-

An Efficient Universal Prediction Algorithm for
Unknown Sourceswith Limited Training Data

Jacob Ziv
Department of Electrical Engineering
Technion— srael I nstitute of Technology
Haifa 32000, | srael

April 27, 2002




4 N

Abstract

Inspired by C.E Shannon’s celebrated paper: “Prediction and entfopy
of printed English” (BSTJ 30:50-64, 1951), we consider, in this
correspondence, the optimal prediction error for unknown
finite-alphabet ergodic Markov sources, for prediction algorithms

that make inference about the most probable incoming letter, where

| gumn of

the distribution of the unknown source is apparent only via a shor
training sequence oV + 1 letters. We allowV to be a polynomial

function of K, the order of the Markov source, rather than the

classical case wher¥ is allowed to be exponential IA .
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/A lower bound on the prediction error is formulated for such \

universal prediction algorithms, that are based on suffixes that ware
observed somewhere in the past “training-sequencey, (i.e. it is
assumed that the universal predictor, given the past

(N + 1)-sequence which serves as a training sequence Is no better
than the optimal predictor given only the longest suffix that appeared

somewhere in the pasf_, vector).

For a class of stationary Markov sources (which includes all Markjov

sources with positive transition probabilities), a particular universal

predictor is introduced, and it is demonstrated that its performance is

\optimal” In the sense that it yields a prediction-error which is cloge
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training data.

effect of limited training data on the efficiency of universal

region.

\_

~

to the lower-bound on the universal prediction-error, with limited

The results are non-asymptotic in the sense that they express the

predictors. An asymptotically optimal universal predictor which is
pased on pattern matching appears elsewhere in the literature (e,
3], [5]). However, the prediction error of these algorithms does n¢

necessarily come close to the lower bound in the non-asymptotic

/




/1 | ntroduction N

We consider finite-alphabet sequences which are emitted by a

stationary source with unknown statistics
X = Xy, Xo,.oo, Xi, 000
X" = Xy, Xo, ..., X
X, € A |A|=4.

Given X' ;, we need to predick in cases where the actual measure

P(X|X? ) is not available to us. In order to predi&; one may

\assign, for any suffixX _; (which serves as a training sequence)j
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possible to

Hence,P;,

\_

some arbitrary prediction functioff X° ,,

the minimal prediction error (for known statistics),

namely: Ppin (X2 ) = ming Exo 6(Xy, f(X2y)), where

d(a,b) =0if a = b; else 6(a,b) =1,

(X2N) = Exo d (Xp,argmaxx,ea P(X1|X2y)). In

(1)

and wherelxo () denotes conditional expectation. The optimal

prediction of X, given X" ,;, is achieved by picking the ong; € A

which maximizesP (X | X? ).

), hoping that this assig@

predictor will yield a small prediction error which will be as close &

1S
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/the case of universal prediction, the meash(&;| X" ) is not \

known, and therefore?,,.;, (X° 5 ) is not necessarily achievable

(unlessN is large enough).

We consider the class of universal predictors that satisfy the highly
Intuitive restriction that each universal predictor in the class may not
outperform the predictor which is based on the true probability
measure, conditioned on the longest suffix that appeared somewhere
in the past vV + 1)—sequenc& ,, rather than the completg’ ,,,

(i.e. P(X1]| X2 xo s Ho(X2y)) whereX? is the longest

XEN) O(XQN)

suffix of X in X° ,, [1]. More precisely, we make the following

Qestriction: /
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Restriction 1 Let Ky(X° ) bethelargest integer i < N — 1 such
that X°, = X~/ . for some

1<j<N-—i (2)

(Ko, = —1if X, does not appear in X, where X? isthe null

string). We restrict our attention to the class of predictors

G=lg: AN — AJES(X1,9(X°y) >
E5(X1,argrj?gicP(XﬂXgKo(XgN),KO(XBN))]

N /




/Define, \

Pro(X°y) = min Exo §(X1,9(X%))

min g(x)EC
where the expectation is taken w.i; given the contexX® ;.
Clearly,
P’U,

in (X2 n) > Puin(X2 ) (3)
The l.h.s. of Eq. (3) therefore serves as a lower bound on the

prediction error that may be achieved by any predictor in the

restricted class. Roughly speaking, we are treating this problem hy
deriving performance bounds for a restricted class of prediction
algorithms that only make inferences about the “optimal” predictor
for the (unknown) random process based only on what has been
observed in the training data. Assume that the source that éfhj¢s

\is a stationary ergodi& -th order Markov sourceK is unknown tO/
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/the predictor). IfV is large enough (say, exponentialAn) the \
universal prediction error may approach the minimal prediction erfor
[5]. Intuitively, this exponential growth is needed since the prediction
approach is based on estimatiAgby some ordef and performing
a majority vote conditioned on the context of length However, in
many cases, such a large number of samples is not available.

In this correspondence, we considéfrth order Markov sources that
given the positive parametef$s and N, satisfy:

1
Py [P(Xﬂg) > 2—Hminf} < —
11
for some positive numbeii; and some positive integér< 51[‘;—%]\7
We derive an efficient universal prediction algorithm that yields a

\prediction error close t&, (X? ) for values of NV which are /

m
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polynomial in K. The algorithm finds the longest suffix & ,, that
recurs at leasl; times, wherél;, iIs some predetermined positive
constant. The predictel; is taken to be the most frequent letter
X' € A among the letters that followed these recurrences (i.e. a
majority rule). This in contrast with other results in the literature
(e.qg. [3], [5]) that describe asymptotically optimal universal
prediction algorithms, where it is inherently assumed fias,
apparently, exponential IR, and therefore the associated predictic
error of these algorithms does not necessarily come close to the
lower bound of Eq. (3).

N /
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2 Main Resaults

Let Y, be a realization of the source process, which is independent
of XV . DefineK (X" y|Y',) to be the largest integérsuch that
X%, =Y/ forsomed < j < N —i. (Ko(X%y|Y%) = —1if X,
does not appear iH",). Also, consider the following restriction:

N /
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/Restriction 2 Werestrict our attention to the class of predictors
G'=[g": AN = Alg'(XEN|Y2y) = ¢'(Z22 y|Y2y) whenever

5Pfﬁm(X9N‘Y—ON> — g{%lglG,EXgN,YO 5<X1 g (X BN‘Y—ON))

= P <X9KO(X9N|YBN)—1) '

of Ko(X? Y °).
Then,

Lemmal LetY', bearealization of an admissible K-th order
stationary ergodic Markov process, that is independent of XV
\vvhi ch is emitted from the same source, and let 77 be a positive

Observe that, given the suffix® , (X0 |y°,)—1» X1 1S Independent

~

(4)

/
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Integer. Then,
1.
" log N
BPn(XOy|Y2y) < BPuin(X2 g x0,1-1) + O3
log N 2
< EPY (XY O —
— mln( —N)_I_ ( N5 )—l_Tl

provided that the (unknown) order of the Markovian source
satisfies K < O(N5-3%) where0 < § < L.

2. For any predictor g(X? ;) that satisfies

\_

Q(XBN) — Q(X:z]\% XBK)

)+ =

~

2
13
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for every X° , € AN+ where M > N3~ we have that,

ES(X1, (Y3 X)) < BES§(X1,9(X%)) + O (%) .

5 2T, )
Pr K (X Y2 )> —log N| < =
r[Ko(X2NY2y) > rlog N| < v o

D 217 2
Pr|Ky(X"y) > —logN| < . 5
r[Ko(X2y) > prlog N < o+ o (5)

The proof of Lemma 1 appears in the Appendix.

N /
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Discussion:

1. It should be noted that any given stationary ergodic source Is
admissible agv tends to infinity. However, we are dealing with|
a class of Markov sources that are characterized by an éfder
that is allowed to grow with N.

2. Lemma 1 indicates that one may repla€é, as a training data
by an independent training vectdf,, and a short suffix of
X0y, namelyX?® . whereK,,,x = O(log N) with only a
negligible deterioration in the prediction error.

Lemma 1 will be used as an analysis tool for the prediction algorithm
that is proposed below, which is denoted8y X" \; T3).

N /
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/3 A Universal Prediction Algorithm O

Consider the suffix o, X° .

& L N -
Let N = T 2T5) wherel} and7; are some positive numbers

(Ty = T»?) and letj be a positive integer < j < Ts.

0
1. EvaluateK, (X7 ;).

(T1%24+1)N -1

. ; L N
2. For eacly,denote by’ the first instant '”X_((j+1)T12+1)N) for
. . w0 . .
which th—Ko(X3N> = X—Ko(XEN)' If no such instant exists, set
) = —N — 1.

3. PredictX; to be the lettelX € A that minimizes:

A

\ ZJTilztj>—N—15()(tj+1,)i'). /

17
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Theorem 1 Let us assume that the source that emits X! ; isa
stationary ergodic K-th order Markov source that satisfies the
condition in Lemma 1 (part 3). (K is unknown to the predictor.)
Then, the prediction error that is associated with the universal
prediction algorithm above is upper-bounded by:

3CLE(5<X1,QU(X9N7T2)> — EPU(XBN7T2) < EPmln(XgK(XEN)))

+0 (7{2) +0 <T2 £§N> (6)

provided that K < O(N3739).

N /
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Discussion:

1. By Lemma 1, with probability larger than about- -,
Ko(X° ) < 0(log N). Also,
Ko(X°;) <O <logN (1 — 1“{?&2%)) = O(log N). Hence,
forlog N > log(T1°T5), EP*(X°,,T}) is expected to be
roughly equal ta” Py, (X° ), which demonstrates the
efficiency of the proposed prediction algorithm. This particulalr
algorithm was introduced here because it lends itself to a simple
analysis. Other similar algorithms might be, perhaps, more

efficient.

N /
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2. Despite the fact that we requiréto be large, the results are
non-asymptotic since we allow the ordgrto be
K =0O(N3 %) = O(( Al )%—35) and notK = O(log N) as

14+T1%Ty
IS Customary t0O assume.

The proof of Theorem 1 appears in the Appendix.

N /
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Appendix

Proof of Lemma l (part 3): Define
S =[Xy : P(X?;) <27 > 208X By the Chebytchev
iInegality,

1

Pr|P(X~],)=P(X%|X°,8) > N*TyP(X°,|9)| < N

Also,

Pr(Ko(X?y) =il5) < ip(x:;;_i = X°,5).

Jj=1

\_
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5log N
Hy

But, for some <
Pr |P(X%]S) <277 .

Hence, it follows that,

5 1 N T1N2 T, 2
Pr | Ko(X° ) > 1 N]<—
r[o(_) - log T+'Z Y e SN T

logNJ 1

which proves Lemma 1 (part 3).

N /
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/Lemma 1 Lemma Al isa simple version of strong-mixing [2] and is
an improved and generalized version of Lemma Al in [1].

Lett = Hil log N and let M and m be two positive integers such that
M =mK +tandm > 2; Then,

Pr|P(X', X M) < P(XL)P(XM)(1-¢)| <(1—e¢)F !

where e isan arbitrarily small positive number.

Proof of LemmaAl: The factthatV/ > 2K + ¢t makesX®, and
X" essentially independent of each other. This is established by
following the (improved and corrected) derivation in the Appendix

[1] below.
N /
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By the Markovity of the source,
P(XiN> — P<X:%>P<X_%15‘X M— K+1>

mmxﬁmﬂxﬁKmo

P(XL) X5k
wherel < <m — 1.
Now, If for somey,
P(X Tyt X hieyn) = (L= OP(X ") then it

follows that,
P(X7M.XY) > (1—oP(XxN)P(X1,).

N /
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Kl'he probability that no suchexists is the probability of the event\

that foreach i, given X =3/ HX o XT3l satisfies:

—MA(+1) K| — M-ti —MA+(i+1)K
P<X—M—|—z’(K—I—% X—%i(i}im(H) <(1- €)P<X—M—I—z’(K+% )

Now, for eachi the probability of this event, giveR —y ;% | ., is

upper-bounded by

—M+(i+1)K . —M+(4+ DK | o — M4iK —M+(i+1) K
X MtiK+1 GAK°P<X M+iK+1 X—M_|_(Zq;_1)K_|_1><(1_€)P<X—M-|—iK—|—1 >

P(X T X )
<(1-¢o >  PxN <a-o.

—M+(Z+1)K K
X—M—{—zK—i—l €A

\Lemma Al then follows. /

25
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Clearly, Lemma 1 (part 3) also guarantees that, with high probability,
Ko(X° ) <t < K < M. Thus, if the training data is confined to
X_+" it can be treated as being essentially independent’of
Thus, X3/ may be replaced by 3’ whereY?,; is an independent
realization of the source process. In the following, we will establish
the fact that this is essentially the case when the whole training
vector X" ,, is being replaced by ..

In order to establish that fact, it is enough to show that, with high
probability, the first recurrence of° . in X occurs withinX_y'.

Now, for any positive number and any integer
i P(X?; Ky <t)> %, we have, by Kac's Lemma [4] and by the

N /
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/Chebytchev Inequality that, \
1
0 .
Pr[ny-1 (X%; Ko <t) > N| < -

Also, by definition ofK,, X° . _, does not recur itk ), and
thereforen 1 (X2, ;Ko <t) > N. Thus, for anyZ > 0,

Z

t
Pr [PT(XEKO_l;KO <t)> —] <

N|— 27

Hence, by settingd = T Pr(K, <),

T /
Pr [Pr(X° K<t>—]< |
r[ fXogolfost) 2 ~ TPr (K, <t)

Now, for any positive integer < t,

\ P(X°,_[|Ky<t)=PX°|Ky <t)P(X_i_1|X°; Ky <1t). /

27



/Also, \

1 1
Pr lP(X0 IX0 K. <t <—]<_
r[(—z—l‘ —1 0—)—AT_T7

therefore,

2 ¢

T

<

Pr [P(XOKO\KO <t)> . (7)

Also, observe that for any positive integeérs,

Pr {P(X:g—i‘XgivKO <t) > TP(XL|K, < t)} < % (8)
Then, by Lemma 1 (part 3) and by the union-bound and by Eq. (8
the probability of X _ g, recurring inX_,,,; IS upper bounded by:

t 1 2 11

2
M |AT? — + — .

\By adding up the probabillities of the r.h.s. of Eq. (8), by Lemmy

28




/(part 3), and by settinpg 1" = loggN ,log M = (% — 20) log N and\
e = N~ one gets the first part of Lemma 1, assumiig< l(f‘gN
The second part of Lemma 1 follows from the r.h.s. of Lemma Al

and the third part of Lemma 1 follows from Lemma Al.

We now proceed to outline the proof of Theorem 1.

Theorem 1 then follows from a variant of Lemma 1 (part 2) whgre
independent vectors are being used rather than the sifigleby
observing that the proposed algorithm is a function of strings of
length K, (X?° ) + 1 which are, with high probability, far apart from
each other and therefore may be treated as being mutually
Independent, without essentially affecting the prediction error (thu
contributing no more thaﬁ)(logN ) + %2 to the prediction error).

\y the union bound by the proof of Lemma 1 part 1, /
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~ 1 2 log N
Pr | Pr(Ky(X".)) < < N — — + 0 .
r[ r(Ko(X_5)) A T <N5)

~ NT,
Thus, by applying arguments similar to those that led to part 1 of
Lemma 1, it follows that the probability of" not recurring

KO(XSN)

in any of theT, vectors of lengtif} 2V is upper-bounded by:

1 log N
0 <E> e ( e ) |
(By the Chernoff bound, the probability that the empirical predictig
error which is based off, independent recurrences, will not not be

equal to the optimal prediction error, decays exponentially @ith
\for A = 2. Similar results may be obtained fdr> 2). /
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Concluding Remarks:

It should be noted that prediction also has a connotation other tha
the one that was introduced here. Givén, we may need to
estimateP(X;|X?,) (in order to predictX; given X" ,;, or compress
X, given X", etc.), in cases where the actual meaduf&; | X° )

IS not available to us.

In order to estimaté®( X | X" ;) one assigns some arbitrary
conditional probability measu@(X;| X" ) of X; hoping that this
assigned conditional probability measure will be “close” in some
sense to the tru€(X;| X" ). Assume that we want to minimize the

N /
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/K-L divergence: \

P(X,| X"
Elog ( 1‘ EN) .

QX1 X2 y)
Similar to Restriction 1 above, we now restrict our attention to the
class of predictors

Q=[q: AN = Al Elogq(Xi|X%y)
> —Elog P(X1]X2 ¢, (x0

°N)’

Ko(X2 )]

Then, for any predictor in the restricted class and for any
finite-alphabet stationary ergodic source,

P(X1]X% )
QX1 X2y)
\whereH(*) denotes entropy. /

32

Elog > H(X1| X0 g xo0 )0 Ko(X2y)) — H(X1|X2y)




/Furthermore, for the class of Markov sources described here, Qﬂ by
using similar arguments as above, a variant of the HZ-universal
data-compression algorithm [1] (i.e. generating a length-function
that Is based on a conditional recurrence tim&efiven

X2 ko x0 )) can be shown to be an efficient predictor in the sense

that it approximate$f (X, | X° . (X0 ) Ko (X2 )).
This may be achieved by the following algorithm:

T N
1. SetN = ATAT)"

0
2. EvaluateK (X" ;).

Note thatZ\7 here is set so as to enable, with probabillity higher
than1 — 7 the recurrence of the concatenationdf o ,, Xi

_ )
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/ for every X, € A such thatP(Xl\Xg{o(Xo A)) > fﬂ- \
N

3. For eachX; € A, denote bV(Xl»XEKO(XgN)) the first instant

t+Ko (XSN)

- ~N-1 - _ 0
N X_ sy fOr which X, = XlﬂX—Ko(XSN)

such instant exists, setX:, X° o ) =—N — 1. Given
-N
0
X_KO(XSN)
the values of their correspondingX,, X° ;. . ). For each
—N
X1 € A, letj(X1|X2 . xo ) denote the place of; in this
—N

lexicographic list.

.1fno

, order theA letters lexicographically according to

4. By Kac’s Lemma and by Lemma 1
E(log j(X1)| X} ) < H(X1 | X xo )+ Olzz).

0
KO(X_N)

\ Furthermore, it Is easy to show that /
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logj(X1)|X9K0(X0 )+ loglog(A + 1) is a proper
—N
length-function.

Thus, setting

0 \ _
QX1 X y) = —log j(X1)|X?°

yields:

1

\_
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