
Waiting and Weighting

(Two Universal Source Coding Concepts)

Frans Willems, Eindhoven University of Technology

Universal Noiseless Source Coding

encoder --
data’

decoder
codedata

-

Properties:

• Assumption: binary data, binary code.

• Requirement: data’ ≡ data.

• Objective: length(code) < length(data).

• Universality: source statistics unknown to encoder and decoder.

1

Two Concepts

• Waiting
We discuss waiting times, Kac’s [1947] theorem, and its connection

to universal source coding (Willems [1986,1989], and Wyner and Ziv

[1989,1994]).

• Weighting
We discuss arithmetic coding, weighted coding distributions, and the

Context-Tree Weighting [1995] algorithm.

2

Waiting Times

Consider the discrete stationary and ergodic source

· · · , X−3, X−2, X−1, X0, X1, X2, · · · .

Suppose that X1 = x for some symbol-value x ∈ X with Pr{X1 = x} > 0.

We say that the waiting time of the x that occurred at time t = 1 is m if

X1−m = x and Xt 6= x for t = 2−m, · · · ,0.

X1

¡¡ª

= x= x

m = 4

6= x 6= x 6= x

X2X−3 X−2 X−1 X0

@@

Let Qm(x) be the conditional probability that the waiting time of this x

is m, given that X1 = x. Hence

Qm(x) = Pr{X1−m = x, X2−m 6= x, · · · , X0 6= x|X1 = x}.
3

Kac’s Result

The average waiting time for symbol-value x with Pr{X1 = x} > 0 is

defined as

T (x)
∆
=

∑

m=1,2,···
mQm(x).

Kac [1947]: For stationary and ergodic sources

T (x) =
∑

m=1,2,···
mQm(x) =

1

Pr{X1 = x}, (1)

for any x with Pr{X1 = x} > 0.

4

Blocking

Let L be a positive integer. When · · · , X−1, X0, X1, X2, · · · is stationary

and ergodic, then

· · · ,

X−1
X0
· · ·

XL−2

 ,

X0
X1
· · ·

XL−1

 ,

X1
X2
· · ·
XL

 ,

X2
X3
· · ·

XL+1

 , · · ·

is stationary and ergodic too.

Therefore Kac’s result holds also for ”sliding” L-blocks. A waiting time

equal to m means that m is the smallest positive integer for which

X1−m
X2−m
· · ·

XL−m

 =

X1
X2
· · ·
XL

 .

5

A Universal Source Coding Method (Willems [1986,1989])

Suppose that our source is binary i.e. Xt ∈ {0,1} for all integer t.

x3

@@¡¡ª

x1 x2 x3x0x−1x−6

x1

m = 4

x2

An encoder wants to transmit a source block xL
1

∆
= x1, x2, · · · , xL to a

decoder. Both encoder and decoder have access to buffers containing all
previous source symbols · · · , x−2, x−1, x0.

Using these previous source symbols the encoder can determine the wait-
ing time of xL

1 . It is the smallest integer m that satisfies

xL−m
1−m = xL

1 ,

where xL−m
1−m

∆
= x1−m, x2−m, · · · , xL−m.

6

The waiting time m is sent to the decoder. With m and using the previous

source symbols the decoder can reconstruct xL
1 .

Code for the waiting time m for L = 3:

m p(m) c(m) l(m)
1 00 - 2+0=2
2 01 0 2+1=3
3 01 1 2+1=3
4 10 00 2+2=4
5 10 01 2+2=4
6 10 10 2+2=4
7 10 11 2+2=4
≥ 8 11 x0x1x2 2+3=5

In general we get fixed length codes with lengths 0,1, · · · , L − 1 and a

“copy”-code with length L. We use a preamble p(m) of dlog2(L + 1)e
bits to specify one of these L + 1 alternative codes.

7

In general we get

l(m) =

{
dlog2(L + 1)e+ blog2 mc if m < 2L,

dlog2(L + 1)e+ L if m ≥ 2L.

≤ dlog2(L + 1)e+ log2 m.

Note: Buffers need only contain the previous 2L − 1 source symbols!

After processing the block xL
1 the encoder and decoder can update their

buffers. After that the next block

x2L
L+1

∆
= xL+1, xL+2, · · · , x2L

is processed in a similar way, etc.

8

Waiting-time algorithm: analysis

Assume that a certain xL
1 occurred as first block. What is the average

codeword length L(xL
1) for xL

1?

L(xL
1) =

∑

m=1,2,···
Qm(xL

1)l(m)

≤
∑

m=1,2,···
Qm(xL

1) (dlog2(L + 1)e+ log2 m)

(a)
≤ dlog2(L + 1)e+ log2

 ∑

m=1,2,···
mQm(xL

1)

(b)
= dlog2(L + 1)e+ log2

1

Pr{XL
1 = xL

1}
.

Here (a) follows Jensen’s inequality (E[f(X)] ≤ f(E[X]) for a convex-∩
function f(x) of x). Furthermore (b) follows from Kac’s theorem.

9

The probability that xL
1 occurred as first block is Pr{XL

1 = xL
1}. For the

average codeword length L(XL
1) we get

L(XL
1) =

∑

xL
1

Pr{XL
1 = xL

1}L(xL
1)

≤
∑

xL
1

Pr{XL
1 = xL

1}
(
dlog2(L + 1)e+ log2

1

Pr{XL
1 = xL

1}

)

= dlog2(L + 1)e+ H(XL
1).

For the rate RL we obtain

RL =
L(XL

1)

L
≤ H(XL

1)

L
+
dlog2(L + 1)e

L
.

10

Achieving entropy

Since

lim
L→∞

H(XL
1)

L

∆
= H∞(X)

and

lim
L→∞

dlog2(L + 1)e
L

= 0

we may conclude that

lim
L→∞

RL = H∞(X)

and therefore the waiting time algorithm achieves entropy.

Note that this method is universal. Although the statistics of the source

are unknown, entropy is achieved.

11

Relation between waiting times and entropy

Again assume that · · · , X−1, X0, X1, X2, · · · is stationary and ergodic with

entropy H∞(X).

Let the random variable M be the waiting time of the source block XL
1 .

Wyner and Ziv [1989]: Fix ε > 0. Then

lim
L→∞

Pr
{
M ≥ 2L(H∞(X)+ε)

}
= 0. (2)

This result was crucial in proving that the Ziv-Lempel [1977] algorithm

achieves entropy (Wyner and Ziv [1994]).

12

Intermezzo: Asymptotic Equipartion Property

Let · · · , X−1, X0, X1, · · · be stationary and ergodic with entropy H∞(X).

Define for a fixed δ > 0 the set of δ-typical L-sequences

AL
δ =

{
xL
1 :

∣∣∣∣∣
1

L
log2

1

Pr{XL
1 = xL

1}
−H∞(X)

∣∣∣∣∣ ≤ δ

}
, (3)

then (McMillan [1953]):

lim
L→∞

Pr{XL
1 ∈ AL

δ } = 1. (4)

This is called the Asymptotic Equipartition Property (A.E.P.).

13

By definition for each δ-typical L-sequence xL
1 we have that

2−L(H∞(X)+δ) ≤ Pr{XL
1 = xL

1} ≤ 2−L(H∞(X)−δ).

Therefore

1 ≥
∑

xL
1∈AL

δ

Pr{XL
1 = xL

1}

≥
∑

xL
1∈AL

δ

2−L(H∞(X)+δ)

= |AL
δ |2−L(H∞(X)+δ),

and consequently

|AL
δ | ≤ 2L(H∞(X)+δ). (5)

Thus the typical set contains only roughly 2LH∞(X) sequences. Neverthe-

less it has probability almost equal to one.

14

Proof of Wyner-Ziv theorem:

Consider the typical set AL
δ for δ = ε/2. Then

Pr{M ≥ 2L(H∞(X)+ε)}
= Pr{M ≥ 2L(H∞(X)+ε) ∧XL

1 ∈ AL
δ }+ Pr{M ≥ 2L(H∞(X)+ε) ∧XL

1 /∈ AL
δ }.

First we consider the second term. Observe that

Pr{M ≥ 2L(H∞(X)+ε) ∧XL
1 /∈ AL

δ } ≤ Pr{XL
1 /∈ AL

δ } → 0 for L →∞ (6)

by the AEP, see (4).

For the first term, if we use the notation H∞
∆
= H∞(X) and P (xL

1)
∆
=

Pr{XL
1 = xL

1}, we can write

15

Pr{M ≥ 2L(H∞(X)+ε) ∧XL
1 ∈ AL

δ } =
∑

xL
1∈AL

δ

∑

m≥2L(H∞+ε)

P (xL
1)Qm(xL

1)

≤
∑

xL
1∈AL

δ

P (xL
1)

∑

m≥2L(H∞+ε)

mQm(xL
1)

2L(H∞+ε)

≤
∑

xL
1∈AL

δ

P (xL
1)

2L(H∞+ε)

∑

m=1,2,···
mQm(xL

1)

=
∑

xL
1∈AL

δ

P (xL
1)

2L(H∞+ε)
T (xL

1)

(a)
=

∑

xL
1∈AL

δ

1

2L(H∞+ε)

(b)
≤ 2L(H∞+δ)

2L(H∞+ε)
= 2−Lε/2.

Here (a) follows from Kac’s theorem (1) and (b) from the cardinality

bound (5) for AL
δ . Note finally that limL→∞ 2−Lε/2 = 0.

16

Weighting

Binary sources, sequences

-source
x1x2 · · ·xT

A sequence xT = x1x2 · · ·xT with components ∈ {0,1} is produced by the
source with actual probability Pa(xT).

Example: Independent identically distributed (I.I.D.) source with param-
eter θ. Let

Pa(1) = θ, and

Pa(0) = 1− θ,

for some 0 ≤ θ ≤ 1. Then a sequence xT containing a zeros and b ones
has

Pa(x
T) = (1− θ)aθb.

17

Codes, redundancy

A source code assigns to source sequence xT a binary codeword c(xT) of

length L(xT). These codewords must satisfy the prefix condition.

Example: T = 2.

xT c(xT) L(xT)
00 0 1
01 10 2
10 110 3
11 111 3

The individual redundancy ρ(xT) of a sequence xT is now defined as

ρ(xT) = L(xT)− log2
1

Pa(xT)
,

i.e. codeword-length minus ideal codeword-length.

18

Arithmetic coding

xT

· · ·
Pc(0 · · ·01)

Pc(0 · · ·00)Pc(0 · · ·00)

Pc(0 · · ·01)

· · ·
Pc(1 · · ·11)

66

- - -encoder decoder
xT c(xT)

Pc(1 · · ·11)

Arithmetic coding is possible if we use coding probabilities Pc(xT) satis-

fying

Pc(x
T) > 0 for all xT , and

∑

xT

Pc(x
T) = 1.

Now we obtain for the codeword-lengths

L(xT) < log2
1

Pc(xT)
+ 2.

19

PROBLEM:

How do we choose the coding probabilities Pc(xT) in the universal case?

We want them to be as large as possible (as close as possible to Pa(xT)).

20

I.I.D. source with unknown θ

A good coding probability for a sequence xT that contains a zeroes and
b ones is

Pe(a, b)
∆
=

∫

θ=0,1

1

π
√

(1− θ)θ
· (1− θ)aθbdθ.

(Dirichlet weighting, Krichevsky-Trofimov estimator)

Properties:

• Lowerbound

Pc(xT)

Pa(xT)
=

Pe(a, b)

θa(1− θ)b
≥ 1

2
√

T
.

for all θ and xT with a zeros and b ones.
LOSS: At most a factor 2

√
T .

• Probability of a sequence with a + 1 zeroes and b ones

Pe(a + 1, b) =
a + 1/2

a + b + 1
· Pe(a, b).

⇒ sequential compression is simple, IMPORTANT!

21

The individual redundancy

ρ(xT) = L(xT)− log2
1

Pa(xT)

< log2
1

Pe(a, b)
+ 2− log2

1

θa(1− θ)b

= log2
θa(1− θ)b

Pe(a, b)
+ 2 ≤

(
1

2
logT + 1

)
+ 2.

for all θ and xT with a zeroes and b ones.

⇒ PARAMETER REDUNDANCY ≤ 1
2 logT + 1 bits.

For the average codeword-length we obtain

Lav < H(XT) +
1

2
log2 T + 3,

= T · h(θ) +
1

2
log2 T + 3.

Rissanen’s lowerbound (1984): redundancy 1
2 log2 T bits/parameter is

asymptotically optimal!

22

Binary Tree Sources (Example)

· · ·

µ
¶

´
³

µ
¶

´
³

HHHHHHHHHHHH©©©©©©©©©©©©

HHHHHHHHHHHH©©©©©©©©©©©©

modelparameters

1

0

0

1

θ1 = 0.1

θ10 = 0.3

θ00 = 0.5

xt−2 xt−1 xt

Pa(Xt = 1| · · · , Xt−1 = 1) = 0.1

Pa(Xt = 1| · · · , Xt−2 = 1, Xt−1 = 0) = 0.3

Pa(Xt = 1| · · · , Xt−2 = 0, Xt−1 = 0) = 0.5

23

Problem, Concepts

PROBLEM: What is a good coding distribution for sequences xT pro-

duced by a tree source with

• an unknown tree-model,

• and unknown parameters?

Context-tree Weighting (Willems, Shtarkov, and Tjalkens [1995]):

CONCEPTS:

• Context-tree (Rissanen [...]),

• Combining,

• Weighting (folclore).

24

Context-Tree

A tree-like data-structure with depth D. Node s contains the sequence

of source symbols that have occurred following context s.

λ

PPPPPPPPPPPPP³³³³³³³³³³³³³

PPPPPPPPPPPPP³³³³³³³³³³³³³

XXXXXXXXXXXX»»»»»»»»»»»»

XXXXXXXXXXXX»»»»»»»»»»»»

XXXXXXXXXXXX»»»»»»»»»»»»

XXXXXXXXXXXX»»»»»»»»»»»»

000

100

010

110

001

101

011

111

00

10

01

11

0

1
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
ZZ
½

½
½

½
½

½
½

½
½

½
½½

25

1234567

XXXXXXXXXXXX»»»»»»»»»»»»

XXXXXXXXXXXX»»»»»»»»»»»»

XXXXXXXXXXXX»»»»»»»»»»»»

PPPPPPPPPPPPP³³³³³³³³³³³³³

PPPPPPPPPPPPP³³³³³³³³³³³³³

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

ZZ
½

½
½

½
½

½
½

½
½

½
½½

1

0

−

4

6

3

5

17

2

− 0 1 0 0 1 1 0 1 0 0

1 2 3 4 5 6 7

xTpast

4

36

157

2

346

1257

XXXXXXXXXXXX»»»»»»»»»»»»

Context-tree splits up sequences in subsequences.

26

Leaves of the context-tree

λ

®

©
ª

®

©
ª

½
½

½
½

½
½

½
½

½
½

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

PPPPPPPPPPPP³³³³³³³³³³³³

PPPPPPPPPPPPP³³³³³³³³³³³³³

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

ZZ
½

½
½

½
½

½
½

½
½

½
½½

PPPPPPPPPPPPP³³³³³³³³³³³³³

XXXXXXXXXXXX»»»»»»»»»»»»

XXXXXXXXXXXX»»»»»»»»»»»»

XXXXXXXXXXXX»»»»»»»»»»»»

XXXXXXXXXXXX»»»»»»»»»»»»

000

100

010

110

001

101

011

111

00

10

01

11

0

1

®

©
ª

Assume that the actual tree source fits into the context tree.

Then the subsequence corresponding to a leaf s of the context tree is

I.I.D.
27

A good coding probability∗ for this subsequence is therefore

P s
w = Pe(as, bs),

where as and bs are the number of zeroes and ones in this subsequence.

∗We denote this probability by P s
w for a reason that will become clear later.

28

Internal nodes of the context-tree

λ

®

©
ª

®

©
ª

½
½

½
½

½
½

½
½

½
½

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

PPPPPPPPPPPP³³³³³³³³³³³³

PPPPPPPPPPPPP³³³³³³³³³³³³³

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

ZZ
½

½
½

½
½

½
½

½
½

½
½½

PPPPPPPPPPPPP³³³³³³³³³³³³³

XXXXXXXXXXXX»»»»»»»»»»»»

XXXXXXXXXXXX»»»»»»»»»»»»

XXXXXXXXXXXX»»»»»»»»»»»»

XXXXXXXXXXXX»»»»»»»»»»»»

000

100

010

110

001

101

011

111

00

10

01

11

0

1

®

©
ª

The subsequence corresponding to a node s of the context tree is

• I.I.D. if the node s is not an internal node of the actual tree-model,

• a combination of the subsequences corresponding to nodes 0s and 1s,
if s is an internal node of the actual model.

29

Combining

Suppose that sequence y = y′y′′ is some combination of two independently

generated subsequences y′ and y′′.
Let P1(y

′) be a good coding probability for subsequence y′ and P2(y
′′) be

a good coding probability for subsequence y′′.

Then

P12(y
′y′′) = P1(y

′) · P2(y
′′).

is a good coding probability for y = y′y′′.

30

Weighting

Suppose that at least P1(y) or P2(y) is a good coding probability for

sequence y.

Then the weighted probability

Pw(y) =
P1(y) + P2(y)

2

is at least (almost) as good as P1(y) and P2(y).

This is true because for i = 1 and 2

Pw(y) ≥ Pi(y)

2
.

LOSS: At most a factor 2.

31

Recursion (internal nodes of context tree)

HHHHHHHHH©©©©©©©©©

s

0s

1s

Suppose that P0s
w and P1s

w are good coding probabilities for the subse-

quences corresponding to 0s and 1s.

If the subsequence that corresponds to node s

• is I.I.D., then a good coding probability for it would be

Pe(as, bs).

• is a combination of the subsequences corresponding to 0s and 1s,

then a good coding probability for it would be

P0s
w · P1s

w .

32

Weighting both alternatives yields the coding probability

P s
w =

Pe(as, bs) + P0s
w · P1s

w

2
for the subsequence that corresponds to node s.

Finally we find in the root λ of the context-tree the coding probability Pλ
w

for the entire source sequence xT .

IMPORTANT: Pλ
w can be computed sequentially. Sequential (one-pass)

compression is possible!

33

Analysis (Example)

Pλ
w ≥ 1

2
P0

w · P1
w

≥ 1

2

1

2
P00

w · P10
w · 1

2
Pe(a1, b1)

≥ 1

2

1

2

1

2
Pe(a00, b00) ·

1

2
Pe(a10, b10) ·

1

2
Pe(a1, b1).

Moreover

Pe(a00, b00) ≥ 1

2
√

a00 + b00
(1− θ00)

a00θ
b00
00 ,

Pe(a10, b10) ≥ 1

2
√

a10 + b10
(1− θ10)

a10θ
b10
10 ,

Pe(a1, b1) ≥ 1

2
√

a1 + b1
(1− θ1)

a1θ
b1
1 .

Here

Pa(x
T) = (1− θ00)

a00θ
b00
00 · (1− θ10)

a10θ
b10
10 · (1− θ1)

a1θ
b1
1 .

34

Total loss (Example)

• a factor 2 in every leaf and every internal node of the actual tree-
model, i.e. 25 in total,

• times a factor∗

2
√

(a00 + b00) · 2
√

(a10 + b10) · 2
√

(a1 + b1) ≤

2

√
T

3

3

.

• Hence

Pλ
w

Pa(xT)
≥ 1

25 · (2
√

T/3)3
.

• Total individual redundancy

ρ(xT) = L(xT)− log2
1

Pa(xT)
< log2

1

Pλ
w

+ 2− log2
1

Pa(xT)

≤ 5 + 3
(
1

2
log2

T

3
+ 1

)
+ 2.

for all (θ00, θ10, θ1) and all xT .

∗For simplicity assume that as + bs > 0 for all leaves s of the actual source.

35

In general

For a tree source S with |S| leaves (parameters) the loss is

• a factor 22|S|−1

• times a factor
(
2

√
T
|S|

)|S|
.

TOTAL REDUNDANCY:

ρ(xT) < 2|S| − 1 +

(|S|
2

log2
T

|S| + |S|
)

+ 2 bits,

subdivided into three terms:

1. MODEL REDUNDANCY: ≤ 2|S| − 1,

2. PARAMETER REDUNDANCY: ≤ |S|
2 log2

T
|S| + |S|,

3. and CODING REDUNDANCY: < 2.

36

Basic property the CTW method

• Implements a “weighting” over all tree-models with depth not exceed-

ing D, i.e.

Pλ
w =

∑

S∈TD
P (S)Pe(x

T |S),

with

Pe(x
T |S) = Πs∈SPe(as, bs),

and a priori tree-model probability

P (S) = 2−(2|S|−1).

• This leads to optimal redundancy behavior in individual sense.

• Straightforward analysis.

37

Simulation (Example)

A sequence x1, x2, x3, · · · is generated by a tree source with a certain

model.

We now compute the terms P (S)Pe(xt|S) in the CTW-weighting for sev-

eral models and t = 1,2, · · · . We plot

log2
1

P (S)Pe(xt|S)
− log2

1

Pa(xt)
.

We also compute the CTW-probability Pλ
w and plot

log2
1

Pλ
w
− log2

1

Pa(xt)
.

Then the actual model does not always contribute the most. The CTW-

method always follows the model that gives the largest contribution!

However for t →∞ the actual model gives the largest contribution.

38

0 100 200 300 400 500 600 700 800
0

5

10

15

20

25

30

35

40

CTW

¤£ ¡¢

¤£ ¡¢

¤£ ¡¢

¤£ ¡¢

¤£ ¡¢

¤£ ¡¢

HHH©©©

HHH©©©

HHH©©©

HHH©©©

HHH©©©

@
@

@
¡

¡
¡

blue

green

red

violet

light blue

¤£ ¡¢

39

Conclusion

We have discussed Waiting and Weighting, which turned out to be useful

concepts in Universal Source Coding.

40

