# **A** Fundamental Tradeoff in Multiple Antenna Channels

Lizhong Zheng and David Tse Department of EECS, U.C. Berkeley

Feb 26, 2002

MSRI Information Theory Workshop

#### **Wireless Fading Channels**



Fundamental characteristic of wireless channels: multipath fading due to constructive and destructive interference.

Channel varies over time as well as frequency.

• Multi-antenna communication is a hot field in recent years.

- Multi-antenna communication is a hot field in recent years.
- But the research community has a split personality.

- Multi-antenna communication is a hot field in recent years.
- But the research community has a split personality.
- There are two very different views of how multiple antennas can be used.

-

\_





• Additional independent signal paths increase diversity.

-



- Additional independent signal paths increase diversity.
- Diversity: receive



- Additional independent signal paths increase diversity.
- Diversity: receive, transmit



- Additional independent signal paths increase diversity.
- Diversity: receive, transmit or both.



- Additional independent signal paths increase diversity.
- Diversity: receive, transmit or both.
- Compensate against channel unreliability.

-





Another way to view a  $2 \times 2$  system:

• Increases the degrees of freedom in the system



Another way to view a  $2 \times 2$  system:

- Increases the degrees of freedom in the system
- Multiple antennas provide parallel spatial channels: spatial multiplexing



Another way to view a  $2 \times 2$  system:

- Increases the degrees of freedom in the system
- Multiple antennas provide parallel spatial channels: spatial multiplexing
- Fading is exploited as a source of randomness.

#### **Diversity vs.** Multiplexing



Multiple antenna channel provides two types of gains:

Diversity Gain vs. Spatial Multiplexing Gain

#### **Diversity vs. Multiplexing**



Multiple antenna channel provides two types of gains:

Diversity Gain vs. Spatial Multiplexing Gain

Existing schemes focus on one type of gain.

## **A** Different Point of View

Both types of gains can be achieved simultaneously in a given multiple antenna channel

## **A** Different Point of View

Both types of gains can be achieved simultaneously in a given multiple antenna channel, but there is a fundamental tradeoff.

## **A** Different Point of View

Both types of gains can be achieved simultaneously in a given multiple antenna channel, but there is a fundamental tradeoff.

We propose a unified framework which encompasses both diversity and multiplexing and study the optimal tradeoff.

# Outline

- Problem formulation and main result on optimal tradeoff.
- Sketch of proof.
- Comparison of existing schemes.

#### **Channel Model**



 $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{w}, \qquad w_i \sim \mathcal{CN}(0, 1)$ 

- Rayleigh fading i.i.d. across antenna pairs  $(h_{ij} \sim C\mathcal{N}(0,1))$ .
- Focus on codes of T symbols, where H remains constant (slow, flat fading)
- **H** is known at the receiver but not the transmitter.
- SNR is the average signal-to-noise ratio at each receive antenna.

**Motivation: Binary Detection** 

 $\mathbf{y} = \mathbf{h}\mathbf{x} + \mathbf{w}$   $P_e \approx P(\|\mathbf{h}\| \text{ is small }) \propto SNR^{-1}$ 

#### **Motivation: Binary Detection**

 $\mathbf{y} = \mathbf{h}\mathbf{x} + \mathbf{w}$   $P_e \approx P(\|\mathbf{h}\| \text{ is small }) \propto SNR^{-1}$ 

$$\begin{array}{l} \mathbf{y}_1 = \mathbf{h}_1 \mathbf{x} + \mathbf{w}_1 \\ \mathbf{y}_2 = \mathbf{h}_2 \mathbf{x} + \mathbf{w}_2 \end{array} \right\} \qquad P_e \quad \approx P(\|\mathbf{h}_1\|, \|\mathbf{h}_2\| \text{ are both small}) \\ \propto \mathsf{SNR}^{-2} \end{array}$$

**Motivation: Binary Detection** 

 $\mathbf{y} = \mathbf{h}\mathbf{x} + \mathbf{w}$   $P_e \approx P(\|\mathbf{h}\| \text{ is small }) \propto SNR^{-1}$ 

$$\begin{array}{l} \mathbf{y}_1 = \mathbf{h}_1 \mathbf{x} + \mathbf{w}_1 \\ \mathbf{y}_2 = \mathbf{h}_2 \mathbf{x} + \mathbf{w}_2 \end{array} \right\} \qquad P_e \quad \approx P(\|\mathbf{h}_1\|, \|\mathbf{h}_2\| \text{ are both small}) \\ \propto \mathsf{SNR}^{-2} \end{array}$$

**Definition** A scheme achieves diversity gain d, if

 $P_e \sim \mathrm{SNR}^{-d}$ 

**Motivation: Binary Detection** 

 $\mathbf{y} = \mathbf{h}\mathbf{x} + \mathbf{w}$   $P_e \approx P(\|\mathbf{h}\| \text{ is small }) \propto SNR^{-1}$ 

$$\begin{array}{l} \mathbf{y}_1 = \mathbf{h}_1 \mathbf{x} + \mathbf{w}_1 \\ \mathbf{y}_2 = \mathbf{h}_2 \mathbf{x} + \mathbf{w}_2 \end{array} \right\} \qquad P_e \quad \approx P(\|\mathbf{h}_1\|, \|\mathbf{h}_2\| \text{ are both small}) \\ \propto \mathsf{SNR}^{-2} \end{array}$$

**Definition** A scheme achieves diversity gain d, if

$$P_e \sim \mathrm{SNR}^{-d}$$

Acutal error probability instead of pairwise error probability. (eg. Tarokh et al 98, Guey et al 99)

#### How to Define Spatial Multiplexing Gain

Motivation: (Telatar'95, Foschini'96)

Ergodic capacity:

 $C(SNR) \approx \min\{M, N\} \log SNR \quad (bps/Hz),$ 

Equivalent to  $\min\{M, N\}$  parallel spatial channels.

#### How to Define Spatial Multiplexing Gain

**Motivation:** (Telatar'95, Foschini'96)

Ergodic capacity:

 $C(SNR) \approx \min\{M, N\} \log SNR \quad (bps/Hz),$ 

Equivalent to  $\min\{M, N\}$  parallel spatial channels.

A scheme is a sequence of codes, one at each SNR level.

#### How to Define Spatial Multiplexing Gain

**Motivation:** (Telatar'95, Foschini'96)

Ergodic capacity:

 $C(SNR) \approx \min\{M, N\} \log SNR \quad (bps/Hz),$ 

Equivalent to  $\min\{M, N\}$  parallel spatial channels.

A scheme is a sequence of codes, one at each SNR level.

**Definition** A scheme achieves spatial multiplexing gain r, if

 $R = r \log \mathsf{SNR} \quad (bps/Hz)$ 

Increasing data rates instead of fixed data rate. (cf. Tarokh et al 98)

#### **Fundamental Tradeoff**

A scheme achieves

#### **Fundamental Tradeoff**

A scheme achieves

Fundamental tradeoff: for any r, the maximum diversity gain achievable:  $d^*(r)$ .

 $r \to d^*(r)$ 



As long as  $T \ge M + N - 1$ : (0,MN) (1,(M-1)(N-1))Diversity Gain: d<sup>\*</sup>(r) (min{M,N},0) Spatial Multiplexing Gain: r=R/log SNR

As long as  $T \ge M + N - 1$ : (0,MN) (1,(M-1)(N-1))Diversity Gain: d<sup>\*</sup>(r) (2, (M-2)(N-2))  $(min{M,N},0)$ 

Spatial Multiplexing Gain: r=R/log SNR

As long as  $T \ge M + N - 1$ : (0,MN) (1,(M-1)(N-1))Diversity Gain: d<sup>\*</sup>(r) (2, (M-2)(N-2)) (r, (M-r)(N-r)) (min{M,N},0) Spatial Multiplexing Gain: r=R/log SNR
#### Main Result: Optimal Tradeoff

As long as  $T \ge M + N - 1$ : (0,MN) (1,(M-1)(N-1)) d <sup>\*</sup> (r) Diversity Gain: (2, (M-2)(N-2)) (r, (M-r)(N-r))  $(\min\{M,N\},0)$ Spatial Multiplexing Gain: r=R/log SNR

For integer r, it is as though r transmit and r receive antennas were dedicated for multiplexing and the rest provide diversity.

#### Main Result: Optimal Tradeoff

As long as  $T \ge M + N - 1$ :



For integer r, it is as though r transmit and r receive antennas were dedicated for multiplexing and the rest provide diversity.

# Revisit the $2 \times 2$ Example



# Revisit the $2 \times 2$ Example (ctd.)



### Revisit the $2 \times 2$ Example (ctd.)



• Tradeoff bridges the gap between the two types of approaches.

# **Adding More Antennas**



#### **Adding More Antennas**



• Capacity result : increasing min{*M*, *N*} by 1 adds 1 more degree of freedom.

#### **Adding More Antennas**



- Capacity result: increasing min{*M*, *N*} by 1 adds 1 more degree of freedom.
- Tradeoff curve: increasing both M and N by 1 yields multiplexing gain +1 for any diversity requirement d.

-



-

-



-

-



-





# Outline

- Problem formulation and main result on optimal tradeoff.
- Sketch of proof.
- Comparison of existing schemes.

### **Converse: Outage Bound**

- Outage formulation for quasi-static scenarios. (Ozarow et al 94, Telatar 95)
- Look at the mutual information per symbol  $I(Q, \mathbf{H})$  as a function of the input distribution and channel realization.

# **Converse: Outage Bound**

- Outage formulation for quasi-static scenarios. (Ozarow et al 94, Telatar 95)
- Look at the mutual information per symbol  $I(Q, \mathbf{H})$  as a function of the input distribution and channel realization.
- Error probability for finite block length T is asymptotically lower bounded by the outage probability:

 $\inf_{Q} P_{\mathbf{H}} \left[ I(Q, \mathbf{H}) < R \right].$ 

#### **Converse: Outage Bound**

- Outage formulation for quasi-static scenarios. (Ozarow et al 94, Telatar 95)
- Look at the mutual information per symbol  $I(Q, \mathbf{H})$  as a function of the input distribution and channel realization.
- Error probability for finite block length T is asymptotically lower bounded by the outage probability:

$$\inf_{Q} P_{\mathbf{H}} \left[ I(Q, \mathbf{H}) < R \right].$$

• At high SNR, i.i.d. Gaussian input  $Q^{\ast}$  is asymptotically optimal, and

 $I(Q^*, \mathbf{H}) = \log \det \left[ I + \mathsf{SNRHH}^* \right].$ 

#### **Outage Analysis**

• Scalar  $1 \times 1$  channel:

For target rate  $R = r \log \text{SNR}$ , r < 1,

$$P\{\log(1 + \mathsf{SNR} \|\mathbf{h}\|^2) < r \log \mathsf{SNR}\}$$

$$\sim P\left\{\|\mathbf{h}\|^2 < \mathsf{SNR}^{-(1-r)}\right\}$$

$$\sim \mathsf{SNR}^{-(1-r)}$$

$$\implies d_{out}(r) = 1 - r$$

• Outage occurs when the channel gain  $\|\mathbf{h}\|^2$  is small.

#### **Outage Analysis**

• Scalar  $1 \times 1$  channel:

For target rate  $R = r \log SNR$ , r < 1,

$$P\{\log(1 + \mathsf{SNR} \|\mathbf{h}\|^2) < r \log \mathsf{SNR}\}$$

$$\sim P\left\{\|\mathbf{h}\|^2 < \mathsf{SNR}^{-(1-r)}\right\}$$

$$\sim \mathsf{SNR}^{-(1-r)}$$

$$\implies d_{out}(r) = 1 - r$$

- Outage occurs when the channel gain  $\|\mathbf{h}\|^2$  is small.
- More generally, outage occurs for the multi-antenna channel when some or all of the singular values of **H** are small.
- But unlike the scalar channel, there are many ways for this to happen in a vector channel.

### **Typical Outage Behavior**

 $\mathbf{v} =$ vector of singular values of  $\mathbf{H}$ .

Laplace Principle:

 $p_{out} = \min_{\mathbf{v} \in \mathsf{Out}} \mathsf{SNR}^{-f(\mathbf{v})}$ 

### **Typical Outage Behavior**

 $\mathbf{v} =$ vector of singular values of  $\mathbf{H}$ .

Laplace Principle:

$$p_{out} = \min_{\mathbf{v} \in \mathsf{Out}} \mathsf{SNR}^{-f(\mathbf{v})}$$

#### **Result:**

At target rate  $R = r \log SNR$ , outage typically occurs when **H** is near a rank  $\lfloor r \rfloor$  matrix, i.e. out of the min $\{M, N\}$  non-zero squared singular values:

- $\lfloor r \rfloor$  of them are order 1;
- $\min\{M, N\} \lfloor r \rfloor + 1$  of them are are order SNR<sup>-1</sup>;
- 1 of them is order SNR<sup>-(r-⌊r⌋)</sup> (just small enough to cause outage)

When r is integer, exactly r squared singular values are order 1 and  $\min\{M, N\}$  are order SNR<sup>-1</sup>.

**Scalar Channel** 



**Scalar Channel** 









$$p_{out} \sim \mathsf{SNR}^{-(M-r)(N-r)},$$

(M-r)(N-r) is the dimension of the normal space to the sub-manifold of rank r matrices within the set of all  $M \times N$  matrices.

#### **Piecewise Linearity of Tradeoff Curve**



Scalar channel: qualitatively same outage behavior for all r.

Vector channel: qualitatively different outage behavior for different r.

# Achievability: Random Codes

- Outage performance achievable as codeword length  $T \rightarrow \infty$ .
- But what about for finite *T*?
- Look at the performance of i.i.d Gaussian random codes.
- Can the outage behavior be achieved?

Errors can occur due to three events:

Errors can occur due to three events:

• Channel **H** is aytically bad (outage)

Errors can occur due to three events:

- Channel **H** is aytically bad (outage)
- Additive Gaussian noise atypically large.

Errors can occur due to three events:

- Channel **H** is aytically bad (outage)
- Additive Gaussian noise atypically large.
- Random codewords are atypically close together.

Errors can occur due to three events:

- Channel **H** is aytically bad (outage)
- Additive Gaussian noise atypically large.
- Random codewords are atypically close together.

Outage analysis only needs to focus on the first event, but for finite T all three effects come into play.

# Multiplicative Fading vs Additive Noise

Look at two codewords at Euclidean distance x.

#### Multiplicative Fading vs Additive Noise

Look at two codewords at Euclidean distance x.

• Error Event A: H typical, AWGN large

 $P(A) \sim \exp(-x).$ 

• Error Event B: H near singular, AWGN typical

 $P(B) \sim x^{-\alpha}.$ 

#### Multiplicative Fading vs Additive Noise

Look at two codewords at Euclidean distance x.

• Error Event A: H typical, AWGN large

 $P(A) \sim \exp(-x).$ 

• Error Event B: H near singular, AWGN typical

 $P(B) \sim x^{-\alpha}.$ 

At high SNR,  $x \to \infty$ 

 $\implies P(B) \gg P(B).$
### **Multiplicative Fading vs Code Randomness**

- Distance between random codewords may deviate from typical distance *x*.
- Error Event C: codewords atypically close

$$P(C) \sim x^{-\beta},$$

Also polynomial in x, just like the effect due to channel fading.

- As long as  $T \ge M + N 1$ , the typical error event is due to bad channel rather than bad codewords.
- For T < M + N 1, random codes are not good enough. (ISIT 02)

To Fade or Not to Fade?

## Line-of-Sight vs Fading Channel



• In a scalar  $1 \times 1$  system, line-of-sight AWGN is better.

### Line-of-Sight vs Fading Channel



- In a scalar  $1 \times 1$  system, line-of-sight AWGN is better.
- In a vector  $M \times N$  system, it depends.

# Outline

- Problem formulation and main result on optimal tradeoff.
- Sketch of proof.
- Comparison of existing schemes.

## Using the Optimal Tradeoff Curve

Provide a unified framework to compare different schemes.

## Use the Optimal Tradeoff Curve

Provide a unified framework to compare different schemes.

For a given scheme, compute

$$r \to d(r)$$

Compare with  $d^*(r)$ 

Focus on two transmit antennas.

 $\mathbf{Y} = \mathbf{H}\mathbf{X} + \mathbf{W}$ 

**Repetition Scheme:** 

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{x}_1 \end{bmatrix}$$

Focus on two transmit antennas.

 $\mathbf{Y} = \mathbf{H}\mathbf{X} + \mathbf{W}$ 

**Repetition Scheme:** 

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 & 0 \\ 0 & \mathbf{x}_1 \end{bmatrix} \qquad \qquad \mathbf{r} = \|\mathbf{H}\|\mathbf{x}_1 + \mathbf{w}\|$$

Focus on two transmit antennas.

$$\mathbf{Y} = \mathbf{H}\mathbf{X} + \mathbf{W}$$

**Repetition Scheme:** 

$$\mathbf{X} = \left[ \begin{array}{cc} \mathbf{x}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{x}_1 \end{array} \right]$$

 $\mathbf{r} = \|\mathbf{H}\|\mathbf{x}_1 + \mathbf{w}$ 

Alamouti Scheme

$$\mathbf{X} = \left[ egin{array}{ccc} \mathbf{x}_1 & -\mathbf{x}_2^* \ \mathbf{x}_2 & \mathbf{x}_1^* \end{array} 
ight]$$

Focus on two transmit antennas.

$$\mathbf{Y} = \mathbf{H}\mathbf{X} + \mathbf{W}$$

**Repetition Scheme:** 

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 & 0 \\ 0 & \mathbf{x}_1 \end{bmatrix} \qquad \qquad \mathbf{r} = \|\mathbf{H}\|\mathbf{x}_1 + \mathbf{w}\|\mathbf{x}_1 + \mathbf{w}\|\mathbf{x}\|\|\mathbf{x}_1 + \mathbf{w}\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x}\|\|\mathbf{x$$

Alamouti Scheme

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 & -\mathbf{x}_2^* \\ \mathbf{x}_2 & \mathbf{x}_1^* \end{bmatrix} \qquad \qquad \begin{bmatrix} \mathbf{r}_1 \mathbf{r}_2 \end{bmatrix} = \|\mathbf{H}\| [\mathbf{x}_1 \mathbf{x}_2] + [\mathbf{w}_1 \mathbf{w}_2]$$

### Comparison: $2 \times 1$ System



### Comparison: $2 \times 1$ System



### Comparison: $2 \times 1$ System



# Comparison: $2 \times 2$ System



# Comparison: $2 \times 2$ System



### Comparison: $2 \times 2$ System









Antenna 1:

Antenna 2:



\_

\_





- Nulling and Canceling
- Independent data streams transmitted over antennas

Original V-BLAST



V-BLAST with optimal rate allocation



Compare to the optimal tradeoff



Compare to the optimal tradeoff



Low diversity due to lack of coding over space



\_





\_

| Antenna 1: |                               | $\checkmark$ |  |
|------------|-------------------------------|--------------|--|
| Antenna 2: | $\boldsymbol{\boldsymbol{<}}$ |              |  |

 $\mathbf{i}$ 





Antenna 1:

\_

\_

Antenna 2:





Ignore the overhead for now.

### **D-BLAST: Square System**



### **D-BLAST: Square System**



- Can achieve full multiplexing gain
- Maximum diversity gain  $d = \frac{N(N+1)}{2}$ .

Replace Nulling by MMSE?

## D-BLAST+MMSE



## D-BLAST+MMSE



 Achieve the optimal: successive cancellation + MMSE has the optimal outage performance.

## D-BLAST+MMSE



- Achieve the optimal: successive cancellation + MMSE has the optimal outage performance.
- Difference between MMSE and Nulling.

## Penalty due to Overhead



# Conclusion

- The diversity-multiplexing tradeoff is a fundamental way of looking at fading channels.
- Same framework can be applied to other scenarios: multiuser, non-coherent, more complex channel models, etc.