,R)(2ﬂ.e,}:(zn))-—n/2dzn’

where

Y (19, R) = {z" : #(z") > 1, f'(2™)2,8(z") < R};

hyperparameters 79 and R such that 2™ € Y (7, R) >
>
|
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Statistical Modeling

B and 7 independent and sufficient imply exact formula (0 < £ < m):

. k. R
-—logf(:z:";y,To,R)=21n%+—1n—+F(k,n) (11)
2 2 " To
where
n—k k
F(k,n)=—InT( 5 )——1n1“(2)+1n22— ——ln(n’ir) (12)

Problem: Optimum 4 with k indices for (11) depends on R and .

Repeat normalization for R and 75: Optimum values 7o = 7 and R = R =

B'S,B =
f(IEn; 7) - f(ﬂ?n; ™ 72,/]:2)/ /Y(Tl,Tz,Rl,Rz) f(yn’ s ,/?.(yn)., R(yn))dyn
N n — k . k ~ 2 7-2R2
n f(z";7) 5 1nT+2 nR+ F(k,n) lnk +1nlnﬁR1 (13)

(values of new hyperparameters irrelevant)

Extend f(z™;~) to NML model f(:z:"; Q) for M = Uyeam M, (v over all subsets
of {1,...,m}):

Repeat normalization for y: With 4 =11, ... ,'Ail:, maximizing f(a:”; v) =

universal sufficient statistics demposition:

~ ~ ~

n—k ln%+§lnﬁ—lnf(n _ k)——ln I‘(g)—i-ln-]%—i— Const (14)

—In f(z™ Q) =

o first term is code length for noninformative ‘noise’ - incompressible

e the rest define code length for optimal model

( W{,_,ﬂ&i-#-ﬁ&.(nkjf-——*“_“/ = - (st

\ L Ot
7 )1- -,-_[_'4.,') .../.t..‘.l' \ —— C£'_‘€17- On /)}"
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Statistical Modeling

MDL Denoising Problem

Intuitively:
Iy = it-*-ét, t=1,...,n
& = ‘noise’
£ = ‘smooth’signal

Natural formalization by universal sufficient statistics:

e noise = incompressible part in data, given model class

e smooth signal = information bearing part defined by optimal model
Model class: linear regression with normal family for deviations
n X n-matrix W, rows defining orthonormal basis, WW' = I,

defines transform ¢ < z,

1
= Wz, 2 =z2"=1z,,...,2,
\ ! /
z = We, ¢ =cp,...,Cq

Hence, dc=2'z

Exa.mple s w de{-\‘n¢.£ b-\" wq,v¢[6‘oL.§
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Statistical Modeling

For W, = {w;; : 1 € v}, v = {i1,...,4} € 2", set of indices of nonempty
subsets of n basis vectors

F(z; Q) = criterion

7m6121n1{(n—k)ln m— +klIn . —lnn_k}, (16)
where | |
S, =3¢ 17
O avkitranily selecked T | (17)
wr@m&k’r{- 4

Theorem 3 For orthonormal regression matrices the inder set 4 that mini-
mizes the criterion (16) is given either by the indices ¥ = {(1),...,(k)} of the
k largest or the k smallest ¥ = {(n — k +1),...,(n)} coefficients in absolute
value for some k = k.

e Data for denoising: #" simpler than noise z" — Z"; hence take the largest
coefficients:

. . . cec— S’(k) S’(k) ' k
mkmC(k)(:L') = rnkm{(n — k)In ——% T kln P In — k} (18)

e With ¢" denoting the column vector defined by the coefficients éy,. .. ,éx,
where & = ¢; for i € {(1),...,(k)} and zero, otherwise,

e signal recovered is " = W¢".
e threshold more intricate than Donoho-Johnstone threshold 6v21nn.

Notice. Donoho-Johnstone traditional risk based reasoning circular: &
defines noise by the threshold, and noise determines its variance! Can
be resolved only by an arbitrary estimation of &.

14—



Statistical Modeling

Examples with Wavelets:

With wavelets W is square n X n matrix: ¢ = Wz, z = W'ec

' ‘
o* . ‘ :l‘
LI [ 4 * t 4
"." e
N
13 ’f

zy = f(t) + e; consist of two piecewise polynomials f (t) sampled at 512 points
in unit interval; normal 0-mean, 0.01-variance noise e; added (G.P. Nason).

Example 1: X 4

Data:

Results:

The threshold obtained with the NML criterion is A = 0.246. This is be-
tween the two thresholds called VisuShrink A = 0.35 and GlobalSure )\ = 0.14,
(Donoho and Johnstone); also close to A = 0.20, obtained by Nason with very
complex cross-validation procedure

Example 2:

Data:

128 samples from a voiced portion of speech.
Results:

The NML criterion retains 42 coefficients exceeding threshold A = 7.3 in abso-
lute value. Noise variance 7 = £y(z; — #;)? = 5.74.

Donoho-Johnstone threshold A = /27 1n128 = 10.3. Noise variance 7 = 10.89.
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Figure 1. Speech signal smoothed with Daubechies’ N=6 wavelet




