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Overview

Multiple-antennas systems have generated great interest for high data

rate wireless communications, since they can
e significantly boost channel capacity
e lower the probability of error

of a wireless communications link. (Key: spatial diversity)

Applications abound and include:

e wireless LAN, fixed wireless access, mobile wireless, wireless

Internet, etc.

\_

We shall focus on some of the more interesting mathematics in this area.
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\ Multiple Antennas: A Brief History /

Spatial diversity is not a new thing (antenna arrays have been around at
least since the 1960’s). It was believed that:

e fading is bad, scattering environment is bad

e line-of-sight is good

e beam-forming, angle-of-arrival estimation are the way to go

e capacity grows logarithmically in number of receive antennas
Things changed around 1995 (Foschini, Telatar). Now we know better:

e Fading is good! Rich-scattering environment is good!

e Capacity increases linearly in the minimum of the number of receive

and transmit antennas.

/HEm is what has generated excitement! K
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Capacity Results

e Transmitter and receiver know H:
— capacity achieved by water-filling
— H =UXV™: the transmitter implements U and the receiver
implements V™, so the channel is diagonalized
e Receiver knows H:

— In the 1970’s Blankenburg and Wyner showed that
H*H v

C = Flogdet A~2 +p i

— Rediscovered in 1995 by Foschini and Telatar, who further

observed that, if H is rich-scattering,

C' = min(M, N)logp + O(1).
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Figure 1: Capacity in bits/channel uses as a function of SNR for M =

2

N = 1,2,3,4 multi-antenna systems, assuming that the entries of H are

iid CA(0,1).
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The above results depend on the the receiver (and transmitter) knowing

the channel.

e This is a reasonable assumption if M is not too large, or if the

channel is not fading too rapidly
e So it makes sense for fixed-wireless access
e But what about mobile wireless, where the channel is fast fading?
This requires us to say something about the temporal behaviour of H.
e The channel now is a random process, and not just a random matrix

e The problem is much more challenging

o k




The Block Fading Channel /

A somewhat realistic model of a fading channel is the block-fading model:

H is unknown to the receiver, but is fixed for a “coherence interval” of T

channel uses, after which it changes to an independent value.

computing the capacity for this channel is an open problem
structure of capacity-achieving distribution known

the high SNR capacity is (Zheng and Tse 2000, Hassibi and
Marzetta 2001)

(=K AT %v log p + O(1), NHBEEQZMV

Autocapacity (Marzetta, Hochwald and Hassibi 2001): for large

enough T' and M reliable communication can be achieved by coding

k

over a single coherence interval




4 N

How to achieve this capacity?

e One method is to employ a training-based scheme:

— use a portion of the coherence interval to send training symbols

so that the receiver can learn the channel
— use the rest of the coherence interval to transmit data, assuming

that the receiver knows the channel

e Analysis of training-based schemes shows that (Hassibi and
Hochwald 2000)

— if optimized correctly, training-based schemes can achieve
capacity at high SNR

— training-based schemes are-by their very nature-highly
suboptimal at low SNR

o k
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matrices

matrices.

How to Convey Information?

In the block-fading model, it is useful to gather all the transmit and
receive signals during one coherence interval into T' x M and T' x N

S11 c e S1 M 11 ‘e 1N
S21 “ e SoM 21 e Lo2N
, X =
ST1 ce STM rT1 “e s ITN

so that we may write

[ p
X =4/-—SH :
>\~% +V

Thus, in multi-antenna systems, we transmit matrices and receive

/wsﬁ how can we convey information, given that H is unknown?
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If we assume high SNR (or ignore the additive noise term V'),

[ p
X~ ,./—SH.
M

Key observation: H cannot alter the subspace spanned by the columns of

S.

e Therefore what we can convey is this subspace information.

e The subspace information is best represented when the columns of S
are orthonormal.

e Such transmission schemes are referred to as unitary space-time
modulation (USTM).

o k
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S=®D, (Marzetta and Hochwald 1999)

° emQ\HXN&

is an isotropically-random (i.r.) unitary matrix
e D > 0 is an independent diagonal matrix with EtrDD* = TM

An i.r. unitary matrix ¥ is one whose probability density function is

p(¥) =p(O¥) =p(¥O), VO st. OO0 =0"0=1
e Also known as the Haar measure: the uniform measure on U(n)
e [s key to computing capacity, cut-off rates, error exponents, etc.

e One (of many) interesting facts (Wright and Diaconis 1998,
Marzetta, Hassibi and Hochwald 2000): ¥* is not i.r. for n > 2

\_

invariant under pre- or post-multiplication by any fixed unitary matrix:

k
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U2e¢, with U Isotropically Unitary

w2 e, with W isotropically unitary

1 ¥
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Ue, with U Isotropically Unitary

p2att e, , with W isotropically unitary
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Space-Time Codes

In multi-antenna systems the codes/constellations/signals transmitted

and received are matrices.

e The extra spatial dimension adds a whole new twist to the problem
of designing codes and constellations.

A space-time code (space-time constellation) is any set S = {S1,...,S5¢}
of L = 28T T x M complex matrices.

b, g ' Rayleigh flat-fading channel b,

Codebook| S (TxM) " 1 X (TxN) ™

b b

AT I NS A e
brr 12 " " brr
- - (PM)™" 1 H(MxN) W (TXN) | | R

-
o
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Space-time codes fall under two general categories

¢ Known channel codes (coherent detection): here there is no

restriction on the S;

— the maximum-likelihood decoder is given by
arg min |lX — HS;|p.

¢ Unknown channel codes (noncoherent detection): here the S;

have orthonormal columns

— the maximum-likelihood decoder is given by

arg max __N*ms__m:
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\ Linear Space-Time Codes

The most widely used class of known channel space-time codes are linear.

e The first such code was introduced by Alamouti in 1997:

S1 S2

q —
—85 81

Called an orthogonal design, it has many desirable properties
(full-diversity, full-rate, decoupled ML decoding, etc.). But not clear
how to generalize to more than two transmit antennas.

A general linear space-time code has the form
Q
S=> (sqAq+s;By),
g=1

where the {A,, m@w%ﬂ are fixed T' X M matrices, and the scalars s,

@E% the information. K
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\ Design of Space-Time Codes /

One measure of the quality of a space-time code is determined by the
probability of mistaking one element of S by another. At high SNR, the
probability of mistaking S; with S; is dominantly dependent on
|det(S; — 55)].
e This leads us to the so-called determinant criterion (Fitz et al 1997,
Tarokh et al 1998)

max min |det(S; — S;)| -

— this criterion is very difficult to use for the design of high rate

codes, especially when M > 2

— it also has the unsatisfactory property of not depending on N

Any code for which det(S; — S;) is non-zero for all ¢ # j is called

/\S ly-diverse. K
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e Codes designed solely based on the determinant criterion tend to

suffer from severe rate losses.

e To alleviate this, a design based on maximizing mutual information
has been suggested (Hassibi and Hochwald, 2000)

— called linear dispersion (LD) codes, they can be numerically

found from the solution of a nonlinear optimization problem
— they depend explicitly on N
— they take very little rate hits
— often exhibit surprising structure, which we do not understand

— are nonunique and parametrized by a 2() X 2Q) orthogonal matrix

e In general, there is a trade-off between rate and diversity

— a possibility is to choose the 2Q) X 2Q) orthogonal matrix to

maximize the diversity of codes that achieve a certain rate

k
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Hochwald 2000):
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where s, = a4+ 7064, ¢ =1,...

Here, for example, is an optimal three-antenna LD code (Hassibi and

~
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M=3, N=1, R=6, LD Code vs. Orthogonal Design
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Figure 2: Block and bit error performance of OD versus LD code for
M = 3 and N = 1 antennas at rate R = 6. The OD is ML decoded and

the LD is decoded both with nulling/cancelling and with ML.
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Unitary Space-Time Codes

Unknown channel space-time codes must be unitary.

e Tarokh and Jafarkhani (1999) derived such a code from Alamouti:

T
S = Y ., where |z]* + |y|* = 1.

Due to the unitarity constraint, designing unknown channel space-time

codes is much more difficult /challenging.

e To break the logjam, we have recently considered the case where the

space-time code forms a group under matrix multiplication.

e One motivation is that the resulting constellations can be thought of

as multi-antenna analogs of PSK constellations.

o k
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Space-Time Codes from Groups

Any finite group can be represented as a set of unitary matrices. So
which groups to choose...?

e Any fully-diverse code that forms a group must be fized-point-free:

all non-identity elements must have no eigenvalue at one. Indeed:
det(S; — S;)| = |det(S;)| - |det(I — S;"S;)| = |det(I — Sk)|

So we must look for fpf groups. But what property should an abstract
group G have such that, when represented as unitary matrices, all

non-identity matrices have no eigenvalue at one?

e Zassenhaus studied such groups in 1936 and gave an almost
complete characterization

\_
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All Odd-Order Fixed-Point-Free Groups

Building upon Zassenhaus’ work, here is the characterization of all
odd-order fpf groups (Shokrollahi, Hassibi, Hochwald and Sweldens 2001)

Theorem 1 A finite group G of odd order, L, is fized point free if and

only if it 1s 1somorphic to the group
Gmr=(o,7|0c" =1,7" =0’ ,707  =0'),

for some integers m and r such that:

(i

)

(ii) M 1is the smallest integer such that rM = Imod(m).
i) g
v)

cd(M,t) =1, where t = n

ged(r—1,m) °

(i

(iv) All prime divisors of M divide gcd(r — 1, m).

o k
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The Group Representation

The representation of the group takes the form:

V={A@) AR 0<L<m-1,0<k<M -1},

where
[0 1 0 0 )
\N oﬁ M ) 0 0 1 0
Aoy =| B NG
L.TH 0 0 O 1
\ 0 0 7 ) L7t 0 o 0 )
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Even-Order Fixed-Point-Free Groups

Classification of even-order fixed-point-free groups is more involved
In addition to G, there are five other group types

One interesting even-order fixed-point-free group is SL2(Fs). This

group has 120 elements and can be expressed as

SLao(Fs) = (u,y | ° =7° = (wy)°, p* = 1).

The representation of its generators is given by

1 | =0 n—n' 1 | n—n" n°-1
Ap) = 7 L s o | Al = 7 s 4 s
n—n_ 0 —n IL—n" n" —n

where 1 = €2/,

27
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\ 4 Remarks - /

e We have thus classified all finite fpf groups
— there are some star performers among these (SL2(Fs))
— they are generally few and far between
— the best constellations are not obtained for very high rates or for

a large number of antennas

e This brings up the question of whether there are any infinite fpf

groups? It turns out that there are...
Phase modulation: U (1), the group of unit-modulus complex scalars:
Jw

e’™, wel0,2n

Alamouti’s scheme: SU(2), unit-determinant 2 x 2 unitary matrices:

V= ez +lyP =1

o k
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Other Infinite Fixed-Point-Free Groups?

But are there other infinite fpf groups?

e we will focus on Lie groups, which is the most interesting case (the

above two examples are Lie groups)

e with a Lie group the problem of constellation design becomes one of
sampling the group’s underlying manifold (the unit-circle, in the

first case, the 3-dimensional sphere, in the second)

e in fact, our star performer, SL2(Fs) is an orthogonal design with an

optimal sampling of 120 points on the 3-dimensional sphere

o k
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All FPF Lie Groups - Hassibi and Khorrami 2001

Lemma 1 A Lie group has a representation as finite unitary matrices
iff it is either U(1), a compact semi-simple Lie group, or the direct sum

of U(1) and a compact semi-simple Lie group.

Lemma 2 If all non-identity elements in any unitary representation of
a compact semi-simple Lie group have no more than k eigenvalues at

unity, then the rank of the group is no more than k — 1.

Therefore for fpf Lie groups we need only consider rank one groups. But

there is only one such group: SU(2).

Theorem 2 The only fpf Lie groups are U(1) and SU(2). Their only

irreducible fpf representations are 1- and 2-dimensional, respectively.

o k
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The Symplectic Group Sp(2)

e The next best thing is to have no more than one eigenvalue at unity.
e This requires a rank of no more than two.
e There are three such semi-simple Lie groups: SU(3), Sp(2) and Ga.

Sp(2) is the group of 4 x 4 unitary matrices ® such that ®'J® = J, with

0 I
J = . Their representation is given by

-1 0

v,V UX,V
¢ = :
_OR,V 5.V
where U, V' are unitary and 3., >, > 0 are diagonal with ¥2 4+ Mw = 1.

e The above structure can be easily used to construct fully-diverse

/ constellations (Jing and Hassibi 2002). K
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Cayley Codes

o Is there any other method (other than groups) to design unitary
space-time codes?

e In Hassibi and Hochwald (2001) we have used the Cayley
transform to construct high rate unitary space-time codes

— the Cayley transform maps the nonlinear Stiefel manifold of
unitary matrices to the linear space of skew-Hermitian matrices

— the i.r.u. matrix is transformed to a Cauchy random matrix

— the codes have the following form
Q
S= +m>v|:~ —JjA), A= MUQQ\{
g=1

where the { A4} are fixed M x M Hermitian matrices and the
real scalars a, carry the information.

— code design is based on maximizing mutual information and ML

/ decoding is reduced to an integer least-squares problem. k
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The Algorithmic Challenge

e Information theory suggests high data rates are possible in

multi-antenna systems

e Space-time codes (in conjunction with error correcting codes)

attempt to achieve these rates

Challenge: practical space-time transmission schemes must be simple

yet effective: all the processing done in real-time

Size of the problem: We need to decode a set of L = 287 T'x M
matrices. With 7' = 8 and R = 16, this is L = 3.4 x 10°® matrices!

Can this even be done?

\_

34



Integer Least-Squares Problems

The problem of maximum likelihood decoding of linear space-time codes,
as well as the class of Cayley unitary codes, reduces to an integer
least-squares problem

cin [z — Hsll,

where x € R™, A € R™*™ and D is a subset of the integer lattice Z™.

e Interpretation: Given the “skewed” lattice Hs, find the “closest”

lattice point to a Given n-dimensional vector .

/,HEm problem is well known to be NP-hard. K
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Some Heuristics

All practical systems employ approximations/heuristics:

e Invert and round to the closest integer (zero-forcing equalization):
Sp = T~ JL :
Z
The above sp is called the Babai estimate.
e Null and cancel (decision-feedback equalization):
— only use the Babai estimate for one of the entries of s, say s

— assume that s is known and subtract out its effect to obtain a

reduced integer least-squares problem with m — 1 unknowns

— solve similarly for sz, etc.

e Nulling and cancelling with optimal ordering (BLAST):

/ — perform nulling/cancelling from “strongest” to “weakest” mwmsmv
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How Good are the Heuristics?

e All the heuristic methods require O(m?) computations

M=8, N=4, R=16, LD Code: N/C vs. ML Decoding
10 T T

10 “k : : =

ber

N/C
10k e

ML
107k : 3

1 1
15 20 25 30
SNR (dB)

Figure 3: Bit error performance of a rate 16 linear space-time code, corre-

sponding to m = 64. ML vs. nulling/cancelling with optimal ordering. (No. of

@dﬁom points= 2128 x~ 3.4 x 1038). K
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\ Exact Methods -

than doing a full search over the integer lattice

e One is sphere decoding (Fincke and Post, 1985): search only over
lattice points lying in a certain hypersphere centered around zx.

Seems like a neat idea. But there are two important questions:

1. How to choose r? Clearly, if r is too big, we get too many points,

but if r is too small, we get no points.

/w. How can we tell which lattice points are inside the sphere?

~

e There exist several exact methods that are a bit more sophisticated

k
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\ e When m = 1 the answer to the second question is an interval. /

e We can use this observation to go from dimension k£ to k£ + 1: for
every k-dimensional point in a sphere of radius r, the values of the
k 4+ 1-th dimensional coordinate that lie in the higher dimensional
sphere of radius r form an interval.

e Therefore the algorithm searches over all lattice points in spheres of
radius r and dimensions 1,2,...m.

e The algorithm constructs a tree, where the branches in the k-th level
of the tree correspond to the lattice points inside the sphere of
radius r and dimension k.

PN
. mw

/o The complexity of the algorithm depends on the size of the tree. &
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The Algorithm

Input: R, x, s, 7.

Set k=m, r,2 =12 —||z]|2 + | H3||?, Smjm+1 = Sm

\

(Bounds for si) Set z = —£, UB(sx) = |2 + Sk|k+1],

Tkk
Sk = |—2+ Skjpt1] — 1
(Increase sk) sk = sk + 1. If s, < UB(sk) go to 5, else to 4.
(Increase k) k = k+ 1 and go to 3.
(Decrease k) If k =1 go to 6. Else k =k — 1,

ww_w 1= 8k + MUQ k41 MM.M.N AMQ. - mQ.vv

) ) A

Ty =Tk4+1 — ?ﬁ& k+1\Sk+1 — Si:f.wv.

Solution found. Save sx and go to 3.
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\ A First Look at Complexity /

Here is a very handwavy argument (that can be made rigorous):

e For an arbitrary point x, the expected number of lattice points inside

a k-dimensional sphere of radius r is proportional to the volume

k2 .
T(k/2+1)
Therefore the expected total number of points visited is
- -k ks " 2k 2
W w\w+ v Awliﬁ ~e  , forlarge m.

e To have a nonvanishing probability of finding a point in the
m-dimensional sphere, its volume must be ASd\ww_ ™ =0(1). But

from Stirling’s formula this implies that r* = O(m) and that the
/ complexity of the algorithm is exponential, eO(m)
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TP Random ZOQm_-

e Though not unexpected, this is a discouraging result.

Often, however, the vector x is not arbitrary, but is a lattice point

perturbed by additive noise with known statistical properties:
xr=Hs+ v,
say, where the entries of v are independent N (0, c°) random variables.

e A first by-product is that one should determine the radius r based
on the noise, not on the lattice

e Clearly when o = 0, the exact solution can be found in O(m?)

e When o0° — 00, the expected complexity is exponential

But what happens at intermediate noise levels?

\_
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Bﬁm expected complexity is given by /

(expected # of points in k-sphere of radius r) - (flops/point)

NE

a
I
—

E,(k,7° = amo”) - (2k + 17)

NE

oy
I
[t

e How to compute E,(k,7%)?
Suppose that the lattice point s; was transmitted and that the vector

x = Hs¢+v was observed. The probability that an arbitrary lattice point

S, lies in a hypersphere of radius r around x can be computed to be

2
r k/2—1
o2 llsa—s:112 A _
e “d.

(rre=rs) - i
TN sa—s?’2) " /s [(k/2)




hﬁm probability just computed depends only on ||s, — s¢||* = ||s]|?, w.m;/
on the squared norm of an arbitrary lattice point. Thus,
2 — r’ k 2
E,(k,r") = — =] of lattice points with ||s||* = n).
r) =3y (g ) b Jsl1* = n)
Since
Is|* = s + ... + sk,

we basically, need to figure out how many ways a non-negative integer n
can be represented as the sum of k£ squared integers.

This is denoted by ri(n) and is related to the classic Waring problem
(1770). Euler introduced the following (now called Jacobi) theta function

0(z) = Moow 2™ =142 Waiw“
m=1

m=—00

and noted that

\_

0" (z) =1+ MU re(n)x”.

k
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Representing Integers as Sum of Squares

Using the relationship between theta functions and elliptic functions

Jacobi showed
r2(n) = 4(di(n) —ds(n)),
where di(n) and ds(n) are the number of divisors of n congruent to

1 and 3 mod 4, respectively. Jacobi also obtained a similar formula

for ra(n).

Similar methods have been used to compute rx(n) for
k =6,8,10,12. Ramanujan (and Hardy and Littlewood) computed
explicit formulas for even k < 24. But that’s about as far as it goes.

A plethora of asymptotic results (in £ and n) are available.

In anycase, for any given k£ and n the value of r(n) can be

Y

numerically computed using Euler’s trick. It is also a built-in

function in Mathematica, Sum0fSquaresR[k,n]. K
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The Expected Complexity Over the Full Lattice

As a function of m, the lattice dimension, and o2, the noise variance, the

expected complexity of sphere decoding therefore becomes (Hassib and
Vikalo 2001):

C(m,o”) = MUAmw +17) MUQASVQ AQM;&Q Wv :

It is often useful to look at the complexity exponent:

~ logC(m,c?)
- logm

Ce

Q
Q

¢ When C' = O(m*®), then C.

e When C' = O(8™), then Ce = .

\_
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complexity exponent

16
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Expected Complexity for Finite Constellations

e When the entries of s are 2-PAM modulated (4-QAM, in the

complex case), we have

m k
k am k
Clmp) =3 @+ 103" | ) (T
k=1 n=0 n ._.SPMLB

e When the entries of s are 4-PAM modulated (16-QAM, in the
complex case), we have

m k
1 k am k
k=1 n [=0 l 1+ m(L2—12)

where g, (k,1) is the coefficient of ™ in ¢} (z)¢% ' (z), where

dpo(z) =1+z+z*+2° and ¢i(z) =1+ 2z + "

/o Similar formulas can be developed for 8-PAM, 16-PAM, etc. K
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Computational Complexity and Shannon Capacity

Each entry of s carries log L. bits of information so that the data

transmission rate is
R = mlog L bits/channel use

The simulations presented show that for a fixed m and L (and hence

fixed transmission rate R) the computational complexity increases as we
decrease the SNR.

e In practice, however, we would never want the SNR to be such that
the Shannon capacity

1
Cshannon (M, p) = mm_om det ANS + %ﬁﬁﬂv :

is not able to support the rate R.

/mo what is the expected complexity like for R < Cspannon(m, p)? K
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Nulling /Cancelling vs. Polynomial-time

M=8, N=4, R=16, LD Code: N/C vs. ML Decoding
10" ¢ T T

ber

N/C

| |
15 20 25 30
SNR (dB)

Figure 4: Bit error performance of an optimal linear space-time code for
T =8, M =8and N = 4, at rate R = 16. Note that L = 2'°® ~ 3.4x10°®.
/HWm ML complexity was roughly twice that of nulling/cancelling. K
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\ 4 Summary - /

Multiple-antenna systems promise very high data rates for wireless
communications. To deliver on this promise, there are still many
challenges and open problems.
e information theory
— what are the fundamental limitations? how does fading affect
things? training issues? random matrices...
e coding theory (space-time codes)
— how to achieve capacity? known channel codes, unknown channel
codes, group representations, Cayley transforms...
e algorithms

— how to do all the processing in real-time? sphere decoding,

polynomial-time ML? average vs. worst-case compelxity,
/ equalization and frequency-selective channels... k
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