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Abstract

Inspired by C.E Shannon’s celebrated paper: “Prediction and entropy

of printed English” (BSTJ 30:50–64, 1951), we consider, in this

correspondence, the optimal prediction error for unknown

finite-alphabet ergodic Markov sources, for prediction algorithms

that make inference about the most probable incoming letter, where

the distribution of the unknown source is apparent only via a short

training sequence ofN + 1 letters. We allowN to be a polynomial

function ofK, the order of the Markov source, rather than the

classical case whereN is allowed to be exponential inK.
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A lower bound on the prediction error is formulated for such

universal prediction algorithms, that are based on suffixes that were

observed somewhere in the past “training-sequence”X�1
�N (i.e. it is

assumed that the universal predictor, given the past

(N + 1)-sequence which serves as a training sequence is no better

than the optimal predictor given only the longest suffix that appeared

somewhere in the pastX�1
�N vector).

For a class of stationary Markov sources (which includes all Markov

sources with positive transition probabilities), a particular universal

predictor is introduced, and it is demonstrated that its performance is

“optimal” in the sense that it yields a prediction-error which is close
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to the lower-bound on the universal prediction-error, with limited

training data.

The results are non-asymptotic in the sense that they express the

effect of limited training data on the efficiency of universal

predictors. An asymptotically optimal universal predictor which is

based on pattern matching appears elsewhere in the literature (e.g

[3], [5]). However, the prediction error of these algorithms does not

necessarily come close to the lower bound in the non-asymptotic

region.
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1 Introduction

We consider finite-alphabet sequences which are emitted by a

stationary source with unknown statistics
X = X1; X2 ; : : : ; Xi; : : : ;

Xm
1 = X1; X2 ; : : : ; Xm;

Xi 2 A ; jAj = A :
GivenX0

�N , we need to predictX1 in cases where the actual measure

P (X1jX
0

�N ) is not available to us. In order to predictX1 one may

assign, for any suffixX�0
�N (which serves as a training sequence),
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some arbitrary prediction functionf(X0
�N), hoping that this assigned

predictor will yield a small prediction error which will be as close as

possible to the minimal prediction error (for known statistics),

namely:Pmin(X
0

�N) = minf(�)EX0
�N

Æ(X1; f(X
0

�N )), where

Æ(a; b) = 0 if a = b; else Æ(a; b) = 1 ; (1)

and whereEX0
�N

(�) denotes conditional expectation. The optimal

prediction ofX1, givenX0
�N , is achieved by picking the oneX1 2 A

which maximizesP (X1jX
0

�N ).

Hence,Pmin(X
0

�N) = EX0
�n
Æ (X1; argmaxX12A P (X1jX
0

�N )). In
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the case of universal prediction, the measureP (X1jX
0

�N ) is not

known, and therefore,Pmin(X
0

�N) is not necessarily achievable

(unlessN is large enough).

We consider the class of universal predictors that satisfy the highly

intuitive restriction that each universal predictor in the class may not

outperform the predictor which is based on the true probability

measure, conditioned on the longest suffix that appeared somewhere

in the past(N + 1)–sequenceX0
�N , rather than the completeX0
�N ,

(i.e. P (X1jX
0

�K0(X0
�N

);K0(X
0

�N)) whereX0
�K0(X0
�N

) is the longest

suffix ofX1 in X0
�N [1]. More precisely, we make the following

restriction:
7
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Restriction 1 Let K0(X
0

�N) be the largest integer i � N � 1 such

that X0
�i = X

�j
�i�j for some

1 � j � N � i (2)

(K0 = �1 if X0 does not appear in X�1
�N where X0
1 is the null

string). We restrict our attention to the class of predictors

G = [g : AN+1 ! AjEÆ(X1; g(X
0

�N ) �

EÆ(X1; argmax

X2A
P (X1jX
0

�K0(X0
�N

);K0(X
0

�N))]
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Define,

P u
min(X
0

�N) = min

g(�)2G
EX0

�N

Æ
�

X1; g(X
0

�N )
�

where the expectation is taken w.r.t.X1 given the contextX0
�N .

Clearly,
P u
min(X
0

�N) � Pmin(X
0

�N) : (3)

The l.h.s. of Eq. (3) therefore serves as a lower bound on the
prediction error that may be achieved by any predictor in the
restricted class. Roughly speaking, we are treating this problem by
deriving performance bounds for a restricted class of prediction
algorithms that only make inferences about the “optimal” predictor
for the (unknown) random process based only on what has been
observed in the training data. Assume that the source that emitsX1

�N

is a stationary ergodicK-th order Markov source (K is unknown to
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the predictor). IfN is large enough (say, exponential inK) the
universal prediction error may approach the minimal prediction error
[5]. Intuitively, this exponential growth is needed since the prediction
approach is based on estimatingK by some order^K and performing
a majority vote conditioned on the context of length^K. However, in
many cases, such a large number of samples is not available.

In this correspondence, we considerK-th order Markov sources that,
given the positive parametersT1 andN , satisfy:

Pr
h

P (X0
�`) � 2�Hmin`
i

�

1
T1

for some positive numberH1 and some positive integer` � 5 logN

H1

.
We derive an efficient universal prediction algorithm that yields a
prediction error close toPu

min(X
0

�N) for values ofN which are
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polynomial in K. The algorithm finds the longest suffix ofX0
�N that

recurs at leastT2 times, whereT2 is some predetermined positive

constant. The predictedX1 is taken to be the most frequent letter

X 0 2 A among the letters that followed these recurrences (i.e. a

majority rule). This in contrast with other results in the literature

(e.g. [3], [5]) that describe asymptotically optimal universal

prediction algorithms, where it is inherently assumed thatN is,

apparently, exponential inK, and therefore the associated prediction

error of these algorithms does not necessarily come close to the

lower bound of Eq. (3).
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2 Main Results

Let Y 0
�N be a realization of the source process, which is independent

of X0
�N . DefineK0(X
0

�N jY
0

�N ) to be the largest integeri such that

X0
�i = Y

�j
�i�j for some0 � j � N � i. (K0(X
0

�N jY
0

�N ) = �1 if X0

does not appear inY 0
�N ). Also, consider the following restriction:
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Restriction 2 We restrict our attention to the class of predictors

G0 = [g0 : AN+1 ! Ajg0(X0
�N jY
0

�N ) = g0(Z0
�N jY
0

�N ) whenever

K0(X
0

�N jY
0

�N ) = K0(Z
0

�N jY
0

�N ) = k and X0
�k�1 = Z0
�k�1]. Thus,

5P u
min
�

X0
�N jY
0

�N
�

= min

g0(�)2G0
EX0

�N

;Y 0
�N

Æ
�

X1; g
0(X0

�N jY
0

�N )
�

= Pmin
�

X0
�K0(X0
�N

jY 0
�N

)�1
�

: (4)

Observe that, given the suffixX0
�K0(X0
�N

jY 0
�N

)�1, X1 is independent

of K0(X
0

�N jY
0

�N ).

Then,

Lemma 1 Let Y 0
�N be a realization of an admissible K-th order

stationary ergodic Markov process, that is independent of X0
�N

which is emitted from the same source, and let T1 be a positive

13



'
&

$
%

integer. Then,

1.

EP u
min(X
0

�N jY
0

�N ) � EPmin(X
0

�K(X0
�N

)�1) +O(
logN

N Æ

) +

2
T1

� EP u
min(X
0

�N) + O(
logN

N Æ

) +

2
T1

provided that the (unknown) order of the Markovian source

satisfies K � O(N
1

3
�3Æ) where 0 � Æ � 1

9

.

2. For any predictor g(X0
�N) that satisfies

g(X0
�N ) = g(X�M
�N ; X0
�K)

14



'
&

$
%

for every X0
�N 2 AN+1 where M � N

1
3
�Æ we have that,

EÆ
�

X1; g(Y
�M

�N ; X0
�K)
�

� EÆ
�

X1; g(X
0

�N )
�

+O
�

1
N Æ

�
:

3.

Pr
h

K0(X
0

�N jY
0

�N ) �

5
H1
logN
i

�

2T1

H1N

+

2
T1
:

Pr
h

K0(X
0

�N) �

5
H1
logN
i

�

2T1

H1N

+

2
T1
: (5)

The proof of Lemma 1 appears in the Appendix.
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Discussion:

1. It should be noted that any given stationary ergodic source is

admissible asN tends to infinity. However, we are dealing with

a class of Markov sources that are characterized by an orderK

that is allowed to grow with N.

2. Lemma 1 indicates that one may replaceX0
�N as a training data

by an independent training vectorY 0
�N and a short suffix of

X0
�N , namelyX0
�Kmax

whereKmax = O(logN) with only a

negligible deterioration in the prediction error.

Lemma 1 will be used as an analysis tool for the prediction algorithm

that is proposed below, which is denoted bygu(X0
�N ;T2).
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3 A Universal Prediction Algorithm

Consider the suffix ofX1, X0
�N .

Let ^N = N

(1+T1
2T2)

whereT1 andT2 are some positive numbers

(T1 = T2
2) and letj be a positive integer1 � j � T2.

1. EvaluateK0(X
0

� ^N
).

2. For eachj, denote bytj the first instant inX�(jT1
2+1) ^N�1

�((j+1)T1
2+1) ^N)

for

whichXtj
tj�K0(X0
� ^N
) = X0
�K0(X0
� ^N
). If no such instant exists, set

tj = �N � 1.

3. PredictX1 to be the letter^X 2 A that minimizes:PT2
j=1:tj>�N�1Æ(Xtj+1; ^X).
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Theorem 1 Let us assume that the source that emits X1
�N is a

stationary ergodic K-th order Markov source that satisfies the

condition in Lemma 1 (part 3). (K is unknown to the predictor.)

Then, the prediction error that is associated with the universal

prediction algorithm above is upper-bounded by:

3aEÆ
�

X1; g
u(X0

�N ;T2)
�

= EP u(X0
�N ; T2) � EPmin(X
0

�K(X0
� ^N
)))

+O
�

1
T2

�
+ O

 
T2 logN

^N Æ

!

(6)

provided that K � O( ^N
1

3
�3Æ).

18



'
&

$
%

Discussion:

1. By Lemma 1, with probability larger than about1� 1
T1

,

K0(X
0

�N) � 0(logN). Also,

K0(X
0

� ^N
) � O
�

logN
�

1� 1+log T1
2T2

logN

��
= O(logN). Hence,

for logN � log(T1
2T2), EP u(X0

�N ; T1) is expected to be

roughly equal toEPu
min(X
0

� ^N
), which demonstrates the

efficiency of the proposed prediction algorithm. This particular

algorithm was introduced here because it lends itself to a simple

analysis. Other similar algorithms might be, perhaps, more

efficient.
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2. Despite the fact that we requireN to be large, the results are

non-asymptotic since we allow the orderK to be

K = O( ^N
1

3
�3Æ) = O
�

( N

1+T1
2T2
)

1
3
�3Æ
�

and notK = O(logN) as

is customary to assume.

The proof of Theorem 1 appears in the Appendix.

20



'
&

$
%

Appendix

Proof of Lemma 1 (part 3): Define

S = [X0
�N : P (X0
�i) � 2�H1i; i � 5 logN

H1

]. By the Chebytchev

ineqality,

Pr
h

P (X�j
�j�i) = P (X0
�ijX
0

�i; S) � N 2T1P (X0
�ijS)
i

�

1
N 2T1
:

Also,

Pr
�

K0(X
0

�N) = ijS
�

�

NX
j=1
P
�

X
�j

�j�i = X0
�ijS
�

:
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But, for somei � 5 logN

H1

,

Pr
h

P (X0
�ijS) � 2�H1i
i

:

Hence, it follows that,

Pr
�

K0(X
0

�N) �

5
H1
logN
�

�

1
T1
+

NX
i= 5
H1
logN

NX
j=1

T1N
2

N 5

�
T1

N

+

2
T1

which proves Lemma 1 (part 3).
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Lemma 1 Lemma A1 is a simple version of strong-mixing [2] and is

an improved and generalized version of Lemma A1 in [1].

Let t = 5
H1
logN and let M and m be two positive integers such that

M = mK + t and m � 2; Then,

Pr
h

P (X1
�t; X
�M

�N ) � P (X1
�t)P (X�M
�N )(1� �)
i

� (1� �)
M�t

K

�1

where � is an arbitrarily small positive number.

Proof of Lemma A1: The fact thatM > 2K + t makesX0
�t and

X�M
�N essentially independent of each other. This is established by

following the (improved and corrected) derivation in the Appendix of

[1] below.

23



'
&

$
%

By the Markovity of the source,
P
�

X1
�N
�

= P
�

X�M
�N

�
P
�

X�M+K

�M+1
���X�M

�M�K+1
�

� � �P
�

X
�M+(i+1)K

�M+iK+1

���X�M+iK

�M+(i�1)K+1
�

� � �P
�

X1
�t)
���X�t�1

�t�K+1
�

where1 � i � m� 1.

Now, if for somei,

P
�

X
�M+(i+1)K

�M+iK+1 jX�M+iK

�M+(i�1)K+1
�

� (1� �)P
�

X
�M+(i+1)K

�M+iK+1

�

then it

follows that,

P
�

X�M
�N ; X1
�t
�

� (1� �)P
�

X�M
�N

�
P
�

X1
�t
�

:
24
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The probability that no suchi exists is the probability of the event
that foreach i, givenX�M+iK

�M+(i�1)K+1, X
�M+(i+K)

�M+iK+1 satisfies:

P
�

X
�M+(i+1)K

�M+iK+1

���X�M+iK

�M+(i�1)K+1
�

< (1� �)P
�

X
�M+(i+1)K

�M+iK+1

�
:

Now, for eachi the probability of this event, givenX�M+iK

�M+(i�1)K+1, is
upper-bounded by X

X
�M+(i+1)K

�M+iK+1 2AK :P
�

X
�M+(i+1)K

�M+iK+1

���X�M+iK

�M+(i�1)K+1
�

<(1��)P
�

X
�M+(i+1)K

�M+iK+1

�

P
�

X
�M+(i+1)K

�M+iK+1

���X�M+iK

�M+(i�1)K+1
�

< (1� �)

X
X
�M+(i+1)K

�M+iK+1 2AK
P
�

X
�M+(i+1)K

�M+iK+1

�
� (1� �) :

Lemma A1 then follows.
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Clearly, Lemma 1 (part 3) also guarantees that, with high probability,

K0(X
0

�N) � t < K < M . Thus, if the training data is confined to

X�M
�N it can be treated as being essentially independent ofX0
�t .

Thus,X�M
�N may be replaced byY �M
�N whereY 0
�N is an independent

realization of the source process. In the following, we will establish

the fact that this is essentially the case when the whole training

vectorX0
�N is being replaced byY 0
�N .

In order to establish that fact, it is enough to show that, with high

probability, the first recurrence ofX0
�K0

in X0
�N occurs withinX�M
�N .

Now, for any positive numberZ and any integer

i : P (X0
�i;K0 � t) � Z
N

, we have, by Kac’s Lemma [4] and by the
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Chebytchev inequality that,

Pr
h

nX�1
�1

(X0
�i;K0 � t) � N
i

�

1
Z
:

Also, by definition ofK0, X0
�K0�1 does not recur inX�1
�N and

thereforenX�1
�1

(X0
�K0�1;K0 � t) � N . Thus, for anyZ � 0,

Pr
�

Pr(X
0

�K0�1;K0 � t) �
Z

N
�

�

t
Z
:

Hence, by settingZ = TPr(K0 � t),

Pr
�

Pr (X0
�K0�1jK0 � t) �
T

N
�

�

t

TPr (K0 � t)
:

Now, for any positive integeri � t,

P (X0
�i�1jK0 � t) = P (X0
�ijK0 � t)P (X�i�1jX
0

�i;K0 � t) :
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Also,

Pr
�

P (X0
�i�1jX
0

�i;K0 � t) �

1
AT

�
�

1
T
;

therefore,
Pr

"
P (X0
�K0
jK0 � t) �
AT 2

N

#
�

t
T
: (7)

Also, observe that for any positive integersi; j,

Pr
h

P (X�j
�j�ijX
0

�i;K0 � t) � TP (X0
�ijK0 � t)
i

�

1
T
: (8)

Then, by Lemma 1 (part 3) and by the union-bound and by Eq. (8),
the probability ofX�K0 recurring inX�M+1 is upper bounded by:

t

Pr(K0 � t)
M

�
AT 2 1

N

+
2

T
�

+

2
T1
+
T1

N

:

By adding up the probabilities of the r.h.s. of Eq. (8), by Lemma 1
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(part 3), and by settinglog T = logN
3

, logM = (1
3
� 2Æ) logN and

� = N�Æ one gets the first part of Lemma 1, assumingK � M�

logN

.
The second part of Lemma 1 follows from the r.h.s. of Lemma A1,
and the third part of Lemma 1 follows from Lemma A1.

We now proceed to outline the proof of Theorem 1.

Theorem 1 then follows from a variant of Lemma 1 (part 2) whereT2

independent vectors are being used rather than the singleY 0
�N , by

observing that the proposed algorithm is a function of strings of
lengthK0(X

0
� ^N
) + 1 which are, with high probability, far apart from

each other and therefore may be treated as being mutually
independent, without essentially affecting the prediction error (thus
contributing no more thanO( logN)

NÆ ) + 2T2
T1

to the prediction error).

By the union bound by the proof of Lemma 1 part 1,
29
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Pr
"

Pr(K0(X
0

� ^N
)) �

1
^NT1

#
� ^N

1
^NT1
+

2
T1
+ O

 
logN

N Æ

!
:

Thus, by applying arguments similar to those that led to part 1 of

Lemma 1, it follows that the probability ofX0
�K0(X0
� ^N
) not recurring

in any of theT2 vectors of lengthT1
2 ^N is upper-bounded by:

O
�

1
T2

�
+O

 
logN

N Æ

!
:

(By the Chernoff bound, the probability that the empirical prediction

error which is based onT2 independent recurrences, will not not be

equal to the optimal prediction error, decays exponentially withT2,

for A = 2. Similar results may be obtained forA > 2).
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Concluding Remarks:

It should be noted that prediction also has a connotation other than

the one that was introduced here. GivenY �1
�N , we may need to

estimateP (X1jX
0

�t) (in order to predictX1 givenX0
�N , or compress

X1 givenX0
�N etc.), in cases where the actual measureP (X1jX
0

�N)

is not available to us.

In order to estimateP (X1jX
0

�N) one assigns some arbitrary

conditional probability measureQ(X1jX
0

�N ) of X1 hoping that this

assigned conditional probability measure will be “close” in some

sense to the trueP (X1jX
0

�N ). Assume that we want to minimize the
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K-L divergence:

E log
P (X1jX
0

�N )

Q(X1jX0
�N )
:

Similar to Restriction 1 above, we now restrict our attention to the
class of predictors

Q = [q : AN+1 ! Aj � E log q(X1jX
0

�N)

� �E logP (X1jX
0

�K0(X0
�N

);K0(X
0

�N))]

Then, for any predictor in the restricted class and for any
finite-alphabet stationary ergodic source,

E log
P (X1jX
0

�N )

Q(X1jX0
�N)
� H(X1jX
0

�K0(X0
�N

);K0(X
0

�N))�H(X1jX
0

�N)

whereH(�) denotes entropy.
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Furthermore, for the class of Markov sources described here, and by

using similar arguments as above, a variant of the HZ-universal

data-compression algorithm [1] (i.e. generating a length-function

that is based on a conditional recurrence time ofX1 given

X0
�K0(X0
�N

)) can be shown to be an efficient predictor in the sense

that it approximatesH(X1jX
0

�K0(X0
� ^N
);K0(X
0

�N)).

This may be achieved by the following algorithm:

1. Set ^N = N

(1+AT1
3)

.

2. EvaluateK0(X
0

� ^N
).

Note that ^N here is set so as to enable, with probability higher

than1� 1
T1

the recurrence of the concatenation ofX0
K0(X0
� ^N
); X1
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for everyX1 2 A such thatP (X1jX
0

K0(X0
� ^N
)) �

1
AT1

.

3. For eachX1 2 A, denote byt(X1; X
0

�K0(X0
� ^N
)) the first instantt

in X� ^N�1

�(AT1
3+1) ^N

for whichX
t+K0(X0
� ^N
)

t = X1; X
0

�K0(X0
� ^N
). If no

such instant exists, sett(X1; X
0

�K0(X0
� ^N
)) = �N � 1. Given

X0
�K0(X0
� ^N
), order theA letters lexicographically according to

the values of their correspondingt(X1; X
0

�K0(X0
� ^N
)). For each

X1 2 A, let j(X1jX
0

�K0(X0
� ^N
))) denote the place ofX1 in this

lexicographic list.

4. By Kac’s Lemma and by Lemma 1

E(log j(X1)jX
0

K0(X0
� ^N
)) � H(X1jX
0

K0(X0
� ^N
)) +O( 1
AT1
).

Furthermore, it is easy to show that
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log j(X1)jX
0

�K0(X0
� ^N
) + log log(A+ 1) is a proper

length-function.

Thus, setting

Q(X1jX
0

�N ) =

2
� log j(X1)jX0
�K0(X
0

� ^N
)

P
X12A 2

� log j(X1)jX0
�K0(X
0

� ^N
)

yields:

�E logQ(X1jX
0

�N) � H
�

X1jX
0

�K0(X0
� ^N
)+1;K0(X
0

� ^N
)
�

+ log log(A+ 1) + O
�

1
AT1

�
:

35


