Waiting and Weighting

(Two Universal Source Coding Concepts)

Frans Willems, Eindhoven University of Technology

Universal Noiseless Source Coding

Properties:

- Assumption: binary data, binary code.
- Requirement: data' \equiv data.
- Objective: length(code) < length(data).
- Universality: source statistics *unknown* to encoder and decoder.

Two Concepts

• Waiting

We discuss waiting times, Kac's [1947] theorem, and its connection to universal source coding (Willems [1986,1989], and Wyner and Ziv [1989,1994]).

Weighting

We discuss arithmetic coding, weighted coding distributions, and the Context-Tree Weighting [1995] algorithm.

Waiting Times

Consider the discrete stationary and ergodic source

$$\cdots, X_{-3}, X_{-2}, X_{-1}, X_0, X_1, X_2, \cdots$$

Suppose that $X_1 = x$ for some symbol-value $x \in \mathcal{X}$ with $\Pr\{X_1 = x\} > 0$. We say that the *waiting time* of the x that occurred at time t = 1 is m if $X_{1-m} = x$ and $X_t \neq x$ for $t = 2 - m, \dots, 0$.

$$m = 4$$

$$|X_{-3} | X_{-2} | X_{-1} | X_0$$

$$X_1 | X_2 |$$

$$= x \neq x \neq x \neq x = x$$

Let $Q_m(x)$ be the conditional probability that the waiting time of this x is m, given that $X_1 = x$. Hence

$$Q_m(x) = \Pr\{X_{1-m} = x, X_{2-m} \neq x, \cdots, X_0 \neq x | X_1 = x\}.$$

Kac's Result

The *average* waiting time for symbol-value x with $Pr{X_1 = x} > 0$ is defined as

$$T(x) \stackrel{\Delta}{=} \sum_{m=1,2,\cdots} mQ_m(x).$$

Kac [1947]: For stationary and ergodic sources

$$T(x) = \sum_{m=1,2,\cdots} mQ_m(x) = \frac{1}{\Pr\{X_1 = x\}},$$
(1)

for any x with $Pr{X_1 = x} > 0$.

Blocking

Let *L* be a positive integer. When $\dots, X_{-1}, X_0, X_1, X_2, \dots$ is stationary and ergodic, then

$$\cdots, \begin{pmatrix} X_{-1} \\ X_{0} \\ \cdots \\ X_{L-2} \end{pmatrix}, \begin{pmatrix} X_{0} \\ X_{1} \\ \cdots \\ X_{L-1} \end{pmatrix}, \begin{pmatrix} X_{1} \\ X_{2} \\ \cdots \\ X_{L} \end{pmatrix}, \begin{pmatrix} X_{2} \\ X_{3} \\ \cdots \\ X_{L+1} \end{pmatrix}, \cdots$$

is stationary and ergodic too.

Therefore Kac's result holds also for "sliding" L-blocks. A waiting time equal to m means that m is the smallest positive integer for which

$$\begin{pmatrix} X_{1-m} \\ X_{2-m} \\ \cdots \\ X_{L-m} \end{pmatrix} = \begin{pmatrix} X_1 \\ X_2 \\ \cdots \\ X_L \end{pmatrix}$$

•

A Universal Source Coding Method (Willems [1986,1989])

Suppose that our source is *binary* i.e. $X_t \in \{0, 1\}$ for all integer t.

An encoder wants to transmit a source block $x_1^L \triangleq x_1, x_2, \cdots, x_L$ to a decoder. Both encoder and decoder have access to buffers containing all previous source symbols $\cdots, x_{-2}, x_{-1}, x_0$.

Using these previous source symbols the encoder can determine the waiting time of x_1^L . It is the smallest integer m that satisfies

$$x_{1-m}^{L-m} = x_1^L,$$

where $x_{1-m}^{L-m} \triangleq x_{1-m}, x_{2-m}, \cdots, x_{L-m}$.

The waiting time m is sent to the decoder. With m and using the previous source symbols the decoder can reconstruct x_1^L .

Code for the waiting time m for L = 3:

m	p(m)	c(m)	l(m)
1	00	_	2+0=2
2	01	0	2+1=3
3	01	1	2+1=3
4	10	00	2+2=4
5	10	01	2+2=4
6	10	10	2+2=4
7	10	11	2+2=4
≥ 8	11	$x_0 x_1 x_2$	2+3=5

In general we get fixed length codes with lengths $0, 1, \dots, L-1$ and a "copy"-code with length L. We use a preamble p(m) of $\lceil \log_2(L+1) \rceil$ bits to specify one of these L+1 alternative codes.

In general we get

$$l(m) = \begin{cases} \lceil \log_2(L+1) \rceil + \lfloor \log_2 m \rfloor & \text{if } m < 2^L, \\ \lceil \log_2(L+1) \rceil + L & \text{if } m \ge 2^L. \\ \leq & \lceil \log_2(L+1) \rceil + \log_2 m. \end{cases}$$

Note: Buffers need only contain the previous $2^L - 1$ source symbols!

After processing the block x_1^L the encoder and decoder can update their buffers. After that the next block

$$x_{L+1}^{2L} \triangleq x_{L+1}, x_{L+2}, \cdots, x_{2L}$$

is processed in a similar way, etc.

Waiting-time algorithm: analysis

Assume that a certain x_1^L occurred as first block. What is the average codeword length $L(x_1^L)$ for x_1^L ?

$$L(x_1^L) = \sum_{m=1,2,\cdots} Q_m(x_1^L)l(m)$$

$$\leq \sum_{m=1,2,\cdots} Q_m(x_1^L)\left(\lceil \log_2(L+1) \rceil + \log_2 m\right)$$

$$\stackrel{(a)}{\leq} \left\lceil \log_2(L+1) \rceil + \log_2\left(\sum_{m=1,2,\cdots} mQ_m(x_1^L)\right)\right.$$

$$\stackrel{(b)}{\equiv} \left\lceil \log_2(L+1) \rceil + \log_2\frac{1}{\Pr\{X_1^L = x_1^L\}}.$$

Here (a) follows Jensen's inequality $(E[f(X)] \leq f(E[X]))$ for a convex- \cap function f(x) of x). Furthermore (b) follows from Kac's theorem.

The probability that x_1^L occurred as first block is $\Pr\{X_1^L = x_1^L\}$. For the average codeword length $L(X_1^L)$ we get

$$\begin{split} L(X_1^L) &= \sum_{x_1^L} \Pr\{X_1^L = x_1^L\} L(x_1^L) \\ &\leq \sum_{x_1^L} \Pr\{X_1^L = x_1^L\} \left(\lceil \log_2(L+1) \rceil + \log_2 \frac{1}{\Pr\{X_1^L = x_1^L\}} \right) \\ &= \lceil \log_2(L+1) \rceil + H(X_1^L). \end{split}$$

For the rate R_L we obtain

$$R_L = \frac{L(X_1^L)}{L} \le \frac{H(X_1^L)}{L} + \frac{\lceil \log_2(L+1) \rceil}{L}.$$

Achieving entropy

Since

$$\lim_{L \to \infty} \frac{H(X_1^L)}{L} \triangleq H_{\infty}(X)$$

and

$$\lim_{L \to \infty} \frac{\lceil \log_2(L+1) \rceil}{L} = 0$$

we may conclude that

$$\lim_{L\to\infty}R_L=H_\infty(X)$$

and therefore the waiting time algorithm achieves entropy.

Note that this method is **universal**. Although the statistics of the source are unknown, entropy is achieved.

Relation between waiting times and entropy

Again assume that $\dots, X_{-1}, X_0, X_1, X_2, \dots$ is stationary and ergodic with entropy $H_{\infty}(X)$.

Let the random variable M be the waiting time of the source block X_1^L .

Wyner and Ziv [1989]: Fix $\epsilon > 0$. Then

$$\lim_{L \to \infty} \Pr\left\{ M \ge 2^{L(H_{\infty}(X) + \epsilon)} \right\} = 0.$$
(2)

This result was crucial in proving that the Ziv-Lempel [1977] algorithm achieves entropy (Wyner and Ziv [1994]).

Intermezzo: Asymptotic Equipartion Property

Let $\dots, X_{-1}, X_0, X_1, \dots$ be stationary and ergodic with entropy $H_{\infty}(X)$.

Define for a fixed $\delta > 0$ the set of δ -typical L-sequences

$$\mathcal{A}_{\delta}^{L} = \left\{ x_{1}^{L} : \left| \frac{1}{L} \log_{2} \frac{1}{\Pr\{X_{1}^{L} = x_{1}^{L}\}} - H_{\infty}(X) \right| \le \delta \right\},$$
(3)

then (McMillan [1953]):

$$\lim_{L \to \infty} \Pr\{X_1^L \in \mathcal{A}_{\delta}^L\} = 1.$$
(4)

This is called the Asymptotic Equipartition Property (A.E.P.).

By definition for each δ -typical *L*-sequence x_1^L we have that $2^{-L(H_{\infty}(X)+\delta)} \leq \Pr\{X_1^L = x_1^L\} \leq 2^{-L(H_{\infty}(X)-\delta)}.$

Therefore

$$\begin{split} \mathbf{L} &\geq \sum_{\substack{x_1^L \in \mathcal{A}_{\delta}^L \\ \geq \\ x_1^L \in \mathcal{A}_{\delta}^L }} \Pr\{X_1^L = x_1^L\} \\ &\geq \sum_{\substack{x_1^L \in \mathcal{A}_{\delta}^L \\ = \\ |\mathcal{A}_{\delta}^L| 2^{-L(H_{\infty}(X) + \delta)}, \end{split}}$$

and consequently

$$|\mathcal{A}_{\delta}^{L}| \le 2^{L(H_{\infty}(X) + \delta)}.$$
(5)

Thus the typical set contains only roughly $2^{LH_{\infty}(X)}$ sequences. Nevertheless it has probability almost equal to one.

Proof of Wyner-Ziv theorem:

Consider the typical set \mathcal{A}^L_{δ} for $\delta = \epsilon/2$. Then

$$\Pr\{M \ge 2^{L(H_{\infty}(X)+\epsilon)}\}$$

=
$$\Pr\{M \ge 2^{L(H_{\infty}(X)+\epsilon)} \land X_{1}^{L} \in \mathcal{A}_{\delta}^{L}\} + \Pr\{M \ge 2^{L(H_{\infty}(X)+\epsilon)} \land X_{1}^{L} \notin \mathcal{A}_{\delta}^{L}\}.$$

First we consider the second term. Observe that

 $\Pr\{M \ge 2^{L(H_{\infty}(X) + \epsilon)} \land X_{1}^{L} \notin \mathcal{A}_{\delta}^{L}\} \le \Pr\{X_{1}^{L} \notin \mathcal{A}_{\delta}^{L}\} \to 0 \text{ for } L \to \infty$ (6) by the AEP, see (4).

For the first term, if we use the notation $H_{\infty} \triangleq H_{\infty}(X)$ and $P(x_1^L) \triangleq \Pr\{X_1^L = x_1^L\}$, we can write

$$\begin{split} \Pr\{M \ge 2^{L(H_{\infty}(X)+\epsilon)} \wedge X_{1}^{L} \in \mathcal{A}_{\delta}^{L}\} &= \sum_{x_{1}^{L} \in \mathcal{A}_{\delta}^{L}} \sum_{m \ge 2^{L(H_{\infty}+\epsilon)}} P(x_{1}^{L}) Q_{m}(x_{1}^{L}) \\ &\le \sum_{x_{1}^{L} \in \mathcal{A}_{\delta}^{L}} P(x_{1}^{L}) \sum_{m \ge 2^{L(H_{\infty}+\epsilon)}} \frac{mQ_{m}(x_{1}^{L})}{2^{L(H_{\infty}+\epsilon)}} \\ &\le \sum_{x_{1}^{L} \in \mathcal{A}_{\delta}^{L}} \frac{P(x_{1}^{L})}{2^{L(H_{\infty}+\epsilon)}} \sum_{m=1,2,\cdots} mQ_{m}(x_{1}^{L}) \\ &= \sum_{x_{1}^{L} \in \mathcal{A}_{\delta}^{L}} \frac{P(x_{1}^{L})}{2^{L(H_{\infty}+\epsilon)}} T(x_{1}^{L}) \\ &\stackrel{(a)}{=} \sum_{x_{1}^{L} \in \mathcal{A}_{\delta}^{L}} \frac{1}{2^{L(H_{\infty}+\epsilon)}} \\ &\stackrel{(b)}{\le} \frac{2^{L(H_{\infty}+\delta)}}{2^{L(H_{\infty}+\epsilon)}} = 2^{-L\epsilon/2}. \end{split}$$

Here (a) follows from Kac's theorem (1) and (b) from the cardinality bound (5) for \mathcal{A}_{δ}^{L} . Note finally that $\lim_{L\to\infty} 2^{-L\epsilon/2} = 0$.

Weighting

Binary sources, sequences

A sequence $x^T = x_1 x_2 \cdots x_T$ with components $\in \{0, 1\}$ is produced by the source with actual probability $P_a(x^T)$.

Example: Independent identically distributed (I.I.D.) source with parameter θ . Let

$$P_a(1) = \theta$$
, and
 $P_a(0) = 1 - \theta$,

for some $0 \le \theta \le 1$. Then a sequence x^T containing a zeros and b ones has

$$P_a(x^T) = (1-\theta)^a \theta^b.$$

Codes, redundancy

A source code assigns to source sequence x^T a binary codeword $c(x^T)$ of length $L(x^T)$. These codewords must satisfy the prefix condition.

Example: T = 2.

x^T	$c(x^T)$	$L(x^T)$
00	0	1
01	10	2
10	110	3
11	111	3

The *individual redundancy* $\rho(x^T)$ of a sequence x^T is now defined as

$$\rho(x^T) = L(x^T) - \log_2 \frac{1}{P_a(x^T)},$$

i.e. codeword-length minus *ideal* codeword-length.

Arithmetic coding

Arithmetic coding is possible if we use coding probabilities $P_c(x^T)$ satisfying

$$P_c(x^T) > 0$$
 for all x^T , and $\sum_{x^T} P_c(x^T) = 1$.

Now we obtain for the codeword-lengths

$$L(x^T) < \log_2 \frac{1}{P_c(x^T)} + 2.$$

PROBLEM:

How do we choose the coding probabilities $P_c(x^T)$ in the universal case? We want them to be as large as possible (as close as possible to $P_a(x^T)$).

I.I.D. source with unknown $\boldsymbol{\theta}$

A good coding probability for a sequence x^T that contains a zeroes and b ones is

$$P_e(a,b) \triangleq \int_{\theta=0,1} \frac{1}{\pi \sqrt{(1-\theta)\theta}} \cdot (1-\theta)^a \theta^b d\theta.$$

(Dirichlet **weighting**, Krichevsky-Trofimov estimator)

Properties:

• Lowerbound

$$\frac{P_c(x^T)}{P_a(x^T)} = \frac{P_e(a,b)}{\theta^a(1-\theta)^b} \ge \frac{1}{2\sqrt{T}}$$

for all θ and x^T with a zeros and b ones. LOSS: At most a factor $2\sqrt{T}$.

• Probability of a sequence with a + 1 zeroes and b ones

$$P_e(a+1,b) = \frac{a+1/2}{a+b+1} \cdot P_e(a,b).$$

 \Rightarrow sequential compression is simple, IMPORTANT!

The individual redundancy

$$\rho(x^{T}) = L(x^{T}) - \log_{2} \frac{1}{P_{a}(x^{T})}$$

$$< \log_{2} \frac{1}{P_{e}(a,b)} + 2 - \log_{2} \frac{1}{\theta^{a}(1-\theta)^{b}}$$

$$= \log_{2} \frac{\theta^{a}(1-\theta)^{b}}{P_{e}(a,b)} + 2 \le \left(\frac{1}{2}\log T + 1\right) + 2.$$

for all θ and x^T with a zeroes and b ones. \Rightarrow PARAMETER REDUNDANCY $\leq \frac{1}{2} \log T + 1$ bits.

For the average codeword-length we obtain

$$L_{av} < H(X^{T}) + \frac{1}{2}\log_{2}T + 3,$$

= $T \cdot h(\theta) + \frac{1}{2}\log_{2}T + 3.$

Rissanen's lowerbound (1984): redundancy $\frac{1}{2}\log_2 T$ bits/parameter is asymptotically optimal!

Binary Tree Sources (Example)

$$P_a(X_t = 1 | \dots, X_{t-1} = 1) = 0.1$$

$$P_a(X_t = 1 | \dots, X_{t-2} = 1, X_{t-1} = 0) = 0.3$$

$$P_a(X_t = 1 | \dots, X_{t-2} = 0, X_{t-1} = 0) = 0.5$$

Problem, Concepts

PROBLEM: What is a good coding distribution for sequences x^T produced by a tree source with

- an unknown tree-model,
- and unknown parameters?

Context-tree Weighting (Willems, Shtarkov, and Tjalkens [1995]):

CONCEPTS:

- Context-tree (Rissanen [...]),
- Combining,
- Weighting (folclore).

Context-Tree

A tree-like data-structure with depth D. Node s contains the sequence of source symbols that have occurred following context s.

Context-tree splits up sequences in subsequences.

Leaves of the context-tree

Assume that the actual tree source fits into the context tree.

Then the subsequence corresponding to a leaf s of the context tree is I.I.D.

A good coding probability^{*} for this subsequence is therefore

$$P_w^s = P_e(a_s, b_s),$$

where a_s and b_s are the number of zeroes and ones in this subsequence.

*We denote this probability by P_w^s for a reason that will become clear later.

Internal nodes of the context-tree

The subsequence corresponding to a node s of the context tree is

- I.I.D. if the node s is not an internal node of the actual tree-model,
- a combination of the subsequences corresponding to nodes 0s and 1s, if s is an internal node of the actual model.

Combining

Suppose that sequence y = y'y'' is some combination of two independently generated subsequences y' and y''.

Let $P_1(y')$ be a good coding probability for subsequence y' and $P_2(y'')$ be a good coding probability for subsequence y''.

Then

$$P_{12}(y'y'') = P_1(y') \cdot P_2(y'').$$

is a good coding probability for y = y'y''.

Weighting

Suppose that at least $P_1(y)$ or $P_2(y)$ is a good coding probability for sequence y.

Then the *weighted probability*

$$P_w(y) = \frac{P_1(y) + P_2(y)}{2}$$

is at least (almost) as good as $P_1(y)$ and $P_2(y)$.

This is true because for i = 1 and 2

$$P_w(y) \ge rac{P_i(y)}{2}.$$

LOSS: At most a factor 2.

Recursion (internal nodes of context tree)

Suppose that P_w^{0s} and P_w^{1s} are good coding probabilities for the subsequences corresponding to 0s and 1s. If the subsequence that corresponds to node s

• is I.I.D., then a good coding probability for it would be

$$P_e(a_s, b_s).$$

• is a combination of the subsequences corresponding to 0s and 1s, then a good coding probability for it would be

$$P_w^{\mathsf{O}s} \cdot P_w^{\mathsf{1}s}.$$

Weighting both alternatives yields the coding probability

$$P_w^s = \frac{P_e(a_s, b_s) + P_w^{\mathsf{O}s} \cdot P_w^{\mathsf{I}s}}{2}$$

for the subsequence that corresponds to node s.

Finally we find in the root λ of the context-tree the coding probability P_w^{λ} for the entire source sequence x^T .

IMPORTANT: P_w^{λ} can be computed sequentially. Sequential (one-pass) compression is possible!

Analysis (Example)

$$P_{w}^{\lambda} \geq \frac{1}{2} P_{w}^{0} \cdot P_{w}^{1}$$

$$\geq \frac{1}{2} \frac{1}{2} P_{w}^{00} \cdot P_{w}^{10} \cdot \frac{1}{2} P_{e}(a_{1}, b_{1})$$

$$\geq \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} P_{e}(a_{00}, b_{00}) \cdot \frac{1}{2} P_{e}(a_{10}, b_{10}) \cdot \frac{1}{2} P_{e}(a_{1}, b_{1}).$$

Moreover

$$P_{e}(a_{00}, b_{00}) \geq \frac{1}{2\sqrt{a_{00} + b_{00}}} (1 - \theta_{00})^{a_{00}} \theta_{00}^{b_{00}},$$

$$P_{e}(a_{10}, b_{10}) \geq \frac{1}{2\sqrt{a_{10} + b_{10}}} (1 - \theta_{10})^{a_{10}} \theta_{10}^{b_{10}},$$

$$P_{e}(a_{1}, b_{1}) \geq \frac{1}{2\sqrt{a_{11} + b_{10}}} (1 - \theta_{1})^{a_{1}} \theta_{1}^{b_{1}}.$$

Here

$$P_a(x^T) = (1 - \theta_{00})^{a_{00}} \theta_{00}^{b_{00}} \cdot (1 - \theta_{10})^{a_{10}} \theta_{10}^{b_{10}} \cdot (1 - \theta_1)^{a_1} \theta_1^{b_1}.$$

Total loss (Example)

- a factor 2 in every leaf and every internal node of the actual treemodel, i.e. 2⁵ in total,
- times a factor*

$$2\sqrt{(a_{00}+b_{00})} \cdot 2\sqrt{(a_{10}+b_{10})} \cdot 2\sqrt{(a_1+b_1)} \le \left(2\sqrt{\frac{T}{3}}\right)^3$$

• Hence

$$\frac{P_w^{\lambda}}{P_a(x^T)} \geq \frac{1}{2^5 \cdot (2\sqrt{T/3})^3}.$$

• Total individual redundancy

$$\rho(x^{T}) = L(x^{T}) - \log_{2} \frac{1}{P_{a}(x^{T})} < \log_{2} \frac{1}{P_{w}^{\lambda}} + 2 - \log_{2} \frac{1}{P_{a}(x^{T})} \\ \leq 5 + 3\left(\frac{1}{2}\log_{2} \frac{T}{3} + 1\right) + 2.$$

for all $(\theta_{00}, \theta_{10}, \theta_1)$ and all x^T .

*For simplicity assume that $a_s + b_s > 0$ for all leaves s of the actual source.

In general

For a tree source \mathcal{S} with $|\mathcal{S}|$ leaves (parameters) the loss is

- a factor $2^{2|\mathcal{S}|-1}$
- times a factor $\left(2\sqrt{\frac{T}{|\mathcal{S}|}}\right)^{|\mathcal{S}|}$.

TOTAL REDUNDANCY:

$$\rho(x^T) < 2|\mathcal{S}| - 1 + \left(\frac{|\mathcal{S}|}{2}\log_2\frac{T}{|\mathcal{S}|} + |\mathcal{S}|\right) + 2 \text{ bits,}$$

subdivided into three terms:

- 1. MODEL REDUNDANCY: $\leq 2|\mathcal{S}| 1$,
- 2. PARAMETER REDUNDANCY: $\leq \frac{|S|}{2} \log_2 \frac{T}{|S|} + |S|$,
- 3. and CODING REDUNDANCY: < 2.

Basic property the CTW method

• Implements a "weighting" over all tree-models with depth not exceeding *D*, i.e.

$$P_w^{\lambda} = \sum_{\mathcal{S} \in \mathcal{T}_{\mathcal{D}}} P(\mathcal{S}) P_e(x^T | \mathcal{S}),$$

with

$$P_e(x^T|\mathcal{S}) = \prod_{s \in \mathcal{S}} P_e(a_s, b_s),$$

and a priori tree-model probability

$$P(\mathcal{S}) = 2^{-(2|\mathcal{S}|-1)}$$

- This leads to optimal redundancy behavior in individual sense.
- Straightforward analysis.

Simulation (Example)

A sequence x_1, x_2, x_3, \cdots is generated by a tree source with a certain model.

We now compute the terms $P(S)P_e(x^t|S)$ in the CTW-weighting for several models and $t = 1, 2, \cdots$. We plot

$$\log_2 \frac{1}{P(\mathcal{S})P_e(x^t|\mathcal{S})} - \log_2 \frac{1}{P_a(x^t)}$$

We also compute the CTW-probability P_w^{λ} and plot

$$\log_2 rac{1}{P_w^\lambda} - \log_2 rac{1}{P_a(x^t)}.$$

Then the actual model does not always contribute the most. The CTWmethod always follows the model that gives the largest contribution!

However for $t \to \infty$ the actual model gives the largest contribution.

Conclusion

We have discussed Waiting and Weighting, which turned out to be useful concepts in Universal Source Coding.