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Universal Noiseless Source Coding

encoder --
data’

decoder
codedata

-

Properties:

• Assumption: binary data, binary code.

• Requirement: data’ ≡ data.

• Objective: length(code) < length(data).

• Universality: source statistics unknown to encoder and decoder.
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Two Concepts

• Waiting
We discuss waiting times, Kac’s [1947] theorem, and its connection

to universal source coding (Willems [1986,1989], and Wyner and Ziv

[1989,1994]).

• Weighting
We discuss arithmetic coding, weighted coding distributions, and the

Context-Tree Weighting [1995] algorithm.
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Waiting Times

Consider the discrete stationary and ergodic source

· · · , X−3, X−2, X−1, X0, X1, X2, · · · .

Suppose that X1 = x for some symbol-value x ∈ X with Pr{X1 = x} > 0.

We say that the waiting time of the x that occurred at time t = 1 is m if

X1−m = x and Xt 6= x for t = 2−m, · · · ,0.

X1

¡¡ª

= x= x

m = 4

6= x 6= x 6= x

X2X−3 X−2 X−1 X0

@@

Let Qm(x) be the conditional probability that the waiting time of this x

is m, given that X1 = x. Hence

Qm(x) = Pr{X1−m = x, X2−m 6= x, · · · , X0 6= x|X1 = x}.
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Kac’s Result

The average waiting time for symbol-value x with Pr{X1 = x} > 0 is

defined as

T (x)
∆
=

∑

m=1,2,···
mQm(x).

Kac [1947]: For stationary and ergodic sources

T (x) =
∑

m=1,2,···
mQm(x) =

1

Pr{X1 = x}, (1)

for any x with Pr{X1 = x} > 0.
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Blocking

Let L be a positive integer. When · · · , X−1, X0, X1, X2, · · · is stationary

and ergodic, then

· · · ,




X−1
X0
· · ·

XL−2


 ,




X0
X1
· · ·

XL−1


 ,




X1
X2
· · ·
XL


 ,




X2
X3
· · ·

XL+1


 , · · ·

is stationary and ergodic too.

Therefore Kac’s result holds also for ”sliding” L-blocks. A waiting time

equal to m means that m is the smallest positive integer for which



X1−m
X2−m
· · ·

XL−m


 =




X1
X2
· · ·
XL


 .
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A Universal Source Coding Method (Willems [1986,1989])

Suppose that our source is binary i.e. Xt ∈ {0,1} for all integer t.

x3

@@¡¡ª

x1 x2 x3x0x−1x−6

x1

m = 4

x2

An encoder wants to transmit a source block xL
1

∆
= x1, x2, · · · , xL to a

decoder. Both encoder and decoder have access to buffers containing all
previous source symbols · · · , x−2, x−1, x0.

Using these previous source symbols the encoder can determine the wait-
ing time of xL

1 . It is the smallest integer m that satisfies

xL−m
1−m = xL

1 ,

where xL−m
1−m

∆
= x1−m, x2−m, · · · , xL−m.
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The waiting time m is sent to the decoder. With m and using the previous

source symbols the decoder can reconstruct xL
1 .

Code for the waiting time m for L = 3:

m p(m) c(m) l(m)
1 00 - 2+0=2
2 01 0 2+1=3
3 01 1 2+1=3
4 10 00 2+2=4
5 10 01 2+2=4
6 10 10 2+2=4
7 10 11 2+2=4
≥ 8 11 x0x1x2 2+3=5

In general we get fixed length codes with lengths 0,1, · · · , L − 1 and a

“copy”-code with length L. We use a preamble p(m) of dlog2(L + 1)e
bits to specify one of these L + 1 alternative codes.

7



In general we get

l(m) =

{
dlog2(L + 1)e+ blog2 mc if m < 2L,

dlog2(L + 1)e+ L if m ≥ 2L.

≤ dlog2(L + 1)e+ log2 m.

Note: Buffers need only contain the previous 2L − 1 source symbols!

After processing the block xL
1 the encoder and decoder can update their

buffers. After that the next block

x2L
L+1

∆
= xL+1, xL+2, · · · , x2L

is processed in a similar way, etc.
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Waiting-time algorithm: analysis

Assume that a certain xL
1 occurred as first block. What is the average

codeword length L(xL
1) for xL

1?

L(xL
1) =

∑

m=1,2,···
Qm(xL

1)l(m)

≤
∑

m=1,2,···
Qm(xL

1) (dlog2(L + 1)e+ log2 m)

(a)
≤ dlog2(L + 1)e+ log2


 ∑

m=1,2,···
mQm(xL

1)




(b)
= dlog2(L + 1)e+ log2

1

Pr{XL
1 = xL

1}
.

Here (a) follows Jensen’s inequality (E[f(X)] ≤ f(E[X]) for a convex-∩
function f(x) of x). Furthermore (b) follows from Kac’s theorem.

9



The probability that xL
1 occurred as first block is Pr{XL

1 = xL
1}. For the

average codeword length L(XL
1 ) we get

L(XL
1 ) =

∑

xL
1

Pr{XL
1 = xL

1}L(xL
1)

≤
∑

xL
1

Pr{XL
1 = xL

1}
(
dlog2(L + 1)e+ log2

1

Pr{XL
1 = xL

1}

)

= dlog2(L + 1)e+ H(XL
1 ).

For the rate RL we obtain

RL =
L(XL

1 )

L
≤ H(XL

1 )

L
+
dlog2(L + 1)e

L
.
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Achieving entropy

Since

lim
L→∞

H(XL
1 )

L

∆
= H∞(X)

and

lim
L→∞

dlog2(L + 1)e
L

= 0

we may conclude that

lim
L→∞

RL = H∞(X)

and therefore the waiting time algorithm achieves entropy.

Note that this method is universal. Although the statistics of the source

are unknown, entropy is achieved.
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Relation between waiting times and entropy

Again assume that · · · , X−1, X0, X1, X2, · · · is stationary and ergodic with

entropy H∞(X).

Let the random variable M be the waiting time of the source block XL
1 .

Wyner and Ziv [1989]: Fix ε > 0. Then

lim
L→∞

Pr
{
M ≥ 2L(H∞(X)+ε)

}
= 0. (2)

This result was crucial in proving that the Ziv-Lempel [1977] algorithm

achieves entropy (Wyner and Ziv [1994]).
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Intermezzo: Asymptotic Equipartion Property

Let · · · , X−1, X0, X1, · · · be stationary and ergodic with entropy H∞(X).

Define for a fixed δ > 0 the set of δ-typical L-sequences

AL
δ =

{
xL
1 :

∣∣∣∣∣
1

L
log2

1

Pr{XL
1 = xL

1}
−H∞(X)

∣∣∣∣∣ ≤ δ

}
, (3)

then (McMillan [1953]):

lim
L→∞

Pr{XL
1 ∈ AL

δ } = 1. (4)

This is called the Asymptotic Equipartition Property (A.E.P.).
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By definition for each δ-typical L-sequence xL
1 we have that

2−L(H∞(X)+δ) ≤ Pr{XL
1 = xL

1} ≤ 2−L(H∞(X)−δ).

Therefore

1 ≥
∑

xL
1∈AL

δ

Pr{XL
1 = xL

1}

≥
∑

xL
1∈AL

δ

2−L(H∞(X)+δ)

= |AL
δ |2−L(H∞(X)+δ),

and consequently

|AL
δ | ≤ 2L(H∞(X)+δ). (5)

Thus the typical set contains only roughly 2LH∞(X) sequences. Neverthe-

less it has probability almost equal to one.
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Proof of Wyner-Ziv theorem:

Consider the typical set AL
δ for δ = ε/2. Then

Pr{M ≥ 2L(H∞(X)+ε)}
= Pr{M ≥ 2L(H∞(X)+ε) ∧XL

1 ∈ AL
δ }+ Pr{M ≥ 2L(H∞(X)+ε) ∧XL

1 /∈ AL
δ }.

First we consider the second term. Observe that

Pr{M ≥ 2L(H∞(X)+ε) ∧XL
1 /∈ AL

δ } ≤ Pr{XL
1 /∈ AL

δ } → 0 for L →∞ (6)

by the AEP, see (4).

For the first term, if we use the notation H∞
∆
= H∞(X) and P (xL

1)
∆
=

Pr{XL
1 = xL

1}, we can write
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Pr{M ≥ 2L(H∞(X)+ε) ∧XL
1 ∈ AL

δ } =
∑

xL
1∈AL

δ

∑

m≥2L(H∞+ε)

P (xL
1)Qm(xL

1)

≤
∑

xL
1∈AL

δ

P (xL
1)

∑

m≥2L(H∞+ε)

mQm(xL
1)

2L(H∞+ε)

≤
∑

xL
1∈AL

δ

P (xL
1)

2L(H∞+ε)

∑

m=1,2,···
mQm(xL

1)

=
∑

xL
1∈AL

δ

P (xL
1)

2L(H∞+ε)
T (xL

1)

(a)
=

∑

xL
1∈AL

δ

1

2L(H∞+ε)

(b)
≤ 2L(H∞+δ)

2L(H∞+ε)
= 2−Lε/2.

Here (a) follows from Kac’s theorem (1) and (b) from the cardinality

bound (5) for AL
δ . Note finally that limL→∞ 2−Lε/2 = 0.
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Weighting

Binary sources, sequences

-source
x1x2 · · ·xT

A sequence xT = x1x2 · · ·xT with components ∈ {0,1} is produced by the
source with actual probability Pa(xT ).

Example: Independent identically distributed (I.I.D.) source with param-
eter θ. Let

Pa(1) = θ, and

Pa(0) = 1− θ,

for some 0 ≤ θ ≤ 1. Then a sequence xT containing a zeros and b ones
has

Pa(x
T ) = (1− θ)aθb.
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Codes, redundancy

A source code assigns to source sequence xT a binary codeword c(xT ) of

length L(xT ). These codewords must satisfy the prefix condition.

Example: T = 2.

xT c(xT ) L(xT )
00 0 1
01 10 2
10 110 3
11 111 3

The individual redundancy ρ(xT ) of a sequence xT is now defined as

ρ(xT ) = L(xT )− log2
1

Pa(xT )
,

i.e. codeword-length minus ideal codeword-length.
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Arithmetic coding

xT

· · ·
Pc(0 · · ·01)

Pc(0 · · ·00)Pc(0 · · ·00)

Pc(0 · · ·01)

· · ·
Pc(1 · · ·11)

66

- - -encoder decoder
xT c(xT)

Pc(1 · · ·11)

Arithmetic coding is possible if we use coding probabilities Pc(xT ) satis-

fying

Pc(x
T ) > 0 for all xT , and

∑

xT

Pc(x
T ) = 1.

Now we obtain for the codeword-lengths

L(xT ) < log2
1

Pc(xT )
+ 2.
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PROBLEM:

How do we choose the coding probabilities Pc(xT ) in the universal case?

We want them to be as large as possible (as close as possible to Pa(xT )).
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I.I.D. source with unknown θ

A good coding probability for a sequence xT that contains a zeroes and
b ones is

Pe(a, b)
∆
=

∫

θ=0,1

1

π
√

(1− θ)θ
· (1− θ)aθbdθ.

(Dirichlet weighting, Krichevsky-Trofimov estimator)

Properties:

• Lowerbound

Pc(xT )

Pa(xT )
=

Pe(a, b)

θa(1− θ)b
≥ 1

2
√

T
.

for all θ and xT with a zeros and b ones.
LOSS: At most a factor 2

√
T .

• Probability of a sequence with a + 1 zeroes and b ones

Pe(a + 1, b) =
a + 1/2

a + b + 1
· Pe(a, b).

⇒ sequential compression is simple, IMPORTANT!
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The individual redundancy

ρ(xT ) = L(xT )− log2
1

Pa(xT )

< log2
1

Pe(a, b)
+ 2− log2

1

θa(1− θ)b

= log2
θa(1− θ)b

Pe(a, b)
+ 2 ≤

(
1

2
logT + 1

)
+ 2.

for all θ and xT with a zeroes and b ones.

⇒ PARAMETER REDUNDANCY ≤ 1
2 logT + 1 bits.

For the average codeword-length we obtain

Lav < H(XT ) +
1

2
log2 T + 3,

= T · h(θ) +
1

2
log2 T + 3.

Rissanen’s lowerbound (1984): redundancy 1
2 log2 T bits/parameter is

asymptotically optimal!
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Binary Tree Sources (Example)

· · ·

µ
¶

´
³

µ
¶

´
³

HHHHHHHHHHHH©©©©©©©©©©©©

HHHHHHHHHHHH©©©©©©©©©©©©

modelparameters

1

0

0

1

θ1 = 0.1

θ10 = 0.3

θ00 = 0.5

xt−2 xt−1 xt

Pa(Xt = 1| · · · , Xt−1 = 1) = 0.1

Pa(Xt = 1| · · · , Xt−2 = 1, Xt−1 = 0) = 0.3

Pa(Xt = 1| · · · , Xt−2 = 0, Xt−1 = 0) = 0.5
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Problem, Concepts

PROBLEM: What is a good coding distribution for sequences xT pro-

duced by a tree source with

• an unknown tree-model,

• and unknown parameters?

Context-tree Weighting (Willems, Shtarkov, and Tjalkens [1995]):

CONCEPTS:

• Context-tree (Rissanen [ ... ]),

• Combining,

• Weighting (folclore).
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Context-Tree

A tree-like data-structure with depth D. Node s contains the sequence

of source symbols that have occurred following context s.

λ

PPPPPPPPPPPPP³³³³³³³³³³³³³

PPPPPPPPPPPPP³³³³³³³³³³³³³

XXXXXXXXXXXX»»»»»»»»»»»»

XXXXXXXXXXXX»»»»»»»»»»»»

XXXXXXXXXXXX»»»»»»»»»»»»

XXXXXXXXXXXX»»»»»»»»»»»»

000

100

010

110

001

101

011

111

00

10

01

11

0

1
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
ZZ
½

½
½

½
½

½
½

½
½

½
½½
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1234567
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1

0

−

4

6

3

5

17

2

− 0 1 0 0 1 1 0 1 0 0

1 2 3 4 5 6 7

xTpast

4

36

157

2

346

1257

XXXXXXXXXXXX»»»»»»»»»»»»

Context-tree splits up sequences in subsequences.
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Leaves of the context-tree

λ
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Assume that the actual tree source fits into the context tree.

Then the subsequence corresponding to a leaf s of the context tree is

I.I.D.
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A good coding probability∗ for this subsequence is therefore

P s
w = Pe(as, bs),

where as and bs are the number of zeroes and ones in this subsequence.

∗We denote this probability by P s
w for a reason that will become clear later.
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Internal nodes of the context-tree
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The subsequence corresponding to a node s of the context tree is

• I.I.D. if the node s is not an internal node of the actual tree-model,

• a combination of the subsequences corresponding to nodes 0s and 1s,
if s is an internal node of the actual model.
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Combining

Suppose that sequence y = y′y′′ is some combination of two independently

generated subsequences y′ and y′′.
Let P1(y

′) be a good coding probability for subsequence y′ and P2(y
′′) be

a good coding probability for subsequence y′′.

Then

P12(y
′y′′) = P1(y

′) · P2(y
′′).

is a good coding probability for y = y′y′′.
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Weighting

Suppose that at least P1(y) or P2(y) is a good coding probability for

sequence y.

Then the weighted probability

Pw(y) =
P1(y) + P2(y)

2

is at least (almost) as good as P1(y) and P2(y).

This is true because for i = 1 and 2

Pw(y) ≥ Pi(y)

2
.

LOSS: At most a factor 2.
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Recursion (internal nodes of context tree)

HHHHHHHHH©©©©©©©©©

s

0s

1s

Suppose that P0s
w and P1s

w are good coding probabilities for the subse-

quences corresponding to 0s and 1s.

If the subsequence that corresponds to node s

• is I.I.D., then a good coding probability for it would be

Pe(as, bs).

• is a combination of the subsequences corresponding to 0s and 1s,

then a good coding probability for it would be

P0s
w · P1s

w .
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Weighting both alternatives yields the coding probability

P s
w =

Pe(as, bs) + P0s
w · P1s

w

2
for the subsequence that corresponds to node s.

Finally we find in the root λ of the context-tree the coding probability Pλ
w

for the entire source sequence xT .

IMPORTANT: Pλ
w can be computed sequentially. Sequential (one-pass)

compression is possible!
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Analysis (Example)

Pλ
w ≥ 1

2
P0

w · P1
w

≥ 1

2

1

2
P00

w · P10
w · 1

2
Pe(a1, b1)

≥ 1

2

1

2

1

2
Pe(a00, b00) ·

1

2
Pe(a10, b10) ·

1

2
Pe(a1, b1).

Moreover

Pe(a00, b00) ≥ 1

2
√

a00 + b00
(1− θ00)

a00θ
b00
00 ,

Pe(a10, b10) ≥ 1

2
√

a10 + b10
(1− θ10)

a10θ
b10
10 ,

Pe(a1, b1) ≥ 1

2
√

a1 + b1
(1− θ1)

a1θ
b1
1 .

Here

Pa(x
T ) = (1− θ00)

a00θ
b00
00 · (1− θ10)

a10θ
b10
10 · (1− θ1)

a1θ
b1
1 .
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Total loss (Example)

• a factor 2 in every leaf and every internal node of the actual tree-
model, i.e. 25 in total,

• times a factor∗

2
√

(a00 + b00) · 2
√

(a10 + b10) · 2
√

(a1 + b1) ≤

2

√
T

3




3

.

• Hence

Pλ
w

Pa(xT )
≥ 1

25 · (2
√

T/3)3
.

• Total individual redundancy

ρ(xT ) = L(xT )− log2
1

Pa(xT )
< log2

1

Pλ
w

+ 2− log2
1

Pa(xT )

≤ 5 + 3
(
1

2
log2

T

3
+ 1

)
+ 2.

for all (θ00, θ10, θ1) and all xT .

∗For simplicity assume that as + bs > 0 for all leaves s of the actual source.
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In general

For a tree source S with |S| leaves (parameters) the loss is

• a factor 22|S|−1

• times a factor
(
2

√
T
|S|

)|S|
.

TOTAL REDUNDANCY:

ρ(xT ) < 2|S| − 1 +

(|S|
2

log2
T

|S| + |S|
)

+ 2 bits,

subdivided into three terms:

1. MODEL REDUNDANCY: ≤ 2|S| − 1,

2. PARAMETER REDUNDANCY: ≤ |S|
2 log2

T
|S| + |S|,

3. and CODING REDUNDANCY: < 2.
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Basic property the CTW method

• Implements a “weighting” over all tree-models with depth not exceed-

ing D, i.e.

Pλ
w =

∑

S∈TD
P (S)Pe(x

T |S),

with

Pe(x
T |S) = Πs∈SPe(as, bs),

and a priori tree-model probability

P (S) = 2−(2|S|−1).

• This leads to optimal redundancy behavior in individual sense.

• Straightforward analysis.
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Simulation (Example)

A sequence x1, x2, x3, · · · is generated by a tree source with a certain

model.

We now compute the terms P (S)Pe(xt|S) in the CTW-weighting for sev-

eral models and t = 1,2, · · · . We plot

log2
1

P (S)Pe(xt|S)
− log2

1

Pa(xt)
.

We also compute the CTW-probability Pλ
w and plot

log2
1

Pλ
w
− log2

1

Pa(xt)
.

Then the actual model does not always contribute the most. The CTW-

method always follows the model that gives the largest contribution!

However for t →∞ the actual model gives the largest contribution.
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Conclusion

We have discussed Waiting and Weighting, which turned out to be useful

concepts in Universal Source Coding.
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