MDL THEORY AS A FOUNDATION FOR STATISTICAL MODELING

J. Rissanen

Helsinki Institute for Information Technology,
Technical Universities of Tampere and Helsinki, Finland,
and

University of London, Royal Holloway, UK

10/29/2001

MODELING PROBLEM

data:

$$x^n = x_1, \dots, x_n$$
 or $(y^n, x^n) = (y_1, x_1), \dots, (y_n, x_n)$

and class of models as distributions

$$\mathcal{M}_k = \{ p(x^n; \theta) : \theta \in \Omega \subseteq R^k \}, \quad \mathcal{M} = \bigcup \mathcal{M}_k$$

model:

finitely describable distribution that can be fitted to data traditional 'nonparametric' models excluded; abstractions which cannot be fitted to data

Want a model constructed in terms of given class which extracts all properties from data that can be expressed in terms of the class

• NO assumptions made about data generating mechanism; in particular, no model in the class assumed to have generated the data

Central Problem: How to define 'extractable properties' from 'noisy' data?

In algorithmic theory of information (Kolmogorov):

'property' of x^n : set A which includes x^n

Intuition:

- all strings in A share a common property
- size |A| inverse measure of amount of properties:
 - $-x^n \in A$, |A| large $\Leftrightarrow x^n$ has few properties = restrictions
 - $-x^n \in \{x^n\} \ (|A|=1) \Leftrightarrow A$ captures all conceivable properties of x^n

 $Kolmogorov\text{-}complexity\ K(x^n) = \text{length of shortest program to generate } x^n$

Kolmogorov sufficient statistics decomposition:

$$A^* = \max\{A \ni x^n : \log|A| + K(A) \cong K(x^n)\}$$

In words: best coding (program for A^*) of fewest number of properties of x^n together with best coding of x^n , given A^* , equals best coding of x^n alone (could have $K(x^n|A)$ instead of $\log |A|$)

In general $K(x^n, A) \cong K(x^n|A) + K(A)$

 $\log |A^*|$ (or better, $K(y^n|A^*)$) = code length of 'noise'

 $K(A^*)$ = code length of learnable properties = 'information' in x^n

Want to do the same relative to model classes \mathcal{M}_k (and \mathcal{M}):

$$\hat{L}(x^n; \mathcal{M}_k) = L(x^n|\hat{p}) + L(\hat{p})$$

(stochastic complexity = code length for noise, given best model \hat{p} , + information)

Traditionally:

$$\max_{\theta} p(x^n; \theta) \Rightarrow \hat{\theta}(x^n)$$

ML model $p(\cdot; \hat{\theta}(x^n))$

- captures both noise and learnable properties in x^n ; cannot separate the two
- amount of information $L(\hat{\theta}(x^n))$ infinite
- $p(y; \hat{\theta}(x^n))$ is not best model to predict new data, because $\hat{\theta}(x^n)$ too 'noisy' (not much harm for large n; noise effect small)

Similarly

$$\max_{k} p(x^{n}; \hat{\theta}(x^{n})) \implies \hat{k}(x^{n}) = \hat{k}$$

and $p(\cdot; \hat{\theta}^{\hat{k}}(x^n))$ not good model (well known; \hat{k} tailored to data x^n ; disastrous; only adhoc remedies)

Summary:

In orthodox statistics: accept ML estimate $\hat{\theta}(x^n)$ but reject $\hat{k}(x^n)$

Justification: None; both are parameters!

In Baysian statistics: accept Max Posterior estimates $\hat{\theta}(x^n)$, $\hat{k}(x^n)$

Justification: faith

In new statistics: accept MDL estimates $\bar{\theta}(x^n)$, $\bar{k}(x^n)$

Justification: They achieve Universal Sufficient Statistics Decomposition extracting learnable information from noisy data

$-\log p(x^n;\theta) = -\log p(x^n;\theta(x^n))$

Normalized Maximum Likelihood (NML) Model

$$\hat{p}(x^n; \mathcal{M}_k) = \frac{p(x^n; \hat{\theta}(x^n))}{C_n}$$

$$C_n = \int_{\hat{\theta}(y^n) \in \Omega^{\circ}} p(x^n; \hat{\theta}(y^n)) dy^n$$
(1)

$$C_n = \int_{\hat{\theta}(y^n) \in \Omega^{\circ}} p(\mathbf{1}; \hat{\theta}(y^n)) dy^n$$
 (2)

$$= \int_{\hat{\theta} \in \Omega^{\circ}} h(\hat{\theta}; \hat{\theta}) d\hat{\theta}; \tag{3}$$

 Ω° interior of Ω and $h(\hat{\theta}; \theta)$ density function on statistic $\hat{\theta}(x^n)$ induced by $p(y^n; \theta)$

Fact: $\hat{p}(x^n; \mathcal{M}_k) = \hat{q}(x^n) = \hat{q}(x^n)$ solves MinMax Problem:

$$\min_{q} \max_{g} E_g \log \frac{p(X^n; \hat{\theta}(X^n))}{q(X^n)}; \qquad (4)$$

q and g range over any distributions

Proof: The MinMax problem is equivalent with

$$\min_{q} \max_{g} D(g||q) - D(\hat{p}||g) + \log C_n \ge \max_{g} \min_{q} \ldots = \log C_n;$$

equality reached for
$$\hat{q} = \hat{g} = \hat{p}$$
; $D(113) = KL$ distance

If CLT holds for $\hat{\theta}(x^n)$,

$$\log C_n = \frac{k}{2} \log \frac{n}{2\pi} + \log \int_{\Omega} |I(\theta)|^{1/2} d\theta + o(1)$$
 (5)

where $I(\theta)$ is the Fisher information matrix.

Shannon:
$$M=\{p\} \Rightarrow C_n=1$$

min $E_p = \log p = \log 1 \Rightarrow 0$
 $f = p$

COMPLEXITY and INFORMATION

Stochastic Complexity of x^n , given \mathcal{M}_k :

$$-\log \hat{p}(x^n; \mathcal{M}_k) = -\log p(x^n; \hat{\theta}(x^n)) + \log C_n$$

Justifications:

- MinMax Problem: Best mean code length for the worst case data generating distribution; also
- For all $q(x^n)$ and all $g(x^n) = p(x^n; \theta), \theta \in \Omega \Lambda_{q,n}$

$$E_g \log 1/q(X^n) \ge H_g(X^n) + (1 - \epsilon) \log C_n$$

 $E_g \log 1/q(X^n) \geq H_g(X^n) + (1-\epsilon) \log C_n,$ where volume of $\Lambda_{q,n} \to 0$. Can replace with formation in x^n : $\log C_n$

Information in x^n : $\log C_n$

Justification:

MOXIMUM

- Balasubramanian: C_n = number of optimally distinguishable models from x^n
- Universal Sufficient Statistics Decomposition (next foil)

USSD

USSD

Partitioning Th = {Bins of J2 with maximal curvisineer rectangles within Dan

Prek ded such that

Bayon

$$\int P(y''; \hat{\theta}(y')) dy'' = 1 = \int h(\hat{\theta}; \hat{\theta}) d\hat{\theta}$$

$$\hat{\theta}(y'') \in B_{\lambda,m}$$

$$\hat{\theta} \in B_{\lambda,m}$$

$$C_n = \int h(\hat{\theta}; \hat{\theta}) d\hat{\theta} = \sum_{i=1}^{|T_n|} = |T_n|$$

 $-\log \hat{p}(x^n; \mathcal{N}_{k}) = -\log p(x^n|\hat{\theta}(x^n)) + \log C_n$ $p(x^n|\hat{\theta}(x^n)) = p(x^n; \hat{\theta}(x^n)) \text{ for } x^n \text{ such that }$ $\hat{\theta}(x^n) \in B_{n,n}$

-log p(x"/B:(x")) is code length for noise

log Cn is code length for optimally
distinguishable models

= 2nformation

Finite String Distinguishability

$$\lambda(\theta_i;\theta_i)$$

$$\lambda(\theta_i;\theta_i) = -\overline{d/2}$$

$$\lambda(\theta_i;\theta_i) = -\overline{d/2}$$

Worst case loss

MDL-Principle (global ML-Principle):

Of two model classes \mathcal{M}_k and \mathcal{N}_j prefer former if

$$-\log \hat{p}(x^n; \mathcal{M}_k) < -\log \hat{p}(x^n; \mathcal{N}_i)$$

or equivalently

$$\hat{p}(x^n; \mathcal{M}_k) > \hat{p}(x^n; \mathcal{N}_i)$$

Justification: better decomposition of data into noise and the useful information by winner; smaller complexity \Rightarrow shorter code length for noise (grows like O(n) while information grows like $O(\log n)$) \Rightarrow some of what looks like noise with the worse model class extracted as useful information by the better class

For class $\mathcal{M} = \bigcup_k \mathcal{M}_k$

$$\min_{k} \{ -\log \hat{p}(x^n; \mathcal{M}_k) \Rightarrow \hat{k}(x^n)$$
 (8)

$$\hat{p}(x^n; \mathcal{M}) = \frac{\hat{p}(x^n; \mathcal{M}_{\hat{k}(x^n)})}{\int \hat{p}(y^n; \mathcal{M}_{\hat{k}(y^n)}) dy^n}$$
(9)

- In modeling, to achieve the decomposition important not to minimize this or that criterion as an estimate of mean loss function, the mean taken with respect to some imagined 'truth'
- most successful criteria are the ones that happen to be close to MDL! (justification for Bayesian techniques)
- no assumption that data be a sample from metaphysical populations

Linear Regression

$$W = \{w_{ij}\}, m \times n \text{ regressor matrix}$$

 $\gamma = \{i_1, \dots, i_k\}, \text{ index set, } k \leq m$
 $W_{\gamma} = \{w_{ij} : i \in \gamma\}, \Sigma_{\gamma} = W_{\gamma}W'_{\gamma}$

Model Class \mathcal{M}_{γ} :

$$x_t = \sum_{i \in \gamma} \beta_i w_{it} + \epsilon_t, \ t = 1, \dots, n$$

 $\epsilon_t \sim N(0, \sigma^2), \ \sigma^2 = \tau$

ML-solutions:

$$\hat{\beta} = \Sigma_{\gamma}^{-1} W_{\gamma} x, \ x = x^{n} = (x_{1}, \dots, x_{n})'$$

$$\hat{\tau} = RSS/n = \frac{1}{n} (x' x - \hat{\beta}' \Sigma_{\gamma} \hat{\beta})$$

NML-density function: For the normal density functions

$$f(x^n; \gamma, \hat{\tau}, \hat{\beta}) = (2\pi e \hat{\tau})^{-n/2}$$

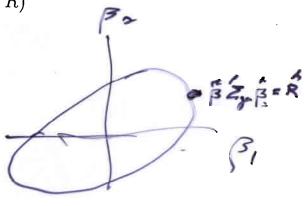
and

$$\hat{f}(x^n; \gamma, \tau_0, R) = \frac{(2\pi e \hat{\tau})^{-n/2}}{\int_{Y(\tau_0, R)} (2\pi e \hat{\tau}(z^n))^{-n/2} dz^n},$$

where

$$Y(\tau_0, R) = \{z^n : \hat{\tau}(z^n) \ge \tau_0, \, \hat{\beta}'(z^n) \Sigma_\gamma \hat{\beta}(z^n) \le R\};$$

hyperparameters τ_0 and R such that $x^n \in Y(\tau_0, R)$



 $\hat{\beta}$ and $\hat{\tau}$ independent and sufficient imply exact formula $(0 < k \le m)$:

$$-\log \hat{f}(x^n; \gamma, \tau_0, R) = \frac{n}{2} \ln \hat{\tau} + \frac{k}{2} \ln \frac{R}{\tau_0} + F(k, n)$$
 (11)

where

$$F(k,n) = -\ln\Gamma(\frac{n-k}{2}) - \ln\Gamma(\frac{k}{2}) + \ln\frac{4}{k^2} + \frac{n}{2}\ln(n\pi)$$
 (12)

Problem: Optimum $\hat{\gamma}$ with \hat{k} indices for (11) depends on R and τ_0 .

Repeat normalization for R and τ_0 : Optimum values $\tau_0 = \hat{\tau}$ and $R = \hat{R} = \hat{\beta}' \Sigma_{\gamma} \hat{\beta} \Rightarrow$

$$\hat{f}(x^{n};\gamma) = \hat{f}(x^{n};\gamma,\hat{\tau},\hat{R}) / \int_{Y(\tau_{1},\tau_{2},R_{1},R_{2})} \hat{f}(y^{n};\gamma,\hat{\tau}(y^{n}),\hat{R}(y^{n})) dy^{n}
-\ln \hat{f}(x^{n};\gamma) = \frac{n-k}{2} \ln \hat{\tau} + \frac{k}{2} \ln \hat{R} + F(k,n) - \ln \frac{2}{k} + \ln \ln \frac{\tau_{2}R_{2}}{\tau_{1}R_{1}}.$$
(13)

(values of new hyperparameters irrelevant)

Extend $\hat{f}(x^n; \gamma)$ to NML model $\hat{f}(x^n; \Omega)$ for $\mathcal{M} = \bigcup_{\gamma \in 2^m} \mathcal{M}_{\gamma}$, (γ over all subsets of $\{1, \ldots, m\}$):

Repeat normalization for γ : With $\hat{\gamma} = \hat{i}_1, \dots, \hat{i}_{\hat{k}}$ maximizing $\hat{f}(x^n; \gamma) \Rightarrow$

universal sufficient statistics demposition:

$$-\ln \hat{f}(x^{n};\Omega) = \frac{n-\hat{k}}{2} \ln \hat{\tau} + \frac{\hat{k}}{2} \ln \hat{R} - \ln \Gamma(\frac{n-\hat{k}}{2}) - \ln \Gamma(\frac{\hat{k}}{2}) + \ln \frac{1}{\hat{k}} + Const (14)$$

- first term is code length for noninformative 'noise' incompressible
- the rest define code length for optimal model

$$min \left(\frac{(n-k)}{2} \ln \tilde{t} + \frac{k}{2} \ln (nR) + \frac{n-k-l}{2} \ln \frac{n}{n-k} - (k+l) \ln k \right)$$

$$+ Court$$

MDL Denoising Problem

Intuitively:

$$x_t = \hat{x}_t + \hat{\epsilon}_t, t = 1, ..., n$$

 $\hat{\epsilon}_t = \text{'noise'}$
 $\hat{x}_t = \text{'smooth' signal}$

Natural formalization by universal sufficient statistics:

- noise = incompressible part in data, given model class
- smooth signal = information bearing part defined by optimal model

Model class: linear regression with normal family for deviations

 $n \times n$ -matrix W, rows defining orthonormal basis, $WW' = I_n$ defines transform $c \leftrightarrow x$,

$$c = Wx, x' = x^n = x_1, \dots, x_n$$

$$x = W'c, c' = c_1, \dots, c_n$$

Hence, c'c = x'x

Example: W defined by wavelets

For $W_{\gamma} = \{w_{ij} : i \in \gamma\}, \ \gamma = \{i_1, \dots, i_k\} \in 2^n$, set of indices of nonempty subsets of n basis vectors

 $\hat{f}(x;\Omega) \Rightarrow \text{criterion}$

$$\min_{\gamma \in 2^n} \{ (n-k) \ln \frac{c'c - \hat{S}_{\gamma}}{n-k} + k \ln \frac{\hat{S}_{\gamma}}{k} - \ln \frac{k}{n-k} \}, \tag{16}$$

where

. No arbitrarily selected
$$\hat{S}_{\gamma} = \sum_{i \in \gamma} c_i^2.$$
 (17)

Theorem 3 For orthonormal regression matrices the index set $\hat{\gamma}$ that minimizes the criterion (16) is given either by the indices $\hat{\gamma} = \{(1), \ldots, (k)\}$ of the k largest or the k smallest $\hat{\gamma} = \{(n-k+1), \ldots, (n)\}$ coefficients in absolute value for some $k = \hat{k}$.

• Data for denoising: \hat{x}^n simpler than noise $x^n - \hat{x}^n$; hence take the largest coefficients:

$$\min_{k} C_{(k)}(x) = \min_{k} \{ (n-k) \ln \frac{c'c - \hat{S}_{(k)}}{n-k} + k \ln \frac{\hat{S}_{(k)}}{k} - \ln \frac{k}{n-k} \}$$
 (18)

- With \hat{c}^n denoting the column vector defined by the coefficients $\hat{c}_1, \ldots, \hat{c}_n$, where $\hat{c}_i = c_i$ for $i \in \{(1), \ldots, (\hat{k})\}$ and zero, otherwise,
- signal recovered is $\hat{x}^n = W\hat{c}^n$.
- threshold more intricate than Donoho-Johnstone threshold $\hat{\sigma}\sqrt{2\ln n}$.

Notice. Donoho-Johnstone traditional risk based reasoning circular: $\hat{\sigma}$ defines noise by the threshold, and noise determines its variance! Can be resolved only by an arbitrary estimation of $\hat{\sigma}$.

Examples with Wavelets:

With wavelets W is square $n \times n$ matrix: c = Wx, x = W'c

Example 1:

Data:

 $x_t = f(t) + e_t$ consist of two piecewise polynomials f(t) sampled at 512 points in unit interval; normal 0-mean, 0.01-variance noise e_t added (G.P. Nason).

Results:

The threshold obtained with the *NML* criterion is $\lambda=0.246$. This is between the two thresholds called VisuShrink $\lambda=0.35$ and GlobalSure $\lambda=0.14$, (Donoho and Johnstone); also close to $\lambda=0.20$, obtained by Nason with very complex cross-validation procedure

Example 2:

Data:

128 samples from a voiced portion of speech.

Results:

The NML criterion retains 42 coefficients exceeding threshold $\lambda = 7.3$ in absolute value. Noise variance $\hat{\tau} = \sum_t (x_t - \hat{x}_t)^2 = 5.74$.

Donoho-Johnstone threshold $\lambda = \sqrt{2\hat{\tau} \ln 128} = 10.3$. Noise variance $\hat{\tau} = 10.89$.

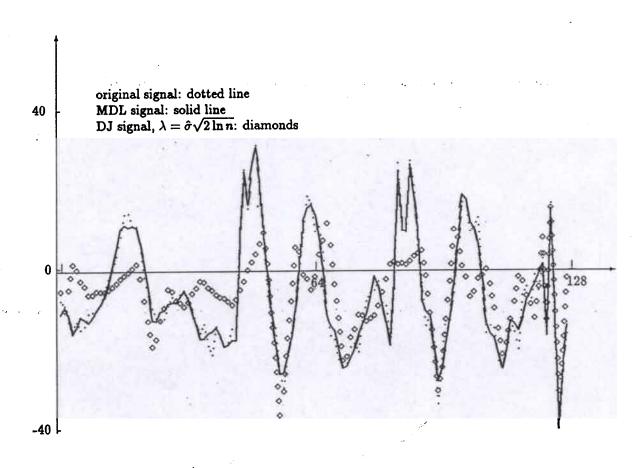


Figure 1. Speech signal smoothed with Daubechies' N=6 wavelet