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Wireless Fading Channels

Channel Quality

Time

Fundamental characteristic of wireless channels: multipath fading due

to constructive and destructive interference.

Channel varies over time as well as frequency.



Multiple Antennas

• Multi-antenna communication is a hot field in recent years.

• But the research community has a split personality.

• There are two very different views of how multiple antennas can

be used.
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Another way to view a 2× 2 system:

• Increases the degrees of freedom in the system

• Multiple antennas provide parallel spatial channels: spatial

multiplexing

• Fading is exploited as a source of randomness.
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antenna channel, but there is a fundamental tradeoff.
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multiplexing and study the optimal tradeoff.



Outline

• Problem formulation and main result on optimal tradeoff.

• Sketch of proof.

• Comparison of existing schemes.



Channel Model

h22
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h11
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YN

y = Hx + w, wi ∼ CN (0, 1)

• Rayleigh fading i.i.d. across antenna pairs (hij ∼ CN (0, 1)).

• Focus on codes of T symbols, where H remains constant (slow,

flat fading)

• H is known at the receiver but not the transmitter.

• SNR is the average signal-to-noise ratio at each receive antenna.



How to Define Diversity Gain

Motivation: Binary Detection

y = hx + w Pe ≈ P (‖h‖ is small ) ∝ SNR−1

y1 = h1x + w1

y2 = h2x + w2

9
=
;

Pe ≈ P (‖h1‖, ‖h2‖ are both small)

∝ SNR−2

Definition A scheme achieves diversity gain d, if

Pe ∼ SNR−d

Actual error probability instead of pairwise error probability (eg. Tarokh

et al 98, Guey et al 99)
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Motivation: (Telatar’95, Foschini’96)

Ergodic capacity:

C(SNR) ≈ min{M, N} log SNR (bps/Hz),

Equivalent to min{M, N} parallel spatial channels.

A scheme is a sequence of codes, one at each SNR level.

Definition A scheme achieves spatial multiplexing gain r, if

R = r log SNR (bps/Hz)

Increasing data rates instead of fixed data rate. (cf. Tarokh et al 98)
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and

Diversity Gain d : Pe ≈ SNR−d

Fundamental tradeoff: for any r, the maximum diversity gain

achievable: d∗(r).

r → d∗(r)
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Main Result: Optimal Tradeoff

As long as T ≥ M + N − 1:

Spatial Multiplexing Gain:   r=R/log SNR
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gain +1 for any diversity requirement d.
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Converse: Outage Bound

• Outage formulation for quasi-static scenarios. (Ozarow et al 94,

Telatar 95)

• Look at the mutual information per symbol I(Q,H) as a function

of the input distribution and channel realization.

• Error probability for finite block length T is asymptotically lower

bounded by the outage probability:

inf
Q

PH [I(Q,H) < R] .

• At high SNR, i.i.d. Gaussian input Q∗ is asymptotically optimal,

and

I(Q∗,H) = log det [I + SNRHH∗] .
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Outage Analysis

• Scalar 1× 1 channel:

For target rate R = r log SNR, r < 1,

P{log(1 + SNR‖h‖2) < r log SNR}
∼ P

n
‖h‖2 < SNR−(1−r)

o

∼ SNR−(1−r)

=⇒ dout(r) = 1− r

• Outage occurs when the channel gain ‖h‖2 is small.

• More generally, outage occurs for the multi-antenna channel when

some or all of the singular values of H are small.

• But unlike the scalar channel, there are many ways for this to

happen in a vector channel.
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Typical Outage Behavior

v = vector of singular values of H.

Laplace Principle:

pout = min
v∈Out

SNR−f(v)

Result:

At target rate R = r log SNR, outage typically occurs when H is near a

rank brc matrix, i.e. out of the min{M, N} non-zero squared singular

values:

• brc of them are order 1;

• min{M, N} − brc+ 1 of them are are order SNR−1;

• 1 of them is order SNR−(r−brc) ( just small enough to cause

outage)

When r is integer, exactly r squared singular values are order 1 and

min{M, N} are order SNR−1.
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Piecewise Linearity of Tradeoff Curve
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Scalar channel: qualitatively same outage behavior for all r.

Vector channel: qualitatively different outage behavior for different r.



Achievability: Random Codes

• Outage performance achievable as codeword length T →∞.

• But what about for finite T?

• Look at the performance of i.i.d Gaussian random codes.

• Can the outage behavior be achieved?



Analysis of Random Codes

Errors can occur due to three events:

• Channel H is aytically bad (outage)

• Additive Gaussian noise atypically large.

• Random codewords are atypically close together.

Outage analysis only needs to focus on the first event, but for finite T

all three effects come into play.
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Look at two codewords at Euclidean distance x.

• Error Event A: H typical, AWGN large

P (A) ∼ exp(−x).

• Error Event B: H near singular, AWGN typical

P (B) ∼ x−α.

At high SNR, x →∞

=⇒ P (B) À P (B).
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Multiplicative Fading vs Code Randomness

• Distance between random codewords may deviate from typical

distance x.

• Error Event C: codewords atypically close

P (C) ∼ x−β ,

Also polynomial in x, just like the effect due to channel fading.

• As long as T ≥ M + N − 1, the typical error event is due to bad

channel rather than bad codewords.

• For T < M + N − 1, random codes are not good enough. (ISIT 02)



To Fade or Not to Fade?
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• In a vector M ×N system, it depends.
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Two Diversity-Based Schemes

Focus on two transmit antennas.

Y = HX + W

Repetition Scheme:

X =

2
4 x1 0

0 x1

3
5 r = ‖H‖x1 + w

Alamouti Scheme

X =

2
4 x1 −x∗2

x2 x∗1

3
5 [r1r2] = ‖H‖[x1x2] + w
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X =
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4 x1 −x∗2

x2 x∗1

3
5 [r1r2] = ‖H‖[x1x2] + [w1w2]



Comparison: 2× 1 System
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Tradeoff Performance of V-BLAST (N ×N)
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Replace Nulling by MMSE?
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Penalty due to Overhead
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Conclusion

• The diversity-multiplexing tradeoff is a fundamental way of looking

at fading channels.

• Same framework can be applied to other scenarios: multiuser,

non-coherent, more complex channel models, etc.


